Global Illumination
Global Illumination

• Realistically tracking the physical process:
 • Emit light from light sources
 • Follow the light from the light throughout the scene
 • Account for all reflection and absorption along the way
 • Follow the light through the aperture into the camera
 • Record the final pixel colors when the light hits the film
Soft shadows...
Color Bleeding...
Realistic Scenes...
Light Tracing

- Consider implementing Global Illumination by tracing rays.
- For each light source, choose a number of directions in order to evenly sample the hemisphere (or sphere depending on the type of light), and emit a photon of light in every sample direction.
- Follow this photon in a straight line using ray tracing, until it intersects some object (or the film on the camera).
- If the photon intersected an object, check to see if it is absorbed, reflected, or transmitted:
 - If absorbed, terminate the process for that photon; it does not make it to the film inside the camera.
 - If reflected or transmitted, create a new ray and send the photon off in that direction.
- Continue bouncing photons around the scene, terminating them if absorbed.
- The photons that make it through the aperture and hit the film inside the camera activate the sensor and contribute to the lighting of the scene.
- Note that very few photons will ever hit the film plane, which is the case in reality – most of the light in the world is not seen by your eyes!
Path Tracing

- Since so little of the light ever makes it to the film plane, it seems more efficient to trace photons backward in the opposite direction from the film to the light sources.
- For each pixel send out a ray through the aperture into the scene to trace the photon that hit that pixel backwards along its path.
 - (Note that this is how we do ray tracing already)
- If the ray hits a light source, use the outgoing light in the ray direction to determine how much light hits the pixel.
- Otherwise, if the ray hits an object, send out reflected and transmitted rays as usual.
- Continue following all these rays terminating them when they hit light sources.
- Note that a terminated ray only gives us a path.
 - We still need to emit a photon in this direction and bounce it off all the objects along the path, checking to see if it is absorbed along the way before it makes it to the pixel on the film.
 - Typically one emits many photons in this direction as some percentage of them are absorbed resulting in a specific color of light hitting the pixel (not just white or black).
BRDF Path Tracing

- Unfortunately, almost all of the rays from the camera will bounce around and end up eventually going out a window and off into outer space never finding a light source at all.
- This is because the ray traced reflected and transmitted rays do not actually properly represent the backwards path of the photons that hit that pixel.
- Instead, given a point on the surface of an object, photons bombard that point from every direction on the hemisphere.
- Thus, we cannot just spawn one reflected and one transmitted ray, but rather need to spawn rays in every single direction of the hemisphere to trace all the photons backwards from every incoming direction.
- Unfortunately, this means spawning many, many rays at every intersection point, which is expensive and impractical.
- In fact every one of these rays on the hemisphere that hits another point on another surface will spawn an entire new hemisphere of rays (exponential growth).
Ray Tracing

• Standard ray tracing assumes that all the incoming directions on the hemisphere are unimportant except for those that go directly towards the light source – and thus sends out only those rays
 • Except for reflection/transmission where these ray directions of the hemisphere (or sphere) are also considered important
• This ignoring of all the other directions on the hemisphere is called **direct illumination** (only considering light directly from the light source)
• However, this simplification ignores all the global illumination and its desired effects
• Worse yet, if the light is occluded in some way, most of the scene cannot directly see it and ray tracing will fail to find any illumination whatsoever
 • Everything occluded will be in shadow with only ambient lighting
Ray/Path Tracing vs. Light Tracing

most of the scene cannot see the light
(ray/path tracing fails)

most of the light never hits the film
(light tracing fails)
Bidirectional Ray Tracing

- Combines Light Tracing and Ray/Path Tracing
- First, bathe all the objects in photons from the light source and record their lighting information in a light map similar in spirit to a texture map
- This allows photons to bounce all around the scene illuminating shadows, bleeding color, etc., etc.
- Then, when ray tracing the scene, use the light map at each point in order to estimate the indirect light coming in from all the directions of the hemisphere
- We will still sample the most important directions on the hemisphere explicitly
 - That is, we will still sends rays directly to the light sources to gather direct illumination, and we will still send out reflected and transmitted rays to gather lighting information directly in these important sample directions as well
Light Maps

