Geometric Modeling 1
Indoors...
Outdoors...
Movies...
Movies...
Games...
Games...
Road Map

- A polygonal mesh is represented on the computer using various primitives: vertices, edges, and faces (triangles are the most common)

- **Problem:** Manually specifying every vertex, edge, and face is cumbersome (even if it is slightly faster than chipping a model out of stone...)

- **Solution:** software packages can help automate some vertex placement (but it can still take a long time)

- **Process:**
 - **Model** a low resolution mesh “by hand”
 - **Refine** that mesh with an *automatic* method/algorithm
 - **Edit** the refined mesh with a *semi-automated* method/algorithm
 - Refine more, Edit more, rinse, repeat, etc. etc.
Subdivision
Subdivision

- Given a coarse input mesh, generates a finer output mesh
- For a given mesh, various smooth limit surfaces exist
 - the exact smooth limit surfaces depends on the subdivision algorithm used
- After just a few refinements, additional changes become too small to see/matter
Subdivision Curves

Figure 2.1: Example of subdivision for curves in the plane. On the left 4 points connected with straight line segments. To the right of it a refined version: 3 new points have been inserted “inbetween” the old points and again a piecewise linear curve connecting them is drawn. After two more steps of subdivision the curve starts to become rather smooth.
Subdivision Surfaces
Loop Subdivision
Smooth Subdivision Surfaces Based on Triangles

by
Charles Terrell Loop

A thesis submitted to the faculty of
the University of Utah
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mathematics
The University of Utah
August 1997

1993 citations...
QUESTION #1 (short and long)

What is the highest cited paper (according to google scholar) ever written by one of the Stanford CS graphics professors (see lecture 1)?

<look up after class, and email the answer to the usual place...>

1878 citations...
Loop Subdivision

- Subdivide each triangle into 4 triangles
- Move vertices to new positions
- Repeat the above two steps, until desired resolution
- Generates a C^2 continuous limit surface almost everywhere
 - except at some extraordinary vertices where the limit is C^1 continuous
Subdivide Each Triangle into 4 Triangles
Subdivide Each Triangle into 4 Triangles
Move the Vertices

- Compute perturbed locations for new vertices (black)
- Move the original vertices too (grey)
Move the Vertices

- Compute perturbed positions of new vertices (black) using a weighted average of the four adjacent original vertices (grey)
- Change the original vertex (grey) positions using a weighted average of six adjacent original vertices (grey)
- Repeat until converged (or a few times)
Extraordinary Points

- Most vertices are regular (degree 6), but not all
- If a mesh is topologically equivalent to a sphere, not all the vertices can have degree 6

Extraordinary point
Extraordinary Points

- Find weights for extraordinary points that generate a smooth surface (tangent plane continuous)
- Want the surface normal to be continuous
- Math problem...

Warren weights

\[
\beta = \begin{cases}
\frac{3}{8n} & n > 3 \\
\frac{3}{16} & n = 3
\end{cases}
\]
An Example...
Starting Mesh
Add New Vertices
New Vertex & Stencil
Move New Vertex
Original Vertex & Stencil
Move Original Vertex
Extraordinary Vertex & Stencil
Move Extraordinary Vertex
Subdivided Surface
Subdivide Again
And Again
And Again
Limit surface
B-splines
B-Spline Basis functions

- Knots – node locations \(\{u_0, u_1, \ldots, u_m\} \)
- Lowest level building blocks are piecewise constant (m of them in this case):

\[
N_{i,0}(u) = \begin{cases}
1 & \text{if } u_i \leq u < u_{i+1} \\
0 & \text{otherwise}
\end{cases}
\]

0-th order:

- Higher order building blocks are defined recursively (i-th basis function of order j is...):

\[
N_{i,j}(u) = \frac{u - u_i}{u_{i+j} - u_i} N_{i,j-1}(u) + \frac{u_{i+j+1} - u}{u_{i+j+1} - u_{i+1}} N_{i+1,j-1}(u)
\]
B-Spline

