Last week: Breadth-First Search

- Set $L_i = []$ for $i=1,\ldots,n$
- $L_0 = \{w\}$, where w is the start node
- For $i = 0, \ldots, n-1$:
 - For u in L_i:
 - For each v which is a neighbor of u:
 - If v isn’t yet visited:
 - mark v as visited, and put it in L_{i+1}

How come BFS finds the shortest path?

There are exponentially many candidates to check...
Lecture 10
Dynamic Programming and Floyd-Warshall!
Last week

- Graphs!
- DFS
 - Topological Sorting
 - Strongly Connected Components
- BFS
 - Shortest Paths from u in unweighted graphs

i.e. all edges were identical
Last week: Breadth-First Search
Exploring the world with a bird’s-eye view

- Not been there yet
- Can reach there in zero steps
- Can reach there in one step
- Can reach there in two steps
- Can reach there in three steps
Last week: Breadth-First Search
Exploring the world with a bird’s-eye view

- Not been there yet
- Can reach there in zero steps
- Can reach there in one step
- Can reach there in two steps
- Can reach there in three steps

start
Last week: Breadth-First Search
Exploring the world with a bird’s-eye view

- Not been there yet
- Can reach there in zero steps
- Can reach there in one step
- Can reach there in two steps
- Can reach there in three steps

start
Last week: Breadth-First Search
Exploring the world with a bird’s-eye view
Last week: Breadth-First Search
Exploring the world with a bird’s-eye view

![Diagram showing Breadth-First Search]

- Not been there yet
- Can reach there in zero steps
- Can reach there in one step
- Can reach there in two steps
- Can reach there in three steps

World: explored!
Last week: Breadth-First Search
Exploring the world with pseudocode

- Set $L_i = []$ for $i=1,...,n$
- $L_0 = \{w\}$, where w is the start node
- For $i = 0, ..., n-1$:
 - For u in L_i:
 - For each v which is a neighbor of u:
 - If v isn’t yet visited:
 - mark v as visited, and put it in L_{i+1}

L_i is the set of nodes we can reach in i steps from w

Go through all the nodes in L_i and add their unvisited neighbors to L_{i+1}
Today

• Dynamic programming
• All-pairs shortest path (APSP)
• What if the graphs are weighted?
• Floyd-Warshall algorithm!
Example: Fibonacci Numbers

• Definition:
 • $F(n) = F(n-1) + F(n-2)$, with $F(0) = F(1) = 1$.
 • The first several are:
 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,…

• Question:
 • Given n, what is $F(n)$?
Candidate algorithm

- **def** Fibonacci(n):
 - **if** n == 0 or n == 1:
 - **return** 1
 - **return** Fibonacci(n-1) + Fibonacci(n-2)

Running time?
- \(T(n) = T(n-1) + T(n-2) + O(1) \)
- \(T(n) \geq T(n-1) + T(n-2) \) for \(n \geq 2 \)
- So \(T(n) \) grows *at least* as fast as the Fibonacci numbers themselves...
- Fun fact, that’s like \(\phi^n \) where \(\phi = \frac{1+\sqrt{5}}{2} \) is the golden ratio.
- aka, **EXponentially Quickly 😞**

See CLRS Problem 4-4 for a walkthrough of how fast the Fibonacci numbers grow!
What’s going on?
Consider Fib(8)

That’s a lot of repeated computation!
Maybe this would be better:

```python
def fasterFibonacci(n):
    • F = [1, 1, None, None, ..., None]
        \ F has length n
    • for i = 2, ..., n:
        • F[i] = F[i-1] + F[i-2]
    • return F[n]
```

Much better running time!
This was an example of...

Dynamic Programming!
What is *dynamic programming*?

• It is an algorithm design paradigm
 • like divide-and-conquer is an algorithm design paradigm.

• Usually it is for solving *optimization problems*
 • eg, *shortest* path
 • (Fibonacci numbers aren’t an optimization problem, but they are a good example...)

Elements of dynamic programming

1. Optimal sub-structure:

• Big problems break up into sub-problems.
 • Fibonacci: $F(i)$ for $i \leq n$

• The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 • Fibonacci:

$$F(i+1) = F(i) + F(i-1)$$
Elements of dynamic programming

2. Overlapping sub-problems:

- The sub-problems overlap a lot.
 - Fibonacci:
 - Lots of different $F[j]$ will use $F[i]$.

- This means that we can save time by solving a sub-problem just once and storing the answer.
Elements of dynamic programming

• Optimal substructure.
 • Optimal solutions to sub-problems are sub-solutions to the optimal solution of the original problem.