- Light maps work great for soft shadows, color bleeding, etc.
- But they can also be used to generate many other interesting effects as well…
Strategy

- Evaluate the lighting equation everywhere in the scene, irrespective of whether those locations are visible from the camera or not

- Disadvantage: Expensive
 - Requires the consideration of all incoming light and all outgoing light at every point in the scene
 - It requires a lot more work(!!) to compute lighting everywhere as opposed to calculating it only at points visible to camera

- Advantage: Far more realistic
 - This allows us to track the full path of light and account for the multiple bounces in indirect lighting
 - Once this computation is performed, one can place the camera anywhere in the scene and use the already computed light map
Recall: The Lighting Equation

Multiplying the BRDF by an incoming irradiance gives a resulting outgoing radiance

\[L_{o, due to i}(\omega_i, \omega_o) = BRDF(\omega_i, \omega_o) d E_i \]

For more complex lighting we will bounce light all around the scene, and it is tedious to convert between irradiance and radiance --- so we use

\[d E = L d \omega \cos \theta \] (from previous class) to obtain

\[L_{o, due to i}(\omega_i, \omega_o) = BRDF(\omega_i, \omega_o) L_i d \omega_i \cos \theta_i \]

Finally, the outgoing radiance considering the light coming from all incoming directions is

\[L_o = \int_{i \in \text{in}} BRDF(\omega_i, \omega_o) L_i \cos \theta_i d \omega_i \]

completing the derivation
Lighting Equation

\[L_o = \int_{i \in \text{in}} BRDF(\omega_i, \omega_o) L_i \cos \theta_i \, d\omega_i \]

- Explicitly write the angular dependence for \(L \):

\[L_o(\omega_o) = \int_{i \in \text{in}} BRDF(\omega_i, \omega_o) L_i(\omega_i) \cos \theta_i \, d\omega_i \]

- This equation is valid throughout space, so explicitly write \(L \) and the BRDF as continuous functions of space:

\[L_o(x, \omega_o) = \int_{i \in \text{in}} BRDF(x, \omega_i, \omega_o) L_i(x, \omega_i) \cos \theta_i \, d\omega_i \]

- Write the BRDF() as f() for brevity:

\[L_o(x, \omega_o) = \int_{i \in \text{in}} L_i(x, \omega_i) f(x, \omega_i, \omega_o) \cos \theta_i \, d\omega_i \]
A Note on Participating Media

• L can be defined over all 3D space, not just on 2D surfaces
• On surfaces L_o defines the outgoing light and it depends on the incoming light in a hemisphere above the surface centered at that point
• For points not on surfaces, i.e. in the “air”, L_o accounts for participating media, e.g. dust particles, and it depends on the incoming light in a sphere centered at that point
• If neglecting participating media, i.e. consider a vacuum, then we only need to compute L on surfaces
Treating Surfaces and Lights Uniformly

Surface inter-reflection: \(L_i(x, \omega_i) = L_o(x', -\omega_i) \)

\[
L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{i \in \text{hemi}} L_o(x'_i, -\omega_i) f(x, \omega_i, \omega_o) \cos \theta_i \, d\omega_i
\]

Emission (from a light)

All Light (emitted and reflected)
Implicit Equation for Radiance

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{i \in \text{hemi}} L_o(x_i', -\omega_i) f(x, \omega_i, \omega_o) \cos \theta_i \, d\omega_i \]

Reflected Light Emission Reflected Light BRDF incident angle
UNKnown KNOWN UNKnown KNOWN KNOWN

- Computing reflected radiance on a particular surface requires knowing the incoming radiance from all other surfaces (and lights)
- But the incoming radiance from all those other surfaces typically depends on the outgoing radiance from the surface under consideration
Integral Equation

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{i \in \text{hemi}} L_o(x', -\omega_i) f(x, \omega_i, \omega_o) \cos \theta_i \, d\omega_i \]