- The B-spline itself is defined as:

\[C(u) = \sum_{i=0}^{n} N_{i,p}(u)P_i \]

- \(P_0, P_1, ..., P_n \) are 2D or 3D control points
- \(N_{i,p}(u) \) are the basis functions for a B-spline of order \(p \)

- Given \(m \) intervals, a B-spline of order \(p \) will require \(m-p \) control points
- For example \(m=6 \) and \(p=3 \) has \(m-p=3 \) (in the orange box)
- So the sum above goes from 0 to 2 to include 3 control points
B-Spline

- Moving **control points** changes the **shape** of the curve
- Each parametric domain interval requires 4 control points
- E.g., $s_0 = (.3,.4)$ is controlled P_0, P_1, P_2, P_3
- Lose 3 intervals off of each side
- $(u3,u4)$ in the table to the right is the first interval to have a full representation in the orange box: $N_{0,3}, N_{1,3}, N_{2,3}, N_{3,3}$

parametric domain:

- $u = 0.0$ to 1.0

control point

knot

- $m=10$ intervals
- order $p=3$
- $n+1=10-3$ (n=6)

B-Spline parametric domain:

control point

- knot

- P_0, P_1, P_2, P_3
NURBS Curve

- NURBS (Non-Uniform Rational B-Spline) curve is defined by:

\[C(u) = \frac{\sum_{i=0}^{n} N_{i,p}(u) w_i P_i}{\sum_{i=0}^{n} N_{i,p}(u) w_i} \]

where \(w_i \) is the weight of \(P_i \).

- Increasing \(w_i \) pulls the curve closer to the corresponding control point \(P_i \), while decreasing \(w_i \) releases the curve to move farther away from \(P_i \).

NURBS Surface

• Extending the ideas from curves to surfaces, a NURBS surface is defined as

$$S(u, v) = \frac{\sum_{i=0}^{m} \sum_{j=0}^{n} N_{i,p}(u)N_{j,q}(v)w_{i,j}P_{i,j}}{\sum_{i=0}^{m} \sum_{j=0}^{n} N_{i,p}(u)N_{j,q}(v)w_{i,j}}$$

• Now a 2D array of control points $P_{i,j}$ associated with each basis function $N_{i,p}(u)N_{j,q}(v)$.

http://www.3dmax-tutorials.com/CV_Surface.html
Subdividing Splines
Subdividing Spline Curves

• Add more parametric knots and 2D/3D control points
• First, insert new knots without changing the shape of the curve
 • When inserting a knot, add a control point as well
 • The positions of the control points are updated to preserve the shape of the curve

• E.g., given a spline curve of degree p with knots $\{u_0, u_1, ..., u_m\}$ and control points $P_0, P_1, ..., P_n$
 • insert a new knot \hat{u} between u_k and u_{k+1}
 • add one more control point obtaining the new set of control points $P_0^*, P_1^*, ..., P_{n+1}^*$
Original Curve
Insert a Knot
Add/Adjust Control Points
The positions of the new control points are computed using linear interpolation:

\[P^*_i = (1 - \alpha_i) P_{i-1} + \alpha_i P_i \]

where \(\alpha_i = \begin{cases}
1 & i < k - p + 1 \\
0 & i > k \\
\frac{\hat{u} - u_i}{u_{i+p} - u_i} & k - p + 1 \leq i \leq k
\end{cases} \)

- Note that \(\alpha_i = 1 \) simply chooses \(P^*_i = P_i \) leaving the control point as is
 - (for the control points in the beginning of the parametric domain)

- Note that \(\alpha_i = 0 \) simply chooses \(P^*_i = P_{i-1} \) leaving the control point as is, but renumbering it based on the new number of control points
 - (for control points near the end of the parametric domain)
Mesh Editing
Mesh Editing

- Artist manipulates a few control points or mesh points and the system *automatically* deforms the mesh
 - E.g., twist, bend, stretch, etc.
 - Fast, intuitive, preserves details
 - Widely used in CAD software such as Blender, Maya, etc.