• Overlapping subproblems.
 • The subproblems show up again and again

• Using these properties, we can design a dynamic programming algorithm:
 • Keep a table of solutions to the smaller problems.
 • Use the solutions in the table to solve bigger problems.
 • At the end we can use information we collected along the way to find the solution to the whole thing.
Two ways to **think about and/or implement** DP algorithms

- **Top down**
- **Bottom up**
Bottom up approach
what we just saw.

• For Fibonacci:
 • Solve the small problems first
 • fill in F[0], F[1]
 • Then bigger problems
 • fill in F[2]
 • ...
 • Then bigger problems
 • fill in F[n-1]
• Then finally solve the real problem.
 • fill in F[n]
Top down approach

• Think of it like a recursive algorithm.
• To solve the big problem:
 • Recurse to solve smaller problems
 • Those recurse to solve smaller problems
 • etc..

• The difference from divide and conquer:
 • Memo-ization
 • Keep track of what small problems you’ve already solved to prevent re-solving the same problem twice.
Example of top-down Fibonacci

- define a global list $F = [1, 1, \text{None}, \text{None}, \ldots, \text{None}]$
- def Fibonacci(n):
 - if $F[n] \neq \text{None}$:
 - return $F[n]$
 - else:
 - $F[n] = \text{Fibonacci}(n-1) + \text{Fibonacci}(n-2)$
 - return $F[n]$

Memo-ization:
Keeps track (in F) of the stuff you’ve already done.
Memo-ization visualization

Collapse repeated nodes and don’t do the same work twice!

etc
Memo-ization Visualization ctd

- define a global list $F = [1,1,None, None, …, None]$
- **def** Fibonacci(n):
 - **if** $F[n] != None$:
 - **return** $F[n]$
 - **else**:
 - $F[n] = \text{Fibonacci}(n-1) + \text{Fibonacci}(n-2)$
 - **return** $F[n]$
What have we learned?

• **Dynamic programming:**
 • Paradigm in algorithm design.
 • Uses *optimal substructure*
 • Uses *overlapping subproblems*
 • Can be implemented *bottom-up* or *top-down.*
 • It’s a fancy name for a pretty common-sense idea:

 Don’t duplicate work if you don’t have to!
Wait, what about BFS? ... is it also “Dynamic Programming”?

- Set $L_i = []$ for $i=1,...,n$
- $L_0 = \{w\}$, where w is the start node
- For $i = 0, \ldots, n-1$:
 - For u in L_i:
 - For each v which is a neighbor of u:
 - If v isn’t yet visited:
 - mark v as visited, and put it in L_{i+1}

Memoize:
Vertices at distance i

Clever DP:
only updates neighbors of L_i
Why “dynamic programming”?

- Programming refers to finding the optimal “program.”
 - as in, a shortest route is a plan aka a program.
- Dynamic refers to the fact that it’s multi-stage.
- But also it’s just a fancy-sounding name.

Manipulating computer code in an action movie?
Why “dynamic programming”?

• Richard Bellman invented the name in the 1950’s.
• At the time, he was working for the RAND Corporation, which was basically working for the Air Force, and government projects needed flashy names to get funded.
• From Bellman’s autobiography:
 • “It’s impossible to use the word, dynamic, in the pejorative sense…I thought dynamic programming was a good name. It was something not even a Congressman could object to.”
Today

• Dynamic programming
• All-pairs shortest path (APSP)
• What if the graphs are weighted?
• Floyd-Warshall algorithm!
All-Pairs Shortest Path Problem

• **All-Pairs Shortest Paths (APSP)**
 - That is, I want to know the shortest path from u to v for **ALL pairs** u,v of vertices in the graph.
 - Not just from a special single source s.

<table>
<thead>
<tr>
<th>Source</th>
<th>s</th>
<th>u</th>
<th>v</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>t</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>
All-Pairs Shortest Path Problem

- **All-Pairs Shortest Paths** (APSP)
 - That is, I want to know the shortest path from \(u \) to \(v \) for **ALL pairs** \(u,v \) of vertices in the graph.
 - Not just from a special single source \(s \).

Candidate algorithm:

Run BFS from every node!

Complexity: \(O(n^2 + nm) \)

In theory, yes.

There are faster algorithms that use “fast matrix multiplication” (which you saw in Section 1).

Learn faster APSP alg’s in CS367 😊

Can we do better?
All-Pairs Shortest Path Problem

• All-Pairs Shortest Paths (APSP)
 • That is, I want to know the shortest path from \(u \) to \(v \) for \textbf{ALL pairs} \(u,v \) of vertices in the graph.
 • Not just from a special single source \(s \).

