Photon Mapping
Photon Maps

- Photon maps store lighting information on points or “photons” in 3D space
 - Stored either on or near 2D surfaces
- In the last lecture, we (instead) stored information on surfaces patches/triangles
Photon Maps

- Photons are emitted from light sources and bounce around the scene creating lighting information (left image), which is stored in the photon map.
- Later (right image), one queries the photon map in order to estimate global illumination.
Avoiding Radiosity Simplifications

• In the last lecture, we discretized surfaces into triangles, and discretized the hemisphere as well
• This discretization into “elements” is a finite element method (FEM) approach to the integral, and similar to Newton-Cotes quadrature
• 3D space + 2D angles = 5D (or, ignoring participating media, 2D space + 2D angles = 4D)
• Newton-Cotes quadrature suffers from the curse of dimensionality, and thus we assumed purely diffuse lighting to reduce the dimensionality (for tractability)
• Integrating over angles (the radiosity approach) reduced the problem to 2D (or 3D for participating media)
• But then one cannot address the specular term!

• Alternatively, Monte Carlo integration (which is less accurate than Newton-Cotes quadrature) scales well on higher dimensional problems (no curse of dimensionality)
• Monte Carlo allows one to tackle the full lighting equation in 4D (and 5D), without assuming purely diffuse lighting
A Simple Example

• Consider approximating $\pi = 3.1415926535 \ldots$
• Use a compass to construct a circle with radius $= 1$
• Since $A = \pi r^2$, the area of the circle is π
• Setting $f(x, y) = 1$ gives $\iint_A f(x, y) \, dA = \pi$
• So, compute the integral..
Newton-Cotes Approach

- Inscribe triangles inside the circle
- The function \(f(x, y) = 1 \) dictates computing the area of each triangle (and trivially multiplying by the height = 1)
- The difference between \(\pi \) and its approximation with triangles leads to errors

\[
\pi \approx 2 \\
\pi \approx 2.8284
\]
Monte Carlo Approach

- Construct a square with side length 4 containing the circle
- Randomly generate N points in the square, and color points inside the circle blue
- Since $\frac{A_{\text{circle}}}{A_{\text{box}}} = \frac{\pi}{16}$, one can approximate $\pi \approx 16 \left(\frac{N_{\text{blue}}}{N_{\text{blue}} + N_{\text{red}}} \right)$

$\pi \approx 3.136$ $\pi \approx 3.1440$
Monte Carlo Methods

• Typically used in higher dimensions (5D or more)
• Random (pseudo-random) numbers generate sample “points” that are multiplied by element “size” (e.g. length, area, volume, etc.)
• Error decreases like $\frac{1}{\sqrt{N}}$ where N is the number of samples (1/2 order accurate)
 • E.g. 100 times more sample points are needed to gain one more digit of accuracy
• Very slow convergence, but independent of the number of dimensions!
• Not competitive for lower dimensional problems (i.e., 1D, 2D, 3D), but the only tractable alternative for higher dimensional problems
Review: Random Numbers

• **Random variables** – expressions whose value is the outcome of a random experiment

• **Sample space** – the set of all possible outcomes

• **Probability distribution** $p(x)$ - probability of selecting each outcome in the sample space

• **Sample** - value of a random variable chosen from the sample space, with probability determined by $p(x)$

• **Pseudo-Random Number Generator** (PRNG) - deterministic algorithm that generate sequences of quasi-“random” numbers based on an initial **seed** (starting point in the pre-determined sequence)
 - PRNGs typically generate a (pseudo) random real number between 0 and 1 with equal (uniform) probability
 - Uniformly sampling [0,1] enables the sampling of other sample spaces that have non-uniform probabilities
Monte Carlo Integration (in 1D)

• Consider: $\int_{a}^{b} f(x)dx$

• Generate N samples X_i uniformly in the interval $[a, b]$

• A Monte Carlo estimate for the integral is then defined as:

$$F_N = \sum_{i=1}^{N} \frac{b - a}{N} f(X_i) = (b - a) \frac{\sum_{i=1}^{N} f(X_i)}{N}$$

• This is a simple averaging of all the sample results
Importance Sampling

Trivial (motivating) Case:
• Suppose $f(x)$ is only nonzero in a subset $[a_1, b_1]$ of $[a, b]$, i.e. $\int_a^b f(x)dx = \int_{a_1}^{b_1} f(x)dx$
• Then only samples $X_i \in [a_1, b_1]$ matter, since those outside $[a_1, b_1]$ do not contribute to the integral
• Change $p(x)$ from a uniform distribution over $[a, b]$ to a uniform distribution over $[a_1, b_1]$ in order to be more prudent/efficient with sampling

General Case:
• More generally, the probability distribution $p(x)$ should prefer samples in areas with higher contributions (importance) to the integral
• Given a $p(x)$ (with $\int_a^b p(x)dx = 1$), the Monte Carlo estimate is given by:
 \[
 F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{p(X_i)} f(X_i)
 \]
• When uniformly sampling with $p(x) = \frac{1}{b-a}$, this reduces to $F_N = \frac{1}{N} \sum_{i=1}^{N} (b - a) f(X_i)$
Importance Sampling