- Spline (e.g. B-spline, NURBS) mesh editing uses control points
 - As we have seen in the previous slides

- Laplacian mesh editing allows one to directly move mesh points
Laplacian Mesh Editing
Differential Coordinates

• The differential coordinate is the difference between a vertex’s position \(x_i \) and the average position of its neighbors:

\[
d_i = L(x_i) = x_i - \frac{1}{n_i} \sum_{j \in N_i} x_j
\]

• Differential coordinates approximate the local shape:
 • The direction of \(d_i \) approximates the normal
 • The magnitude of \(d_i \) approximates the mean curvature

• A mesh can be described by a vector of differential coordinates of all its vertices \(D=\{d_i\} \)

• \(D = LX \)
 • \(L \) is constant coefficient and \textit{sparse} (vertices only interacts with their local neighbors)
 • \(X \) is a a vector of positions of all the vertices \(X=\{x_i\} \)
Laplacian Mesh Editing

- User selects control points $x_i, i = \{1,...,n\}$ in the region of interest (ROI), and sets the target position p_i for each control point.

- Solve for x^*_i for all vertices in the region of interest in a least squares sense:

 \[LX^* = D \]
 \text{with (soft) constraints } \quad x^*_i = p_i \quad \text{for } i \in \{1,...,n\}

- Equivalent to minimizing:

 \[E(X^*) = \sum_{i \in \text{ROI}} \left\| d_i - L(x^*_i) \right\|^2 + \sum_{i=1}^{n} \left\| x^*_i - p_i \right\|^2 \]

- Differential coordinates are sensitive to local deformations, so a transformation matrix $T_i(X^*)$ is computed for each vertex via:

 \[\min_{T_i} \left(\left\| T_i x_i - x^*_i \right\|^2 + \sum_{j \in N_i} \left\| T_i x_j - x^*_j \right\|^2 \right) \]

- Then

 \[E'(X^*) = \sum_{i \in \text{ROI}} \left\| T_i(X^*)d_i - L(x^*_i) \right\|^2 + \sum_{i=1}^{n} \left\| x^*_i - p_i \right\|^2 \]

[Sorkine et al. 2004]
Resources & Advice
Advice for Geometry Modeling

- **Decide what geometry you want in your scene**
 - Reference pictures from last years class to get an idea of what your model should look like
 - Have your final scene in mind when modeling your object, stops you from wasting time on modeling something that you won't use

- **Manually build your geometry**
 - Different modeling programs can differ drastically in their UI, try them all to find one that you like, and watch a modeling tutorial online before you start
 - Export your model into an .obj file so that the basic .obj reader provided in the example code can parse them

- **Use downloaded geometry from the Internet**
 - If your model has multiple components with different attributes (vertices, faces, normals, uv coordinates, material names, etc.), you may need to extend the basic .obj reader in example code to read all those attributes you need
 - If your downloaded mesh has flaws (e.g., holes, non-manifold parts, etc), try to use Meshlab to fix them
 - For those models without sharp features, subdivision can always make them look better

- **Procedural modeling**
 - Using an external library for noise generation can save you a lot of time

- **Display your geometry in OpenGL**
 - Make sure the clockwise/counterclockwise order of the triangle vertex indices are consistent with OpenGL (OpenGL uses the counterclockwise order)
 - Make sure the coordinate system used for your model is consistent with the one used in OpenGL. Transform your model if the two coordinate systems are different, e.g., you need to flip y and z axis of your model to correctly show it in OpenGL if you use 3DSMAX.
 - Make sure that the normals are consistent in your object so that it can be shaded properly in OpenGL
Useful Resources

- There are many modeling programs that are designed to help you create and modify models
 - Blender (free)
 - Autodesk Maya (free for students)
 - Autodesk 3DSMax (free for students)
 - SketchUp (free)
 - Meshlab (free)
 - Other modeling programs include Modo, AutoCAD, Lightwave, Bryce, Hexagon, etc.
 - Many 3D modeling programs also include other features such as animation and simulation.

