CS156: The Calculus of

Computation
Zohar Manna
Winter 2010
Lecturer:
Zohar Manna (manna@cs.stanford.edu)
TAs:

Gary Soedarsono (gary503@stanford.edu)
Office Hours: M 3:00-4:00 Gates B26B, T 4:00-6:00 Gates B26A

Page 1 of 52

Calculus of Computation?

It is reasonable to hope that the relationship between
computation and mathematical logic will be as fruitful
in the next century as that between analysis and physics
in the last. The development of this relationship
demands a concern for both applications and
mathematical elegance.

John McCarthy
A Basis for a Mathematical Theory of Computation, 1963

Page 2 of 52

Grading
» Homeworks (40%)
> weekly (totally 8)
> no late assignments
» no collaboration

» Final Exam (60%)

> open book and notes

» date: Monday, March 15th, 8:30-11:30 a.m.

Coverage
» Skip * sections
» Skip Chapter 6 and 12 of the book

» Skip complexity remarks

Website

» cs156.stanford.edu

Page 3 of 52

cs156.stanford.edu

Textbook

THE CALCULUS OF COMPUTATION:
Decision Procedures with
Applications to Verification

by
Aaron Bradley
Zohar Manna

Springer 2007

There are two copies in CS-Math Library and you could also use
socrates.stanford.edu to read the book according to its policy.

Page 4 of 52

socrates.stanford.edu

Aaron R. Bradley
Zohar Manna

The Calculus

of Computation

@ Springer

Page 5 of 52

Topics: Overview
1. First-Order logic

2. Specification and verification
3. Satisfiability decision procedures

Page 6 of 52

Part I:

O b=

Foundations

Propositional Logic

First-Order Logic

First-Order Theories

Induction

Program Correctness: Mechanics

Inductive assertion method, Ranking function method

Page 7 of 52

Part Il: Decision Procedures

7. Quantified Linear Arithmetic
Quantifier elimination for integers and rationals

8. Quantifier-Free Linear Arithmetic
Linear programming for rationals

9. Quantifier-Free Equality and Data Structures

10. Combining Decision Procedures
Nelson-Oppen combination method

11. Arrays
More than quantifier-free fragment

Page 8 of 52

CS156: The Calculus of

Computation

Zohar Manna
Winter 2010

Motivation

Page 9 of 52

Motivation |

Decision Procedures are algorithms to decide formulae.
These formulae can arise

» in software verification.

» in hardware verification

Consider the following program:

for
Ql<i<uN(rv « Fj.L<j<iNalj]=c¢e)
(inti:=4¢ i<u i:=i+1){
if (a[i] =€) rv := true;

}

How can we decide whether the formula is a loop invariant?

Page 10 of 52

Motivation Il

Prove:

assume { < i< uA(rv < FjL<j<iNa]j]=c¢e)

assume | < u

assume a[i] = e
rv = true;
i=i+1

QI<i<un(rv < Fj.L<j<iAa]j]=e)

Page 11 of 52

Motivation |l

assume / < i< uA(rv & FL<j<iNa[j]=c¢e)
assume | < u

assume a[i] # e

i=i+1

Ql<i<uAN(rv & FjL<j<iNa]j]=c¢e)

A Hoare triple {P} S {Q} holds, iff

P — wp(S,Q)

(wp denotes “weakest precondition”)

Page 12 of 52

Motivation IV

For assignments wp is computed by substitution:

assume { < i< uA(rv < FjL<j<iNa]j]=c¢e)

assume | < u

assume a[i] = e
rv = true;
i=i4+1

QI<i<un(rv < Fj.L<j<iAa]j]=e)

Substituting T for rv and i + 1 for i, the postcondition (denoted by
the @ symbol) holds if and only if:

(<i<uNn(rv & Fjl<j<inaj]=e)ANi<unalil=e
—U<i+1<un(T & FjL<j<i+1lAa)]=¢)

Page 13 of 52

Motivation V

We need an algorithm that decides whether this formula holds. If
the formula does not hold, the algorithm should give a
counterexample; e.g.,

¢=0,i=1u=1,rv="false,al0] = 0,a[l] =1,e = 1.

We will discuss such algorithms in later lectures.

