CS156: The Calculus of
Computation

Zohar Manna
Winter 2010

Chapter 10: Combining Decision Procedures
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Combining Decision Procedures: Nelson-Oppen Method

Given
Theories T; over signatures ¥;
with corresponding decision procedures P; for Tj-satisfiability.

Goal
Decide satisfiability of a formula F in theory U; T;.

Example: How do we show that
F:1<x Ax<2A f(x)#Ff(1) A f(x)#f(2)

is (Tg U Tz)-unsatisfiable?
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Combining Decision Procedures

¥;-theory Ty Yo-theory Tp
for Ty-satisfiability , | for To-satisfiability

~, 7

[P] for (T U T2)-satisfiability

Problem:
Decision procedures are domain specific.
How do we combine them?
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Nelson-Oppen Combination Method (N-O Method)
Nk ={=}

Y ;-theory Ty
stably infinite

for Ty-satisfiability for Tp-satisfiability

of quantifier-free ¥;-formulae of quantifier-free ¥»-formulae

~ -

[P] for (T1 U To)-satisfiability
of quantifier-free (X3 U ¥3)-formulae

Yo-theory Ty
stably infinite
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Nelson-Oppen: Limitations

Given formula F in theory T7 U To.
1. F must be quantifier-free.

2. Signatures ¥; of the combined theory only share =, i.e.,
TN ={=}
3. Theories must be stably infinite.

Note:
» Algorithm can be extended to combine arbitrary number of
theories T; — combine two, then combine with another, and
S0 on.
» We restrict F to be conjunctive formula — otherwise convert
to equivalent DNF and check each disjunct.

Page 5 of 31

Stably Infinite Theories

A X-theory T is stably infinite iff
for every quantifier-free Y-formula F:
if F is T-satisfiable
then there exists some T-interpretation that satisfies F
with infinite domain

Example: T-theory T
T :{a, b=}
Axiom
Vx.x=aV x=b

For every T-interpretation /, |D;| < 2 (by the axiom — at most
two elements).
Hence, T is not stably infinite.

All the other theories mentioned so far are stably infinite.
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Example: Tg is stably infinite

Proof.
Let F be Tg-satisfiable quantifier-free ¥ g-formula
with arbitrary satisfying Tg-interpretation / : (D, o).
«j maps = to =;.
Let A be any infinite set disjoint from D;. Construct new
interpretation J : (D, ay) such that
» D;=DjUA
> o agrees with «y: the extension of functions and predicates
for Ais irrelevant, except =,. For vi,vp € Dy,

vi = v ifvyi,vp €Dy
Vi =y Va2 = { true if v1 is the same element as vy
false otherwise

J is a Tg-interpretation satisfying F with infinite domain.

Hence, Tg is stably infinite. Bl
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Example

Consider quantifier-free conjunctive (Xg U X7)-formula
F:1<x Ax<2A f(x)#Ff(1) A f(x)#F(2).

The signatures of Tg and Tz only share =. Also, both theories are
stably infinite. Hence, the N-O combination of the decision
procedures for T¢ and Tz decides the (Tg U Ty)-satisfiability of F.

Intuitively, F is (Tg U Tz)-unsatisfiable.

For the first two literals imply x =1 V x = 2 so that
f(x)=f(1) v f(x)=f(2).

Contradict last two literals.

Hence, F is (Tg U Tz)-unsatisfiable.
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Nelson-Oppen Method: Overview

Consider quantifier-free conjunctive (X1 U ¥5)-formula F.
Two versions:
» nondeterministic — simple to present, but high complexity

> deterministic — efficient

Nelson-Oppen (N-O) method proceeds in two steps:
> Phase 1 (variable abstraction)
— same for both versions
Phase 2
nondeterministic: guess equalities/disequalities and check
deterministic: generate equalities/disequalities by equality
propagation
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Phase 1: Variable abstraction

Given quantifier-free conjunctive (X1 U ¥5)-formula F.
Transform F into two quantifier-free conjunctive formulae

Y -formula Fp and Y o-formula F>
s.t. Fis (Ty U Ty)-satisfiable iff F; A F is (T1 U Tp)-satisfiable

F1 and F; are linked via a set of shared variables:

shared(Fy, F2) = free(Fy) N free(F2)

For term t, let hd(t) be the root symbol, e.g. hd(f(x)) = f.
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Generation of F; and F,

For i,j € {1,2} and i # j, repeat the transformations
(1) if function f € ¥; and hd(t) € L;,

Flf(ti,....t,....ta)] = F[f(tr,.... w.. L th)] Aw=t
(2) if predicate p € ¥; and hd(t) € T,

Flp(ts, .-, t... t)] = Flp(t,....w,....t)] Aw=t
(3) if hd(s) € £; and hd(t) € T,

Fls=t] = Flw=t]Aw=s
Fls#t] = Flw#t]Aw=s

where w is a fresh variable in each application of a transformation.
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Example
Consider (Xg U Xz)-formula
F:1<x Ax<2A f(x)#Ff(1) A F(x)#F(2).
By transformation 1, since f € ¥g and 1 € ¥z,
replace f(1) by f(wi) and add wy = 1. Similarly,
replace £(2) by f(w2) and add w, = 2.