- Model Database
 - Aim@Shape (models used in graphics academies, e.g., Stanford bunny, dragon, armadillo, etc)
 - Archive3D (everyday objects, e.g., desks, chairs, sofa, etc)
 - GrabCAD (mechanical objects, e.g., robots, planes, cars, warships, etc)
 - TF3DM (well categorized free models)
 - TurboSquid (largest model database in the world, but only part of them are free)
 - 3DWarehouse (architecture, e.g. buildings, bridges, furniture, etc.)

- Procedural Modeling
 - Libnoise (a C++ library to generate coherent noise)
 - Noise Texture Generator (generate your noise texture online)
Blender, Maya, Meshlab

- Creates all the meshes with modeling software
- Extends the obj loader given in sample code to read vertex locations, normals, faces, and texture coordinates from files made in Maya and Blender
Blender, Loop Subdivision, Fluid Simulator

- Modeled all the meshes with low resolution in Blender, and then loop-subdivide them for smoother looking
- Generate the icings of the donuts using a fluid simulator
- Generate normal map from the texture using CrazyBump
Artistic Scene Layout with Mixed Downloaded and Manually Generated Meshes

- Find the cloth and other mesh objects available online
- Manually generate mesh for the diamond
- Put everything together artistically, create a scene that resembles traditional still life oil paintings
Perlin Noise, Procedural Mesh/Texturing Generation

• Procedurally generate terrain with a 2D Perlin Noise function followed by 3 iterations of Loop subdivision
• Partition the terrain mesh into grass, snow, and water regions based on height
• Model and animate clouds with a 3D Perlin noise function

Kyle Moore, CS148 2013
Procedural and Parametric Mesh Generation

• The boat is parametrically calculated from a number of values; the length, width, height, thickness, quadratic width, etc.
• The bridge is also parametrically calculated from the given values length, width, thickness, gap size and number of boards.
• The waves in the sea are procedurally generated based on the function $y = 4\sin(2x + \varepsilon)\cos(2z)$ where ε is a noise function.
L-system, Plant Growing Animation

- Plants are modeled as an L-system, stored as a list of segments and drawn as truncated cones
- Rains, seeds, and fruits are modeled as particle sprites
Maya, TF3DM, environment map, billboards

• The toy monster was modeled in Maya from geometric primitives
• The bridged and helicopter were downloaded from TF3DM
• The UVs and textures for the bridge were fixed in Maya
• The lights are billboards, the sky is an environment map, the water was a plane with a normal map

Marianna Neubauer, CS148 2014
Fractal Geometry: Raytracing Quaternion Julia Sets

• Calculate the ray intersection point (in quaternion space) by iterating over $z_{n+1} = z_n^2 + c$.
• z_n represents the origin of the ray and z_{n+1} represents the ray intersection point.
• c is a quaternion that defines the shape of the Julia Set.
• Caustic effects were accomplished with bidirectional path tracing.
• The D&D die was from TurboSquid.

Marianna Neubauer, CS148 2014
Blender, Microsoft Word and Paint

- Models are created, modified, and subdivided in Blender (wolf is downloaded online)
- Careful scaling and rotation of objects to make the scene realistic and seamless
- Textures are done using Blender, Word, and Paint
TurboSquid, Blender, Normal mapping, Multiple lights

- Canoe model is downloaded from TurboSquid, and candles and lily pads are created in Blender
- Normal mapping is applied on the water surface and image textures are used for scene objects
- 11 light sources are used to light up the scene, with alpha blending for transparency effect
Glow

- Random geometry generation to create the blocks
- All emissive objects in the scene are drawn to a glowmap (framebuffer object), and blurred using fragment shader
Procedurally generated terrain, Noise, Haze, Moving camera

- Procedurally generated terrain using the diamond-squares algorithm
- Parts of the terrain were then sequentially smoothed into rolling hills using a derivation of a box blurring technique
- Terrains are painted using height and noise from multiple sine functions
- Haze effect is implemented in fragment shader and moving camera is used to make scene more realistic