Page 14 of 52

CS156: The Calculus of

Computation

Zohar Manna
Winter 2010

Chapter 1: Propositional Logic (PL)

Page 15 of 52

Propositional Logic (PL)

PL Syntax
Atom truth symbols T (“true”) and L (“false”)
propositional variables P, Q, R, Py, Q1, Ry, ...
Literal atom « or its negation -«
Formula literal or application of a

logical connective to formulae F, Fi, F>

-F “not” (negation)

FinF2 “and" (conjunction)
FiV F; “or” (disjunction)
Fi — F “implies” (implication)

Fi < F, “ifandonlyif’ (iff)

Page 16 of 52

Example:

formula F: (PAQ) — (TV-Q)
atoms: P, Q, T
literals: P, Q, T, =@
subformulae: P, Q, T, =Q, PAQ, TV -Q, F
abbreviation
F:PANQ — TV-Q

Page 17 of 52

PL Semantics (meaning of PL)

Formula F + Interpretation /| = Truth value

(true, false)
Interpretation

I :{P — true, @ — false,---}
Evaluation of F under [:
F || =F
0 1
1 0

where 0 corresponds to value false
1 true

Fl‘Fz H F1/\F2‘F1\/F2‘F1 - FR|FA[- R

0|0 0 0 1 1
011 0 1 1 0
110 0 1 0 0
171 1 1 1 1

Page 18 of 52

Example:

F:PANQ — PV-Q
| :{P + true, Q — false} i.e., I[P] = true, I[Q] = false

(Plef-e[Pr@]PV-Q|F]
[tfofrjpo]t [t

1 = true 0 = false

F evaluates to true under /; i.e., I[F] = true.

Page 19 of 52

Inductive Definition of PL's Semantics

| = F if F evaluates to true under /
I = F false

Base Case:
I =T I = L
I = P iff I[P] =true; i.e., P is true under /
I = P iff I[P] = false
Inductive Case:
= -F iff | = F
):Fl/\FQ ifFI):Flandlleg
): FVF iff /): FLorl): F (or bOth)
): F1 — F2 iff / }: F1 impIiesI ‘: F2
E F < F iff | E FRand | E F,
orl £ Frand | = F

~ — o~~~

Note:

/):F1—>F2 iff I%Florl}:Fg.

I F — F iff | = Fandl £ Fo.

/ l?é FVF iff | 175 F1 and / b& F. Page 20 of 52

Example of Inductive Reasoning:

F: PNQ — PV-Q

I: {P — true, @ — false}
1. I E P since /[P] = true
2.1~ Q since /[Q] = false
3. 1 -Q by 2 and —
4. | = PAQ by 2 and A
5. 1 E PV-=Q by 1 and Vv
6. | = F by 4and — Why?

Thus, F is true under /.
Note: steps 1, 3, and 5 are nonessential.

Page 21 of 52

Satisfiability and Validity

F satisfiable iff there exists an interpretation / such that | = F.
F valid iff for all interpretations /, | = F.

F is valid iff =F is unsatisfiable

Goal: devise an algorithm to decide validity or unsatisfiability of
formula F.

Page 22 of 52

Method 1: Truth Tables

Example F:PANQ@ — PV-—Q

«— satisfying /
« falsifying /

| PQIPAQI-Q[PV-QIF]
00 0 1 1 1
01 0 0 0 1
10 0 1 1 1
11 1 0 1 1
Thus F is valid.

Example F:PVvQ — PAQ
PQR|PVQ|PAQI| F
00 0 0 1
01 1 0 0
10 1 0 0
11 1 1 1

Thus F is satisfiable, but invalid.

Page 23 of 52

Method 2: Semantic Argument

» Assume F is not valid and / a falsifying interpretation:
I = F
» Apply proof rules.

» If no contradiction reached and no more rules applicable,
F is invalid.

» If in every branch of proof a contradiction reached,
F is valid.

Page 24 of 52

Proof Rules for Semantic Arguments |

I = —F | £ —F
I ¥~ F I = F
I = FAG I = FAG
I = F I' %~ F | I ¥ G
«~and
I = G “or
I = FVG I & FVG
I'=F | I G I %= F
I %= G

Page 25 of 52

Proof Rules for Semantic Arguments Il

|l = F—-G I & F—G
I F | | G I = F
I = G

Il E F—G I = F—G

I'EFAG | | £ FVG T EFAG | | E -FAG

Page 26 of 52

Example: Prove

F: PAQ — PV-Q

is valid.

Let's assume that F is not valid and that / is a falsifying

interpretation.

1. I ¥ PAQ — PV-Q
2.1 E PAQ

3. I K~ PV-Q

4. | E P

5. I ¥~ P

6. I E L

Thus F is valid.

assumption
land —
land —
2 and A
3and Vv

4 and 5 are contradictory

Page 27 of 52

M: Prove
F: (P - QA(Q — R) - (P — R) isvalid.

Let's assume that F is not valid.

1. | = F assumption
2. I E (P - QA(Q — R) land —
3. I ~#P —R land —
4. | = P 3and —
5. I R 3and —
6. | E P — Q 2 and A

7. I EQ —- R 2 and A

Page 28 of 52

6. =P — Q 2 and A
7. IEQ — R 2and A

8a. I ¥~ P 6 and — (case a)

9a. =1 4 and 8

8b. IE=Q 6 and — (case b)
Oba. I = Q 7 and — (subcase ba)
10ba. =L 8b and 9ba
9bb. IER 7 and — (subcase bb)
10bb. =L 5 and 9bb

9b. =1 10ba and 10bb

8. IEL 9a and 9b

Our assumption is contradictory in all cases, so F is valid.
Page 29 of 52

Example 3: Is

F: PvQ — PAQ

valid? Assume F is not valid:

1.
2.