Reflected Light Emission Reflected Light BRDF incident angle
UNKNOWN KNOWN UNKNOWN KNOWN KNOWN

- Fredholm Integral Equation of the second kind
- extensively studied numerically
- canonical form:

\[l(u) = e(u) + \int l(v) k(u, v) \, dv \]

kernel \(k(u, v) \)
Linear Operator Theory

- Linear operators act on functions like matrices act on vectors:
 \[h(u) = (M \circ f)(u) \]
 M is a linear operator, f and h are functions of u

- Basic linearity relations hold:
 \[M \circ (af + bg) = a(M \circ f) + b(M \circ g) \]
 scalars: a, b
 functions: f, g

- Examples include differentiation and integration:
 \[(D \circ f)(u) = \frac{\partial f}{\partial u}(u) \]
 \[(K \circ f)(u) = \int k(u, v)f(v)dv \]
Linear Operator Theory

\[l(u) = e(u) + \int l(v) \, k(u, v) \, dv \]

Light Transport Operator

\[L = E + KL \]

Discretization:
- pick a number of points in the world \(p \) each representing an area chunk of a surface (2D discretization)
 - points can be chosen throughout the 3D volume for participating media
- for each point, pick a number of outgoing directions \(q \) each representing a subset of solid angles of the hemisphere or sphere (2D discretization)
 - generally speaking, \(q \) can vary from surface chunk to surface chunk
- then \(L \) and \(E \) are vectors of length \(p*q \) (4D or 5D discretization)
- \(K \) is the light transport matrix with size \((p*q) \) by \((p*q) \)
- \(K \) and \(E \) are known
- result is a set of linear equations for the unknown vector \(L \)
Linear Operator Theory

\[L = E + KL \]
\[IL - KL = E \]
\[(I - K)L = E \]
\[L = (I - K)^{-1} E \]

Using the Binomial Theorem:

\[L = (I + K + K^2 + K^3 + ...) E \]
\[L = E + KE + K^2 E + K^3 E + ... \]

- This power series expansion is only useful if the higher order terms vanish
- Term \(n \) corresponds to \(n-1 \) bounces of light, and at each bounce some light is absorbed
- Thus, the higher order terms do tend to vanish
Power Series

\[L = E + K E + K^2 E + K^3 E + \ldots \]

- Emission directly from light sources
- Direct Illumination on surfaces
- Global Illumination (one bounce indirect)
- Global Illumination (two bounce indirect)

OpenGL Shading
Power Series
From left to right: 1 bounce, 2 bounces, 4 bounces
Interchange Solid Angle and Area

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{i \in \text{Hemi}} L_o(x_i', -\omega_i) f(x, \omega_i, \omega_o) \cos \theta_i \, d\omega_i \]

Recall: \[d\omega = \frac{dA \cos \theta}{r^2} \]

So we can write and subsequently discretize the integral in terms of surface area patches using:

\[d\omega_i = \frac{dA' \cos \theta_o}{|x - x'|^2} \]
Interchange Solid Angle and Area

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int L_o(x', -\omega_i) f(x, \omega_i, \omega_o) \frac{\cos \theta_i \cos \theta_o}{|x - x'|^2} \, dA' \]

Define a geometric term: \(G(x, x') = G(x', x) = \frac{\cos \theta_i \cos \theta_o}{|x - x'|^2} \)

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int L_o(x', -\omega_i) f(x, \omega_i, \omega_o) G(x, x') \, dA' \]

Introduce a binary visibility function \(V \):

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int L_o(x', -\omega_i) f(x, \omega_i, \omega_o) G(x, x') V(x, x') \, dA' \]
Simplifying Specular Highlights

• Equations are too hard to solve as is…

• Simplifying assumption:
 • Assume all materials are diffuse
 • Compute specular highlights using a separate method

• Step 1: compute the view independent, global ambient and diffuse illumination for the entire scene using radiosity in a pre-processing step

• Step 2: compute the view dependent, specular illumination “on-the-fly” using that component of the Phong shading model or another method
Radiosity and Albedo

Radiosity - power per unit surface area leaving the surface

- same as irradiance but outgoing instead of incoming

\[
B(x) = \frac{d\Phi}{dA} = \int L(x, \omega) \cos \theta d\omega = \pi L(x)
\]

The last equality holds if \(L \) is independent of angle, which is true for purely diffuse surfaces.