Hence, construct the Yz-formula
Fr: 1<x Ax<2Awp=1Aw=2
and the X g-formula
Fe: f(x) # f(wa) A F(x) # f(we) .

Fz and Fg share the variables {x, w1, w,}.
Fz A Fgis (Tg U Tyz)-equisatisfiable to F.
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Example

Consider (£g U Xz)-formula
F:f(x)=x+y Ax<y+zAx+z<yAy=1Af(x)#F(2).

In the first literal, hd(f(x)) = f € £ and hd(x +y) = + € Xz;
thus, by (3), replace the literal with

wi=x+y A w =f(x).
In the final literal, f € ¢ but 2 € ¥z, so by (1), replace it with
f(x)# f(w2) A wp=2.
Now, separating the literals results in two formulae:
Fr: mi=x+y Ax<y+zAx+z<y ANy=1Aw=2
is a £z-formula, and
Fetow=f(x) A F(x) # F(wa)
is a Lg-formula.

The conjunction Fz A Fg is (Tg U Tz)-equisatisfiable to F.
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Nondeterministic Version

Phase 2: Guess and Check
> Phase 1 separated (X1 UX)-formula F into two formulae:

Y -formula F;  and X,-formula F,
» F1 and F, are linked by a set of shared variables:
V = shared(F1, /) = free(F1) N free(F,)

» Let E be an equivalence relation over V.
> The arrangement a(V, E) of V induced by E is:

a(V,E):

uy € V. ~(uEv)
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Nondeterministic Version
Lemma
the original formula F is (Ty U Ty)-satisfiable iff
there exists an equivalence relation E over V' s.t.
(1) i A oV, E) is Ty-satisfiable, and
(2) F2 A a(V,E) is Tp-satisfiable.
Otherwise, F is (T1 U T2)-unsatisfiable.
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Example 1
Consider (Xg U Xz)-formula
F:1<x Ax<2Af(x)#f(1) A f(x)#f(2)
Phase 1 separates this formula into the £z-formula

Fr:

I<x AXx<2Awm=1Aw=2
and the X g-formula
Fe: f(x) # f(w) A F(x) # F(w2)

with

V = shared(F1, F2) = {x, w1, wo}
There are 5 equivalence relations over V to consider, which we list
by stating the partitions:
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Example 1
A{{x w,wel), e, x = wp = vy
x=w and f(x) # f(w1) = Fe A a(V,E)is Tg-unsatisfiable.
{{x, w1}, {wa}}, ie, x = wi, x # wa:
x=wi and f(x) # f(w1) = Fg A a(V,E)is Tg-unsatisfiable.
{{xowal {m}}, ie, x = wp, x # wi:
x=wp and f(x) # f(w2) = Fg A a(V,E)is Tg-unsatisfiable.
AL Aw, wol} ie, x # wy, wa = wy:
wp=wrand wy =1 A wp =2
= Fz A oV, E)is Tz-unsatisfiable.
{Ixh Am} {we}}, ie, x # wi, x # wa, wi # wa
x#Zw A x#wandx=w; =1V x=wp, =2
(since 1 < x < 2 implies that x =1 V x =2 in Ty)
= Fz A a(V,E)is Tz-unsatisfiable.
Hence, F is (Tg U Tz)-unsatisfiable.
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Example 2

Consider the (Zcons U £z)-formula
F: car(x)+car(y) = z A cons(x, z) # cons(y, z) .

After two applications of (1), Phase 1 separates F into the
Y cons-formula

Feons © w1 = car(x) A wa = car(y) A cons(x,z) # cons(y, z)
and the Xz-formula

Fr: i +wo =2z,

V = shared(Feons, Fz) = {z, w1, wa} .
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Example 2
Consider the equivalence relation E given by the partition
Hzh Amd {wal} -

The arrangement

a(VLE): z#wi N z#£wa A w1 # wp

satisfies both Feons and Fy:
Feons N oV, E) is Teons-satisfiable, and
Fz A a(V,E)is Ty-satisfiable.