Candidate algorithm:
Run BFS from every node!

Complexity: \(O(n^2 + nm) \)

Can we do \textbf{more}?

Can we do better?
Today

- Dynamic programming
- All-pairs shortest path (APSP)
- What if the graphs are *weighted*?
- Floyd-Warshall algorithm!
YOU ARE HERE
Just the graph

How do I get from Gates to the Union?

- Dish
- Hospital
- Gates
- Packard
- STLC
- Union
- Stadium
- Caltrain

Run BES ...
I should go to the dish and then back to the union!

That doesn’t make sense if I label the edges by walking time.
Just the graph

How do I get from Gates to the Union?

weighted graph

$w(u,v) = \text{weight of edge between } u \text{ and } v.$

If I pay attention to the weights...

I should go to STLC, then the union.
Shortest path problem

• What is the **shortest path** between \(u \) and \(v \) in a weighted graph?
 • the **cost** of a path is the sum of the weights along that path
 • The **shortest path** is the one with the minimum cost.

• The **distance** \(d(u,v) \) between two vertices \(u \) and \(v \) is the cost of the the shortest path between \(u \) and \(v \).

• For this lecture **all graphs are directed**, but to save on notation I’m just going to draw undirected edges.
Recall

• A weighted directed graph:

 - Weights on edges represent costs.
 - The cost of a path is the sum of the weights along that path.
 - A shortest path from s to t is a directed path from s to t with the smallest cost.

This is a path from s to t of cost 22.
This is a path from s to t of cost 10. It is the shortest path from s to t.
Weighted All-Pairs Shortest Path

