Photon Mapping
Photon Maps

• The photon map stores the lighting information on points or “photons” in 3D space (“on”/near 2D surfaces)
 – As opposed to the radiosity method that stores information on surface triangles
Monte Carlo Integration
Monte Carlo Method

• The finite element method is a Newton-Cotes quadrature approach, and as such it does not scale well to higher dimensions
 – 3D space + 2D angles = 5D (or 4D ignoring participating media)

• Thus we previously made the approximation that the lighting was purely diffuse in order to reduce the dimensionality of the problem and make it tractable
 – Integrated over angles to drop two dimensions; results was 2D (or 3D)

• Although Monte Carlo integration is worse than Newton-Cotes quadrature for lower dimensional problems, it scales well on higher dimensional problems
 – No curse of dimensionality

• The Monte Carlo method allows us to tackle the full higher dimensional lighting equation, without assuming that the lighting is purely diffuse

• Monte Carlo methods rely on repeated random sampling
Example

Consider calculating $\pi \approx 3.14$ using both a finite element method and a Monte Carlo method....
Finite Element Approach

- Inscribe T triangles within a circle of radius 1 and calculate the total area covered by the triangles
- As the number of triangles increases, the triangles more accurately approximate the area of the circle
- Total area covered by the triangles approaches π since $A = \pi r^2$ and $r = 1$

$T = 4, \pi \approx 2$

$T = 8, \pi \approx 2.8284$
Monte Carlo Approach

• Randomly choose N points in a 2 by 2 square enclosing the circle
• Let N_{inside} denote points whose distance to the center of the square is less than 1
• The approximation for π is given by $4 \frac{N_{\text{inside}}}{N}$, since $\frac{A_{\text{circle}}}{A_{\text{box}}} = \frac{\pi}{4}$ and each point in the box is equally likely to be chosen

$N = 1000, \pi \approx 3.136$

$N = 2000, \pi \approx 3.1440$
Random Numbers

- **Random variables** are expressions whose value is the outcome of a random experiment.
- The **sample space** is the set of all outcomes.
- A **probability distribution** $p(x)$ describes the probability of selecting each outcome in the sample space.
- We **sample** the value of a random variable by choosing a random element in the sample space with a probability determined by $p(x)$.
- **Pseudorandom number generators** (PRNGs) are deterministic algorithms that allow us to generate sequences of quasi-“random” numbers based on an initial seed (a starting point in the predetermined sequence).
- PRNGs allow us to generate a (pseudo) random real number between 0 and 1 with an equal, or **uniform**, probability.
- Uniformly sampling [0,1] allows us to sample any other sample space with its non-uniform probability distribution.
Monte Carlo Integration

• Consider the integral

\[\int_a^b f(x) \, dx \]

• The Monte Carlo estimator is given by

\[F_N = \frac{b - a}{N} \sum_{i=1}^{N} f(X_i) \]

– where \(N \) is the number of samples and the \(X_i \) are uniformly randomly generated in the interval \([a,b]\)

• The \textbf{expected value} of the estimator, is the value of the integral
Importance Sampling
Importance Sampling

• Suppose $f(x)$ is only nonzero in $[a_1, b_1]$ which is a subset of $[a, b]$, i.e.,
\[\int_a^b f(x) \, dx = \int_{a_1}^{b_1} f(x) \, dx \]

• Only need to sample X_i uniformly over $[a_1, b_1]$, since all samples outside $[a_1, b_1]$ do not contribute to the integral

• Change the probability distribution $p(x)$ from which we sample X_i from the uniform distribution over $[a, b]$ to the uniform distribution over $[a_1, b_1]$

• More generally, the probability distribution $p(x)$ should prefer samples in areas with higher contributions, or importance, to the integral

• For a general $p(x)$ with $\int_a^b p(x) \, dx = 1$ (and $p(x) = 0$ outside $[a, b]$), the Monte Carlo estimator is
\[F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)} \]

 – reduces to the usual case if we uniformly sample with $p(x) = \frac{1}{b-a}$
Importance Sampling

• Monte Carlo estimates for $\int_0^1 x^2 \, dx$ with $N = 100$ samples:

<table>
<thead>
<tr>
<th>$p(x)$</th>
<th>Estimate using F_N</th>
<th>Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.33671</td>
<td>1.01%</td>
</tr>
<tr>
<td>2x</td>
<td>0.33368</td>
<td>0.105%</td>
</tr>
<tr>
<td>3x^2</td>
<td>0.33333</td>
<td>0.000%</td>
</tr>
</tbody>
</table>

• Importance sampling does not necessarily reduce the error
 – it does not always work and can give worse results
• The more $p(x)$ “resembles” $f(x)$, the lower the error for a fixed number of samples
• If $p(x) = \frac{f(x)}{\int_a^b f(x) \, dx}$ then we obtain the analytic answer with a single sample
• However, this $p(x)$ depends on the integral we want to compute
• Instead, choose $p(x)$ based on information that does not require knowing $f(x)$ such as physical principles or an approximate solution
Gummy Bears
by
Kirk Shimano
and
Mike Sego