Hence, F is (Teons U Tz)-satisfiable.
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Practical Efficiency

Phase 2 was formulated as “guess and check”:
1. First, guess an equivalence relation E,
2. then check the induced arrangement.

The number of equivalence relations grows super-exponentially
with the # of shared variables. It is given by Bell numbers.
E.g., 12 shared variables = over four million equivalence relations.

Solution: Deterministic Version
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Deterministic Version

Phase 1 as before
Phase 2 asks the decision procedures P; and P, to propagate new
equalities.

Example 3

Theory of equality Tg Rational linear arithmethic Tg

F: f(f(x)—f(y)#f(z) AN x<y Ny+z<x AN0<z
(TEe U Tg)-unsatisfiable

Intuitively,
last 3 conjuncts = x=y A z=0
contradicts 1st conjunct
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Phase 1: Variable Abstraction
Example 3
F:f(f(x)=f(y)#f(z) ANx<y ANy+z<x AN0<z

Replace f(x) by u, f(y)byv, u—vbyw
Fe: f(w)#f(z2) AN u=Ff(x) A v="Ff(y) ... Tg-formula

Fp: x<yANy+z<xAN0<zAw=u—v ... Tg-formula

shared(Fg, Fo) = {x,y,z,u,v,w}

Nondeterministic version — over 200 Es!
Let's try the deterministic version.
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Phase 2: Equality Propagation
Example 3
Fe: f(w)#f(z) ANu=Ff(x) A v="F(y)
X<y ANy+z<xAN0<zAw=u—v
{
x=y ‘

{x=y}

FEAx=yEu=v

x=yu=v}

Fohu=viEz=w
{x=yu=v,z=w

‘ FEnz=wlE L

€L

Contradiction. Thus, F is (Tg U Tg)-unsatisfiable.
(If there were no contradiction, F would be (Tg U Tgbgggisﬂaw%i

Convex Theories

Definition
A X-theory T is convex iff
for every quantifier-free conjunctive X-formula F
n

and for every disjunction \/(u, =v)
" i=1
if F= V(u,' =v)
i=1
then F = u; = v;, forsome i € {1,..., n}

Claim
Equality propagation is a decision procedure for convex theories.
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Convex Theories
> TE, Tr, Tg, Tcons are convex
» Ty, Ta are not convex

Example: Ty is not convex

Consider quantifier-free conjunctive Yz-formula

F: 1<z Az<2Au=1Av=2

F = z=uvz=v
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Convex Theories
Example: Theory of arrays T is not convex

Consider the quantifier-free conjunctive £ a-formula

F:aliav)[jl=v.

F=i=jVvaj=v,

Fpi=j
F#all=v.
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What if T is Not Convex?

Case split when:

n
F = \/(u,' =v)
i=1
but F# uj=v;foranyi=1,...,n
> Foreachi=1,..., n, construct a branch on which
u;j = v; is assumed.

» If all branches are contradictory, then unsatisfiable.
Otherwise, satisfiable.

up=wvy

Claim: Equality propagation (with branching) is a decision
procedure for non-convex theories too.
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Example 1: Non-Convex Theory
Tz not convex! TEe convex

F o 1<x Ax<2Af(x)#F(1) A f(x)#7(2)
in TU Tg.
> Replace (1) by f(w1), and add w; = 1.
> Replace f(2) by f(w2), and add w, =
Result:
1<xAXx<2Awm=1Aw=2
Fe oo F()# f(w) A F(x) # F(wn)

V = shared(Fz, Fg) = {x, w1, wo}
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FEAXx=wi |E L FEAXx=w =L

L

*: FpEXx=w V x=w

All leaves are labeled with 1. = F is (Tz U Tg)-unsatisfiable.
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Example 4: Non-Convex Theory

Consider

F : 1<xAx<3A
FU) # (1) A FU) # F(3) A F(L) # F(2)
in T,U Tg.
> Replace (1) by f(w1), and add w; = 1.
> Replace f(2) by f(w2), and add wo = 2.
> Replace f(3) by f(w3), and add w3 = 3.
Result:

Fz @ 1<xAXx<3Awm=1Aw=2Aw3=3

Fe o F(x) # F(wa) A F(x) # F(ws) A F(w) # F(wo)

and
V = shared(Fz, Fg) = {x, w1, wa, w3}
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Example 4: Non-Convex Theory

FEAx=wm L1

1 €L

*: FpEXx=wi Vx=w V x=w3

No more equations on middle leaf = F is (Tz U Tg)-satisfiable.
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