3.
4a.
5aa.
6aa.
5ab.
6ab.
5a.

I = PVQ — PAQ
I = PVQ
I = PAQ
I =P
I = P
I =1
I ¥ Q

7

assumption

land —

land —

2, V (case a)

3, V (subcase aa)
4a, baa

3, V (subcase ab)

Page 30 of 52

4b.
5ba.
6ba.
5bb.
6bb.
5b.
5.

?

IEQ
I £ P
?

I Q
=

2, V (case b)
3, V (subcase ba)

3, V (subcase bb)
4b, 5bb

We cannot derive a contradiction in both cases (4a and 4b), so we
cannot prove that F is valid. To demonstrate that F is not valid,
however, we must find a falsifying interpretation (here are two):

lh: {P +— true, Q — false}

L: {Q — true, P — false}

Note: we have to derive a contradiction in all cases for F to be

valid!

Page 31 of 52

Equivalence

F1 and F, are equivalent (F; < F)
iff for all interpretations I, | = F, < Fp

To prove F1 < Fp, show F; < F; is valid, that is,
both F; — F> and F>, — F; are valid.

F1 entails F; (F1 = F)
iff for all interpretations I, | = F, — F;

Note: F1 < F> and F; = F> are not formulae!!

Page 32 of 52

Example: Show
P—-Q&-PVQ

F:(P— Q)< (-PVQ)is valid.

Assume F is not valid, then we have two cases:

Case a: 1 ¥ =PV Q,
IEP—Q

Case b: E-PVQ,
1EP—Q

Derive contradictions in both cases.

Page 33 of 52

Normal Forms

1. Negation Normal Form (NNF)
-, A,V are the only boolean connectives allowed.

Negations may occur only in literals of the form —=P.

To transform F into equivalent F’ in NNF, apply the following
template equivalences recursively (and left-to-right):

-—Ff & Ff -T & L -1l & T
—|(F1/\F2) & A/ VAR

ﬁ(l’:l\/l':z) & —FL AR
R — FH <& R[RVEHE

R~ kR < (Fl — F2)/\(F2 — Fl)

}De Morgan's Law

“Complete” syntactic restriction: every F has an equivalent
F’ in NNF.

Page 34 of 52

Example: Convert
F: =(P — =(PAQ))

to NNF.
F':=(=PV—=(PAQ)) —
F":==P A==(PAQ) De Morgan's Law
F":PAPAQ -

F" is equivalent to F (F"” < F) and is in NNF.

Page 35 of 52

2. Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals
\//\K;L,- for literals /;
iJ

To convert F into equivalent F’ in DNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1VF2)/\F3 = (Fl/\Fg)\/(Fz/\Fg)
dist
F1/\(F2\/F3) & (Fl/\FQ)\/(Fl/\F;;)

Note: formulae can grow exponentially as the distributivity
laws are applied.

Page 36 of 52

Example: Convert
F: (Ql V —\—\QQ) A\ (—|R1 — R2)
into equivalent DNF

F: (Q]_\/QQ)/\(R]_\/RQ) in NNF
F" . (Q]_/\(R]_\/R2))\/(Qz/\(R]_\/R2)) dist
F" . (Q]_/\R]_)\/(Q]_/\R2)\/(Q2/\R1)\/(Qz/\R2) dist

F"" is equivalent to F (F"” < F) and is in DNF.

Page 37 of 52

3. Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals
/\ \/K;J for literals /; ;
i

To convert F into equivalent F" in CNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(Fl/\FQ)\/F3 = (F1VF3)/\(F2\/F3)
F1\/(F2/\F3) = (Fl\/FQ)/\(Fl \/F3)

A disjunction of literals is called a clause.

Page 38 of 52

Example: Convert
F:P < (Q@ — R)

to an equivalent formula F’ in CNF.
First get rid of « :
Fi:(P = (Q@ = R)A(Q — R) — P)

Now replace — with V:

Fo: (=PV(-QV R))A(—(—-QV R)V P)
Drop unnecessary parentheses and apply De Morgan's Law:

F3:(-PV-QVR)A((—QA—-R)VP)
Simplify double negation (now in NNF):

Fs:(-PV-QVR)A((QA-R)VP)

Distribute disjunction over conjunction (now in CNF):

F': (=PV-QVR)A(QV P)A(=RV P)

Page 39 of 52

Equisatisfiability

Definition
F and F’ are equisatisfiable, iff

F is satisfiable if and only if F is satisfiable

Every formula is equisatifiable to either T or L.