Albedo - in a similar way, we define a “reflection coefficient” (the albedo) in terms of the BRDF:

\[
\rho(x) = \int_{hemi} f(x, \omega_o, \omega_i) \cos \theta d\omega_o = \pi f(x)
\]

The last equality holds if the BRDF is independent of angle, which is true for purely diffuse surfaces.
Radiosity Equation

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int L_o(x', -\omega_i) f(x, \omega_i, \omega_o) G(x, x') V(x, x') dA' \]

Assume a purely diffuse surface with a constant BRDF given by \(k_d \)

\[L_o(x, \omega_o) = L_e(x, \omega_o) + k_d(x) \int L_o(x', -\omega_i) G(x, x') V(x, x') dA' \]

Assume all surfaces look the same from all directions, which is only true for purely diffuse surfaces

Then we can integrate over all incoming/outgoing angles removing the dependence on incoming/outgoing angles:

\[B(x) = E(x) + \rho(x) \int B(x') \frac{G(x, x') V(x, x')}{\pi} dA' \]

Note B and E are only 2D now, instead of 4D!
System of Equations

\[B_i = E_i + \rho_i \sum_j B_j F_{ij} \]

\[B_i - \rho_i \sum_j B_j F_{ij} = E_i \]

Or in matrix form:

\[
\begin{bmatrix}
1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1n} \\
-\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & -\rho_2 F_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_n F_{n1} & -\rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn}
\end{bmatrix}
\begin{bmatrix}
B_1 \\
B_2 \\
\vdots \\
B_n
\end{bmatrix}
=
\begin{bmatrix}
E_1 \\
E_2 \\
\vdots \\
E_n
\end{bmatrix}
\]
Form Factor

\[B(x) = E(x) + \rho(x) \int_{\text{all surfaces} x'} B(x') \frac{G(x, x')V(x, x')}{\pi} \, dA' \]

Discretized over surface chunks: \[B_i = E_i + \rho_i \sum_j B_j F_{ij} \]

- The form factor is the fraction of energy leaving one surface patch that reaches another surface patch.
- It is a purely geometric relationship, independent of viewpoint or surface attributes.

\[F_{ij} = \frac{1}{A_i A_j} \int \int \frac{\cos \theta_i \cos \theta_j}{\pi |r|^2} \, dA_i dA_j \]
Nusselt developed a geometric analog of the differential form factor to aid in form factor calculations.

The "Nusselt analog" involves placing a hemispherical projection body, with unit radius, at a point on a surface.

The second surface is spherically projected onto the projection body, and then cylindrically projected onto the base of the hemisphere.

The form factor is the area projected on the base of the hemisphere divided by the area of the base.
Form Factor

• The hemicube (half a cube) strategy pre-computes the contribution to the form factor from each cell on the surface of a hemicube

• Then a surface patch is projected onto the hemicube, and the form factor is approximated using the pre-computed form factor values from the relevant portion of the hemicube

It’s faster to project onto a hemicube than onto a hemisphere, because a hemicube is made up of planes
System of Equations

Consider the system:

\[\begin{align*}
2x + y &= 8 \\
x + 2y &= 10
\end{align*}\]

i.e. \[
\begin{bmatrix}
2 & 1 \\
1 & 2
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
8 \\
10
\end{bmatrix}
\]

having solution \[
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
2 \\
4
\end{bmatrix}
\]

- We can invert the matrix and solve for \(x\) and \(y\), but this becomes more and more expensive as the system grows in size.