Photon Maps
Photon Maps

• Monte Carlo integration methods can be used to create light maps

• The photon map stores the lighting information on points or “photons” in 3D space (“on”/near 2D surfaces)
 – As opposed to the radiosity method that stores information on surface triangles

• For efficiency and ease of implementation, every photon is given the same strength
 – Thus, for example, brighter lights emit more photons instead of higher energy photons
Photon Maps - Emission

- Given an overall desired number of photons, divide them up amongst the various lights in the scene proportionally based on the relative power of each light.
- Using random numbers, emit all of a light’s photons into the scene.
- For point lights, all the photons are emitted from a single point.
- For area lights, use random numbers to select a point to emit each photon.
- Sometimes semi-random emission is used.
 - For example: first divide a rectangular light into a uniform 2D grid of some resolution, and then emit a certain number of photons per 2D grid cell – the position within a 2D grid cell can still be randomized.
- Every photon needs to be emitted in some direction, so use random numbers to choose a direction on the sphere (or hemisphere) for emission.
 - Or a subset of the sphere for a spotlight, etc.
- For some scenes, such as those outdoors (consider the sun), many or most photons will miss the scene entirely.
 - As an optimization, one can simply ignore those photons.
 - Typically, it is efficient to only consider the fraction of the light that interacts with your scene, and to only generate and emit photons for this sub-light (don’t forget to scale down the energy of a sub-light when dividing up photons).
Photon Map - Storage

• For each photon, use the standard ray tracer to find the first piece of geometry that it intersects.
• Every time a photon intersects a surface, its data is added to the photon map representing incoming light.
• Simply create a new particle to store in the photon map.
• Store the photon’s current location in 3D space along with the incoming ray direction that brought it to that intersection location:
 – don’t need to record the energy, since all photons have the same energy.
• Don’t delete the photon, or move it into the photon map, since we may still need it to bounce around more:
 – Simply create a new storage photon in the photon map.
Photon Map - Absorption

- After storing the photon’s incoming light direction in the photon map, use random numbers to determine what the photon does next.
- There is some chance that the photon is absorbed by the surface.
 - Objects absorb some of the incoming light, which is what gives them their color.
- Absorbing some fraction of the photon’s energy results in photons with unequal energy - so we do not do that.
- Instead, we use the fraction of light energy that would be absorbed in order to create a probability that a photon is absorbed.
- Then we uniformly generate a random number and compare it to that probability in order to see if the photon is absorbed or not.
- When a photon is absorbed, the process stops and we move on to the next photon.
- Otherwise we bounce the current photon and continue following it to the next surface.
Photon Map - Bouncing

- Reflected photons need a new direction
- This is computed by first mapping the directions of the BRDF into probabilities
 - E.g. a purely diffuse BRDF has an equal probability for all directions on the hemisphere
- Then a random number is generated and compared to the BRDF table in order to determine the bounce direction
- The photon travels off in this new direction until it intersects another surface
- The new surface intersection location and the current incoming light direction are then stored in the photon map
- The photon is once again checked for absorption, and if it’s not absorbed, it is again bounced according to the BRDF
- A maximum number of bounces before termination is typically set
 - It can be set rather high as photons typically have a diminishing chance of avoiding absorption as the number of bounces increases
Photon Map

Physically Based Rendering by Pharr and Humphreys
Rendered Image

Physically Based Rendering by Pharr and Humphreys
Using Photon Maps
Photon Map – Direct Lighting

• It’s more accurate to evaluate direct lighting at a point using the typical shadow rays from that point to the lights
 – rather then interpolating lighting information from nearby photons in the photon map
• Thus, the first time a photon emitted from a light hits an object, it is not stored in the photon map
 – (you will store it for your HW assignment though)
• This makes the photon map a lot more efficient since we don’t need to store any photons for direct illumination
Photon Map – Specular

• It is often more convenient to create separate BRDFs for the diffuse and specular lighting
• Then when bouncing a photon, first use a random number to determine if the photon is absorbed, or undergoes a diffuse bounce, or undergoes a specular bounce
• Afterwards, a second random number is used to pick the direction for the diffuse or specular bounce
• We make two photon maps:
 – A caustic photon map stores samples from photons that have undergone only specular bounces up to the point at which they are stored in the map
 – An indirect lighting map stores any photon that has undergone at least one diffuse bounce
Photon Maps

Direct → Specular → Caustic → Any
Emission

Indirect ← Nonspecular ← Specular/Non-specular
Reminder: Caustics
Gathering Radiance

• Trace rays from the camera and at each intersection point:
 – Use traditional shadow rays to account for direct lighting
 – Estimate the radiance contribution to the ray from caustics and indirect lighting using the respective photon maps
• Find the N closest photons to a point on the surface of an object
 – Use an acceleration structure to store the photons: K-D tree, uniform grid, etc.
Photon Map – Color

• If all photons are white light, then the entire photon map will be white light
• Create three photon maps, one for each color channel: red, green, blue
• Then objects of a certain color will tend to absorb photons of different colors creating differences in the photon maps
• This gives color bleeding and related effects...
And...
Question 1: Name?
Don’t forget make-up...