Texture Mapping
Texture Mapping

- Offsets the assumption that the BRDF doesn’t change in u and v coordinates along an object’s surface
- Store RGB reflectance as an image (called a texture)
- Map that image onto the object (one triangle at a time)
Texture Coordinates

- A texture image is defined in a 2D coordinate system: \((u, v)\)
- **Texture mapping** assigns each triangle vertex a \((u, v)\) coordinate
- Then, the texture is “stuck” onto the triangle:
 - Let \(p\) be a point inside the triangle, with barycentric weights \(\alpha_0, \alpha_1, \alpha_2\)
 - The reflectance color at \(p\) is the texture color at \(\left(u(p), v(p) \right) = \alpha_0(u_0, v_0) + \alpha_1(u_1, v_1) + \alpha_2(u_2, v_2)\)
 - That is, texture coordinates are barycentrically interpolated

![Texture Coordinates Diagram](image_url)
Interpolating RGB Color

- \((u(p), v(p))\) is surrounded by 4 pixels in the texture image
- Use bilinear interpolation for \(T = R, G, B, \alpha, \text{ etc.}\)
- First, linearly interpolate in the \(u\) direction; then, in the \(v\) direction (or vice versa)

\[
T(u, v) = (1 - a)(1 - b)T_{i,j} + a(1 - b)T_{i+1,j} + (1 - a)bT_{i,j+1} + abT_{i+1,j+1}
\]
Recall: Perspective Projection

• Project a world space triangle (vertices p_0, p_1, p_2) into screen space (vertex by vertex) to obtain p'_0, p'_1, p'_2 via $x' = \frac{hx}{z}$ and $y' = \frac{hy}{z}$ for each vertex (x, y, z)

• A point $p = \alpha_0 p_0 + \alpha_1 p_1 + \alpha_2 p_2$ on a world space triangle is projected into screen space to a corresponding point p'

• Notably, $p' \neq \alpha_0 p'_0 + \alpha_1 p'_1 + \alpha_2 p'_2$ because the perspective projection is highly nonlinear

• The barycentric weights that describe the interior of the triangle in world space do not still hold after projecting the vertices into screen space

• Need a way of computing z' at a pixel from the z' values at the vertices of the screen space triangle

• The z' values are not linear with respect to the triangle vertices in screen space, only in world space (so can’t use barycentric interpolation!)

• However, if we knew the location of the pixel on the world space triangle, we could use barycentric interpolation on the world space triangle to compute z and z' for the pixel
Screen Space vs. World Space

- Perspective transformation nonlinearly changes a triangle’s shape, leading to different barycentric weights before/after (as we have seen)
- Interpolating texture coordinates in screen space results in texture distortion
Texture Distortion

- Consider one triangle edge
- Uniform increments along the edge in world space do not correspond to uniform increments in screen space (linear barycentric interpolation cannot account for this nonlinearity)
Recall: Screen Space Barycentric Weights

- Starting from \[\frac{1}{\alpha_0(z_0-z_2)+\alpha_1(z_1-z_2)+z_2} (z_0\alpha_0) = (\alpha'_0) \frac{\alpha'_1}{\alpha_1} \text{ or } (z_0\alpha_0) = (\alpha_0(z_0-z_2) + \alpha_1(z_1-z_2) + z_2) (\alpha'_0) \frac{\alpha'_1}{\alpha_1} \]

- Rewrite to \[\left(\begin{array}{c} z_0 + (z_2 - z_0)\alpha'_0 \\ z_0 + (z_2 - z_0)\alpha'_1 \end{array} \right) \left(\begin{array}{c} (z_2 - z_1)\alpha'_0 \\ (z_2 - z_1)\alpha'_1 \end{array} \right)^{-1} \left(\begin{array}{c} \alpha'_0 \\ \alpha'_1 \end{array} \right) = \left(\begin{array}{c} z_2 \alpha'_0 \\ z_2 \alpha'_1 \end{array} \right) \]

- The determinant of this 2x2 matrix is \(z_0z_1 + z_1(z_2 - z_0)\alpha'_0 + z_0(z_2 - z_1)\alpha'_1 \)

- Thus the inverse is \[\left(\begin{array}{cc} z_0 + (z_2 - z_0)\alpha'_0 \\ z_0 + (z_2 - z_0)\alpha'_1 \end{array} \right)^{-1} \left(\begin{array}{cc} (z_2 - z_1)\alpha'_0 \\ (z_2 - z_1)\alpha'_1 \end{array} \right) \]

- Note that \[\left(\begin{array}{cc} z_0 + (z_2 - z_0)\alpha'_0 \\ z_0 + (z_2 - z_0)\alpha'_1 \end{array} \right)^{-1} \left(\begin{array}{c} \alpha'_0 \\ \alpha'_1 \end{array} \right) = \left(\begin{array}{c} z_1\alpha'_0 \\ z_1\alpha'_1 \end{array} \right) \]