- Instead use an iterative method that approximates the solution and iteratively improves the current approximation.
System of Equations

- Start with a guess (any guess) for the solution and try to improve it iteratively
- Initial guess: \[
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 = \begin{bmatrix}
 0 \\
 0
 \end{bmatrix}
\]

Jacobi method

\[
 x^{(k)} = \frac{8 - y^{(k-1)}}{2} \\
 y^{(k)} = \frac{10 - x^{(k-1)}}{2}
\]

use old values to compute new values

Gauss Seidel method

\[
 x^{(k)} = \frac{8 - y^{(k-1)}}{2} \\
 y^{(k)} = \frac{10 - x^{(k)}}{2}
\]

always use the most up to date values possible
System of Equations

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Jacobi</th>
<th>Gauss Seidel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>4.25</td>
</tr>
<tr>
<td>5</td>
<td>1.875</td>
<td>3.75</td>
</tr>
<tr>
<td>6</td>
<td>2.125</td>
<td>4.0625</td>
</tr>
<tr>
<td>7</td>
<td>1.96875</td>
<td>3.9375</td>
</tr>
<tr>
<td>8</td>
<td>2.03125</td>
<td>4.015625</td>
</tr>
<tr>
<td>9</td>
<td>1.9921875</td>
<td>3.984375</td>
</tr>
<tr>
<td>10</td>
<td>2.0078125</td>
<td>4.00390625</td>
</tr>
<tr>
<td>11</td>
<td>1.998046875</td>
<td>3.99609375</td>
</tr>
<tr>
<td>12</td>
<td>2.001953125</td>
<td>4.000976563</td>
</tr>
<tr>
<td>13</td>
<td>1.999511719</td>
<td>3.999023438</td>
</tr>
<tr>
<td>14</td>
<td>2.000488281</td>
<td>4.000244141</td>
</tr>
<tr>
<td>15</td>
<td>1.99987793</td>
<td>3.999755859</td>
</tr>
<tr>
<td>16</td>
<td>2.00012207</td>
<td>4.000061035</td>
</tr>
<tr>
<td>17</td>
<td>1.999969482</td>
<td>3.999938965</td>
</tr>
<tr>
<td>18</td>
<td>2.000030518</td>
<td>4.000015259</td>
</tr>
<tr>
<td>19</td>
<td>1.999992371</td>
<td>3.999984741</td>
</tr>
<tr>
<td>20</td>
<td>2.000007629</td>
<td>4.000003815</td>
</tr>
</tbody>
</table>
Better Initial Guess

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Jacobi</th>
<th>Gauss Seidal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3.75</td>
</tr>
<tr>
<td>4</td>
<td>2.125</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3.9375</td>
</tr>
<tr>
<td>6</td>
<td>2.03125</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3.984375</td>
</tr>
<tr>
<td>8</td>
<td>2.0078125</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3.99609375</td>
</tr>
<tr>
<td>10</td>
<td>2.001953125</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>3.999023438</td>
</tr>
<tr>
<td>12</td>
<td>2.000488281</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3.999755859</td>
</tr>
<tr>
<td>14</td>
<td>2.00012207</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>3.999938965</td>
</tr>
<tr>
<td>16</td>
<td>2.000030518</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>3.999984741</td>
</tr>
<tr>
<td>18</td>
<td>2.000007629</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>3.999996185</td>
</tr>
<tr>
<td>20</td>
<td>2.000001907</td>
<td>4</td>
</tr>
</tbody>
</table>
Iterative Radiosity

- **Gathering** - updates one surface by collecting light energy from all surfaces.
- **Shooting** - updates all surfaces by distributing light energy from one surface.
Iterative Radiosity

• **Sorting and shooting:**
 • chooses the surface with the greatest unshot light energy and uses shooting to distribute its light energy to other surfaces in the environment
 • so it starts by shooting light energy out of the lights onto objects (the brightest light goes first)
 • then the object that reflects the most light goes next, etc.

• **Sorting and shooting with ambient:**
 • starts with an initial guess for ambient lighting and does sorting and shooting afterwards