- Monte Carlo estimates for $\int_0^1 x^2 \, dx$ with $N = 100$ samples:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Caution: importance sampling does not necessarily reduce error (and can give worse results)
- Typically, the more $p(x)$ “resembles” $f(x)$, the lower the error
- Choose $p(x)$ based on physical principles or an approximate solution
Photon Emission

• Choose some number of photons; divide them amongst the lights (based on relative power)
 • For efficiency/implementaton, every photon is set to be the same strength
 • Brighter lights (simply) emit more photons instead of higher energy photons

• Emission Position:
 • Point light - all photons are emitted from a single point
 • Area light - randomly select a point to emit each photon from
 • Semi-random: Divide a rectangular light into a uniform 2D grid; emit a set number of photons from each grid cell (choosing the position randomly within each cell)

• Emission Direction:
 • randomly choose a direction on a sphere, hemisphere, subset of the sphere (for a spotlight), etc.

• For some scenes (e.g. consider the sun), many/most photons will miss the scene entirely
 • As an optimization, ignore those photons (never emit them)
 • Only generate/emit photons for the sub-light region that hits your scene
 • Scale down the energy of the light (to be that of the sub-light) when dividing up photons
Photon Storage

• Use the ray tracer to find the first piece of geometry a photon intersects
• Every time a photon intersects a surface, its data is added to the photon map to represent **incoming light**
• Create a **copy** of the photon to store in the photon map
 • Don’t delete the original photon, or move it into the photon map
 • The photon *may* still bounce around a bit more (if it’s not being absorbed)
• Store the point of impact (a location in 3D space) along with the incoming direction (ray direction from the ray tracer)
 • No need to record the energy (since all photons have equal energy)
Photon Absorption

• After storing the photon’s data in the photon map, randomly determine what happens next

• Objects absorb some incoming light, which is why they have a color

• There is some chance that the photon is absorbed by the surface
 • Absorbing a fraction of the photon’s energy would result in unequal energy photons
 • Instead, use the fraction of light energy that would be absorbed to state a probability that the photon is absorbed

• Generate a uniform random number and compare it to the probability of absorption to see if the photon is absorbed or not (Russian Roulette)

• When absorbed, the process stops (for this photon)

• Otherwise, the photon bounces
Photon Bouncing

• A bouncing photon needs a new direction
• Compute a new direction by mapping BRDF directions into probabilities
 • E.g. a purely diffuse BRDF has equal probability for all directions on the hemisphere
• Generate a random number and use it to determine the bounce direction (from the BRDF probability table)
• Then, use the ray tracer to find the first piece of geometry the bounced photon intersects
• The new intersection location and the incoming direction are stored in the photon map
• Then, check for absorption; if not absorbed, bounce again, etc.
• Set a maximum number of bounces before termination
 • Can be set rather high as photons typically have a diminishing chance of avoiding absorption (as the number of bounces increases)
Rendered Image

Physically Based Rendering by Pharr and Humphreys
Direct Lighting

• It’s more accurate to evaluate direct lighting using shadow rays, rather than interpolating lighting from the photon map.

• Thus, the first time a photon emitted from a light source hits an object, it is not stored in the photon map (since this is direct lighting).

• This makes the photon map a lot more efficient, since one doesn’t need to store any photons for direct illumination.
Separate Diffuse/Specular Photon Maps

- It’s more convenient/efficient to treat diffuse and specular lighting separately
- When bouncing a photon, first randomly determine if the photon undergoes:
 - absorption (deleted)
 - (or) a diffuse bounce
 - (or) a specular bounce
- When bouncing, randomly determine the (diffuse or specular) bounce direction
- Create two photon maps:
 - Caustic photon map stores photons that have undergone only specular bounces (up to the point at which they are stored in the map)
 - Indirect lighting map stores any photon that has ever undergone at least one diffuse bounce
Separate Diffuse/Specular Photon Maps

Diagram:
- Direct
 - Specular
 - Emission
- Caustic
- Indirect
 - Nonspecular
 - Specular/Nonspecular
- Any
Specular Photon Map for Caustics
Gathering Radiance

• Trace rays from the camera and intersect with objects (as usual)
• Use shadow rays for direct lighting (as usual)
• Estimate the radiance contribution to the ray from caustics and indirect lighting using the respective photon maps:
 • Use the N closest photons to the point of intersection (with the aid of an acceleration structure to store the photons: an octree or KD tree)
Aside: Code Acceleration

- Photons are typically stored in octree or K-D tree acceleration structures, so that the information they contain is more efficiently retrieved.
Color

• Create 3 photon maps, one for each color channel: Red, Green, Blue
• Objects of a certain color better absorb photons of differing colors, creating differences in the photon maps
• This gives color bleeding and related effects