- Thus, \(\left(\begin{array}{c} \alpha'_0 \\ \alpha'_1 \end{array} \right) = \frac{z_2}{z_0z_1 + z_1(z_2 - z_0)\alpha'_0 + z_0(z_2 - z_1)\alpha'_1} \left(\begin{array}{c} z_1\alpha'_0 \\ z_1\alpha'_1 \end{array} \right) \)

- So, given barycentric coordinates of the pixel, \(\alpha'_0 \) and \(\alpha'_1 \), we can compute:

\[
\alpha_0 = \frac{z_1z_2\alpha'_0}{z_0z_1 + z_1(z_2 - z_0)\alpha'_0 + z_0(z_2 - z_1)\alpha'_1} \quad \text{and} \quad \alpha_1 = \frac{z_0z_2\alpha'_1}{z_0z_1 + z_1(z_2 - z_0)\alpha'_0 + z_0(z_2 - z_1)\alpha'_1}
\]

- Then \(\alpha_0 \) and \(\alpha_1 \) (and \(\alpha_2 \)) can be used to find the (unknown) corresponding point \(p \) on the world space triangle

- We use \(\alpha_0 \) and \(\alpha_1 \) to compute \(z \) (as well as \(z' = n + f - \frac{fn}{z} \)) for the pixel (not \(\alpha'_0 \) and \(\alpha'_1 \)
Assigning Texture Coordinates

- Assign texture coordinates on complex objects one part/component at a time
Assigning Texture Coordinates

- For complex surfaces, manually assigning \((u, v)\) one vertex at a time can be tedious.

- For some surfaces, the \((u, v)\) texture coordinates can be generated procedurally.
 - E.g. Cylinder (wrap the image around the outside)
 - map the \([0,1]\) values of the \(u\) coordinate to \([0, 2\pi]\) for \(\phi\)
 - map the \([0,1]\) values of the \(v\) coordinate to \([0, h]\) for \(y\)
Proxy Objects – Step 1

• Assign texture coordinates to intermediate/proxy objects:
 • Example: Cylinder
 • wrap texture coordinates around the outside of the cylinder
 • not the top or bottom (to avoid distorting the texture)
 • Example: Cube
 • unwrap cube, and map texture coordinates over the unwrapped cube
 • texture is seamless across some of the edges, but not necessarily other edges
Proxy Objects – Step 2

• Next, map the texture coordinates from the intermediate/proxy object to the final object
• Three ways of doing this:
 • Use the intermediate/proxy object’s surface normal
 • Use the target object’s surface normal
 • Use rays emanating from a “center”-point or “center”-line of the target object
Aliasing

• When textures are viewed from a distance, they may alias
Aliasing

- Texture mapping is point sampling:
 - If the pixel sampling frequency is too low compared to the signal frequency (the texture resolution), aliasing can occur
- At an optimal distance, there is a 1 to 1 mapping from triangle pixels to texture pixels (texels)
- At closer distances, each triangle pixel maps to a small part of a texture pixel, and there are multiple triangle pixels per texel (oversampling is fine)
- At far distances, each triangle pixel should map to several texture pixels, but interpolation ignores all but the nearest texels (information is lost)
 - averaging would be better!

1 to 1

pixels super-sample texels

pixels under-sample texels
MIP Maps

- Multum in Parvo: Much in little, many in small places
- Precompute texture maps at multiple resolutions, using averaging as a low pass filter
- When texture mapping, choose the image size that approximately gives a 1 to 1 pixel to texel correspondence
- The averaging “bakes-in” all the nearby pixels that otherwise would not be sampled correctly
MIP Maps

• 4 neighboring pixels of one level are averaged to form a single pixel at the next lower level
• Starting at a base resolution, can store EVERY coarser resolution in powers of 2 using only $1/3$
additional space: $1 + \frac{1}{4} + \frac{1}{16} + \cdots = \frac{4}{3}$
Using MIP Maps

• Find the MIP map image just above and the image just below the screen space pixel resolution
• Use bilinear interpolation on both the higher/lower resolution MIP map images
• Use linear interpolation between those two bilinearly interpolated texture values, where the weights come from comparing the screen space resolution to that of the two MIP maps
RIP Maps

- A horizontal plane at an oblique angle to the camera will have a texel sampling rate much smaller vertically than horizontally.
- Using an averaged MIP map created to avoid aliasing in the vertical direction also averages in the horizontal direction (causing unwanted blurring).
- RIP mapping is an anisotropic improvement to isotropic MIP mapping that coarsens both axes separately.
RIP Maps

- RIP maps require 4 times the storage if we store every coarser resolution in each axial direction:

\[
(1 + \frac{1}{4} + \frac{1}{16} + \cdots) \left[1 + 2 \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \right) \right] = 4
\]
DEBUG with checkerboard textures