• **All-Pairs Shortest Paths** (APSP)
 • That is, I want to know the shortest path from u to v for **ALL pairs** u,v of vertices in the graph.
 • Not just from a special single source s.

```
<table>
<thead>
<tr>
<th>Source</th>
<th>s</th>
<th>u</th>
<th>v</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>t</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Today

• Dynamic programming
• All-pairs shortest path (APSP)
• What if the graphs are weighted?
• Floyd-Warshall algorithm!
Weighted APSP:
How can we generalize BFS to weighted graphs?

1. What are the sub-problems of BFS?

2. How can you re-word your answer to #1, so that it makes sense for weighted graphs?

Think-Pair-Share!
Weighted APSP:
How can we generalize BFS to weighted graphs?

1. What are the sub-problems of BFS?
 - $L(u, v, i)$: “Is distance $(u, v) \leq i$?”
 - Recursion: $L(u, v, i) = \max_{(w, v) \in E} L(u, w, i - 1)$

2. How can you re-word your answer to #1, so that it makes sense for weighted graphs?
 - $D(u, v, k)$: “Shortest path from u to v using $\leq k$ vertices?”
 - Recursion: $D(u, v, k) = \min_{(w, v) \in E} D(u, w, k - 1) + \text{cost}(w, v)$
Is this a good idea?

- $D(u, v, k)$: “Shortest path from u to v using $\leq k$ vertices?”
- Recursion: $D(u, v, k) = \min_{(w, v) \in E} D(u, w, k - 1) + cost(w, v)$

- It’s actually not a bad starting point
 (next week we’ll see it’s called “Bellman-Ford”)
- For (u, v, k), we’re only using $(u, w, k - 1)$ sub-problems
 ...but we also know $(w, v, k - 1)$...
- Enumerating over $\text{deg}(v)$ sub-problems is expensive
- Complexity: $O(n^2 m)$ 😞
Optimal substructure

Sub-problem(k-1):
For all pairs, \(u, v \), find the cost of the shortest path from \(u \) to \(v \), so that all the internal vertices on that path are in \(\{1, \ldots, k-1\} \).

Let \(D^{(k-1)}[u,v] \) be the solution to Sub-problem(k-1).

Our DP algorithm will fill in the \(n \)-by-\(n \) arrays \(D^{(0)}, D^{(1)}, \ldots, D^{(n)} \) iteratively and then we'll be done.

Label the vertices 1,2,...,n (We omit some edges in the picture below).

This is the shortest path from \(u \) to \(v \) through the blue set. It has length \(D^{(k-1)}[u,v] \).
Optimal substructure

Sub-problem(k-1):
For all pairs, \(u,v\), find the cost of the shortest path from \(u\) to \(v\), so that all the internal vertices on that path are in \(\{1,\ldots,k-1\}\).

Let \(D^{(k-1)}[u,v]\) be the solution to Sub-problem(k-1).

Question: How can we find \(D^{(k)}[u,v]\) using \(D^{(k-1)}\)?

Our DP algorithm will fill in the n-by-n arrays \(D^{(0)}, D^{(1)}, \ldots, D^{(n)}\) iteratively and then we’ll be done.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

.Vertices $1, \ldots, k$

.Vertices $1, \ldots, k-1$
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

Case 1: we don’t need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,v]$$
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

Case 2: we need vertex k.
Case 2 continued

- Suppose there are **no negative cycles**.
 - Then WLOG the shortest path from u to v through \{1,...,k\} is **simple**.

- If **that path** passes through k, it must look like this:

- **This path** is the shortest path from u to k through \{1,...,k-1\}.
 - sub-paths of shortest paths are shortest paths

- Same for **this path**.

\[
D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]
\]
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

- $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

 Case 1: Cost of shortest path through \(\{1,\ldots,k-1\}\)

 Case 2: Cost of shortest path from \(u\) to \(k\) and then from \(k\) to \(v\) through \(\{1,\ldots,k-1\}\)

- Optimal substructure:
 - We can solve the big problem using smaller problems.

- Overlapping sub-problems:
 - $D^{(k-1)}[k,v]$ can be used to help compute $D^{(k)}[u,v]$ for lots of different u’s.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

• $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

 Case 1: Cost of shortest path through $\{1,\ldots,k-1\}$

 Case 2: Cost of shortest path from u to k and then from k to v through $\{1,\ldots,k-1\}$

• Using our *Dynamic programming* paradigm, this immediately gives us an algorithm!
Floyd-Warshall algorithm

• Initialize n-by-n arrays $D^{(k)}$ for $k = 0, \ldots, n$
 - $D^{(k)}[u,u] = 0$ for all u, for all k
 - $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 - $D^{(0)}[u,v] = \text{weight}(u,v)$ for all (u,v) in E.

• For $k = 1, \ldots, n$:
 - For pairs u,v in V^2:
 - $D^{(k)}[u,v] = \min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$

• Return $D^{(n)}$

This is a bottom-up **Dynamic programming** algorithm.

The base case checks out: the only path through zero other vertices are edges directly from u to v.
We’ve basically just shown

• Theorem:
 If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix $D^{(n)}$ so that:

 $$D^{(n)}[u,v] = \text{distance between } u \text{ and } v \text{ in } G.$$

• Running time: $O(n^3)$
 • For dense graphs $(m = \Theta(n^2))$, it’s as good as running BFS from every vertex

• Storage:
 • Need to store two n-by-n arrays, and the original graph.

We don’t really need to store all n of the $D^{(k)}$.

Work out the details of the proof! (Or see Lecture Notes for a few more details).
What if there are negative cycles?

- Floyd-Warshall can detect negative cycles:
 - Negative cycle $\iff \exists v$ s.t. there is a path from v to v that goes through all n vertices that has cost < 0.
 - Negative cycle $\iff \exists v$ s.t. $D^{(n)}[v,v] < 0$.

- Algorithm:
 - Run Floyd-Warshall as before.
 - If there is some v so that $D^{(n)}[v,v] < 0$:
 - **return** negative cycle.
What have we learned?

• The Floyd-Warshall algorithm is another example of *dynamic programming*.

• It computes All Pairs Shortest Paths in a directed weighted graph in time $O(n^3)$.
Another Example of DP?

- Longest simple path (say all edge weights are 1):

What is the longest simple path from s to t?
This is an optimization problem...

- Can we use Dynamic Programming?
- Optimal Substructure?
 - Longest path from s to t = longest path from s to a + longest path from a to t?

NOPE!
This doesn’t give optimal sub-structure

Optimal solutions to subproblems don’t give us an optimal solution to the big problem. (At least if we try to do it this way).

• The subproblems we came up with aren’t independent:
 • Once we’ve chosen the longest path from a to t
 • which uses b,
 • our longest path from s to a shouldn’t be allowed to use b
 • since b was already used.

• Actually, the longest simple path problem is NP-complete.
 • We don’t know of any polynomial-time algorithms for it, DP or otherwise!
Recap

• Floyd-Warshall for weighted all-pairs shortest path

• *Dynamic programming*!
 • This is a fancy name for:
 • Break up an optimization problem into smaller problems
 • The optimal solutions to the sub-problems should be sub-solutions to the original problem.
 • Build the optimal solution iteratively by filling in a table of sub-solutions.
 • Take advantage of overlapping sub-problems!
Next time

• More examples of *dynamic programming*!

We will stop bullets with our action-packed coding skills, and also maybe find longest common subsequences.

Before next time

• Go to section!

• No HW this week!!