Goal: Decide satisfiability of PL formula F
Step 1: Convert F to equisatisfiable formula F’ in CNF
Step 2: Decide satisfiability of formula F" in CNF

Page 40 of 52

Step 1: Convert F to equisatisfiable formula F’ in CNF |

There is an efficient conversion of F to F' where
» F"is in CNF and
» F and F’ are equisatisfiable

Note: efficient means polynomial in the size of F.

Basic Idea:

» Introduce a new variable P¢ for every subformula G of F,
unless G is already an atom.

Page 41 of 52

Step 1: Convert F to equisatisfiable formula F’ in CNF I

» For each subformula
G: GioGy,
produce a small formula
Pc < Pg, o Pg,.

Here o denotes an arbitrary connective (=, V, A, —, «); if
the connective is =, Gy should be ignored.

Page 42 of 52

Step 1: Convert F to equisatisfiable formula F’ in CNF Il

P.{PvQ} P_{-(PA~R)}

Figure: Parse tree for F: PV Q@ — —(P A-R)

Page 43 of 52

Step 1: Convert F to equisatisfiable formula F’ in CNF IV

» Convert each of these (small) formulae separately to an
equivalent CNF formula

CNF(Pg < Pg, o Pg,) .

Let SF be the set of all non-atom subformulae G of F (including F
itself). The formula

PEn \ CNF(Pc < Pg o Pg,)
GEeSE

is equisatisfiable to F. (Why?)

The number of subformulae is linear in the size of F.
The time to convert one small formula is constant!

Page 44 of 52

Example: CNF |

Convert
F: Pv@ — PA-R

to an equisatisfiable formula in CNF.
Introduce new variables: Pr, Ppyqg., Pppr-r, P-Rr.

Create new formulae and convert them to equivalent formulae in
CNF separately:

> :CNF(PF — (PP\/Q — Pp/\ﬂR)):
(=PeV =Ppyq@ V Ppr-r) A (PEV Ppyq@) A (PFV —=Ppr-r)
> F = CNF(PPVQ — PV Q)

(—\PP\/Q vV PV Q) A\ (PP\/Q V —\P) A (PP\/Q V —\Q)

Page 45 of 52

Example: CNF I
> 3= CNF(PPAﬁR — PA PﬁR)Z

(—UDP/\ﬁR V P) A (—\Pp/\ﬁR V PﬁR) AN (Pp/\ﬁR V=PV —\PﬁR)
> f4 = CNF(PﬁR — —|R):
(—| ﬂR\/ﬁR)/\(PﬂR\/R)

Pe AFi AFaANF3AFg isin CNF and equisatisfiable to F.

Page 46 of 52

Step 2: Decide the satisfiability of PL formula F" in CNF

Boolean Constraint Propagation (BCP)

If a clause contains one literal ¢,

-
Set £ to T: e AfA

Remove all clauses containing /: A (T A
Remove —/ in all clauses: o ANV AN)Y A

based on the unit resolution
4 -0V C <« clause

C

Pure Literal Propagation (PLP)

If P occurs only positive (without negation), set it to T.
If P occurs only negative set it to L.
Then do the simplifications as in Boolean Constraint Propagation

Page 47 of 52

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm
Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

let rec DPLL F =
let F/ =BcP F in
let F/ =pPLP F' in
if F” =T then true
else if F” = 1 then false
else
let P = CHOOSE vars(F”) in
(pPLL F"{P — T})V (DPLL F"{P+— 1})

Page 48 of 52

Simplification

Simplify according to the template equivalences (left-to-right)
[exercise 1.2]

-1l & T -T & L -—F & F
FAT & F FAL & L1
FVT & T FVL < F

Page 49 of 52

Example |

Consider
F: (-PVQVR)A(=QVR)AN(-QV-R)A(PV-QV-R).

Branching on Q

On the first branch, we have
F{Q — T}: (R)YA(-R)A(PV —R).

By unit resolution,
R (-R)
€

so F{Q — T} = 1L = false.

)

Page 50 of 52

Example Il

Recall
F: (-PVQVR)A(=QVR)A(=QV-R)A(PV-QV-R).
On the other branch, we have
F{Q — L1}: (=PVR).
Furthermore, by PLP,
F{IQm— L,R— T,P+— L1} =T = true
Thus F is satisfiable with satisfying interpretation

I: {P — false, Q — false, R > true}.

Page 51 of 52

Example

F: (-PVQVR)A(=QVR)A(=QV-R)A(PV-QV-R)

F
Q V & 1
(R)A(=R)A(PV —R) (=P VR)

Rm— T

T
I: {P — false, Q — false, R +— true}
(No matter what P is)

Page 52 of 52

