Lecture 11

More dynamic programming!
Longest Common Subsequences, Knapsack, and
(if time) independent sets In trees.

e programs dynamically
In Mission Impossible

Last time Pro

ADynamic programming is agorithm design
paradigm.

ABasic idea:

Aldentify optimal sub-structure

A Optimum to the big problem is built out of optima of small
sub-problems

ATake advantage afverlapping subproblems
A Only solve each syroblem once, then use it again and again

AKeep track of the solutions to syfsoblems in a table
as you build to the final solution.

[Actual algorithm] _
Label the vertices 1,%,n

F I OydWarS h al I (We omit some edges in the

f picture below).

ur DP algorithm
will fill in the
n-by-n arrays

Subproblem(k-1):

For all pairsy,yv, find the cost of the shortest O
path from u to v, so that all the internal

vertices on that path are in {X,k-1}.

DO D), ..., DO
i iteratively and then
ceLD T be ihe soluton @ | we'll be done.
to Subproblem(k1).

This is the shortest
path from u to v
@ Vertices 1

through the blue set.
sy k-1 It has length B&y1[u,\]

Label the vertices 1,%,n

5
F I OydWarS h al I (We omit some edges in the

f picture below).

Subproblem(k-1):
X () { OurDP algorithm

For all pairsy,yV, find the cost of the shortes e
, will fill in the
path from u to v, so that all the internal A-by-n arrays
vertices on that path are in {{,k-1}. DO, DO, ..., D
. iteratively and then
Let B¥Y[u,V] be the solution @ ! we'll be done.

to Subproblem(k1). k+1

Question: How can we find ®[u,v] using DxY?

v
This is the shortest
@ k-1 path from u to v

through the blue set.
sy k-1 It has length B&y1[u,\]

How can we find ®u,\] using [x1?

DM[u,V] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {4, k}.

How can we find ®u,\] using [x1?

DM[u,V] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {4, k}.

Case 1we dond @)
Cpy.
need vertex k. %@s\] @

g

10rtest before . ..,
@ *ll the Shortest o0 >

Vert,CeS 1
__ D¥[u] = DUV
__——

How can we find ®u,\] using [x1?

DM[u,V] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {4, k}.

Case 2we need

e,
vertex K. s @
-

Case 2 continued

Case 2we need
vertex K.

A Suppose there arao negative

cycles.
A Then WLOG the shortest path from
u to v through {2X,k} issimple.

A If that path passes through k, it
must look like this:

A This pathis the shortest path
from u to k through {I¢,k-1}.

A subpaths of shortest paths are
shortest paths

A Same forthis path.

D®uM =D*D[u, K + DDk, V]

10

Today

AExamples of dynamic programming:
1. Longest common subseguence

2. Knapsack problem
A Two versions!
3. Independent sets in trees

A If we have tim&
A (If not the slides will be there as a reference)

11

The goal of this lecture

AFor you to geteally boredof dynamic programming

4
-
-

12
You saw this in HW 4!

Longest Common Subsequence

AHow similar are these two species?

DNA: DNA:
AGCCCTAAGGGCTACCTAGCTIGACAGCCTACAAGCGTTAG!H

13
You saw this in HW 4!

Longest Common Subsequence

AHow similar are these two species?

DNA: DNA:
AGQCTAGGSCACCAGCTT GAAQGCCTBAGGITAGCTa

APretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

14
You saw this in HW 4!

Longest Common Subsequence

ASubsequence:
ABDFHs asubsequencef ABCDE-GH

Alf X and Y are sequences;@nmon subsequence
IS a sequence which is a subsequence of both.

ABDFHs acommon subsequencef ABCDE-GH and of
AB D FHI

AA longest common subsequende

AXis a common subsequence that is longest.

AThelongest common subsequenasf ABCDE-GHand
ABDFGHsABDFGH

15

G{2YSUAYSa.

We sometimes want to find these

AApplications irbioinformatics

ATheunix commanddiff

AMerging in version control
Asvn git, etcX

16

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure. <

AStep 2:Find a for the length
of the longest common subseqguence.

AStep 3:Use dynamic programmirtg find the
length of the longest common subsequence.

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual LCS.

17

Step 1: Optimal substructure

Prefixes:
X AlclGcg|lG| T
Y Alclag|lc|T|T|A

Notation: denote this preftACGQy Y,

AOursubLINR 0t SYa gAft 0S FTAYRAY:
A LetCJ,j] =length_of_LCSX,Y))

18

Optimal substructuretd.

ASubproblem
AFAYRAY 3

[/ { Q&8 2F LINBFAESa

AWhy is this a good choice?

At KSNB Qa
[/ {Qa 27F

a2YS NBtlFaAzZy
UKS ¢6Kz2fS UK

SD<I_

K A
y 3

>* QX

AThesesubproblemsoverlap a lot.

To see this formally, on ¥

19

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure. [f

AStep 2:Find a for the length
of the longest common subseqguence.

AStep 3:Use dynamic programmirtg find the
length of the longest common subsequence.

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual LCS.

20 A Our subproblems will be finding

Two cases [/ {Qd 2F LINBFAL
Case 1: X[= Y[j] A LetCj,j] =length_of LCSX, Y))

These are

{ A \/ the same
x A|lC|I G| G| A

J
A
[|

Y |A|lcCc|lGcg|lcCc|T|T]|A

A Then aj] = 1 + CiL,}-1].
A because CS,Y) =LCS(X.Y.,) followed by| A

2L A Our subproblems will be finding

Two cases [/ {Qd 2F LINBFAL
Case 2: X['= Y[j] A LetCj,j] =length_of_LCS, Y)

These are
l A \ not the
/ same
x Al C|I G| G| T
j

A
[|

YjACGCTTA

A Then Aa[j] = max{ CiL,j], C[i,}1] }.
A either LCSK,Y) =LCS(X,Y) and|T| is not involved,
A or LCSK,Y) =LCS(X ;) and[A] is not involved,
AOYIFIe&oS 020K IINB y20 Ayg2i O

22

Recursive formulation
of the optimal solution X, |

YjACGCTTA

‘j Case 0
Tt E® il @ 1

A6[AQ 6[Q phQ p] p EER QAT 8Q nt
[AB[EQ plB[Q pR® ECEQ QAT B n§

C .

Case 1l Case 2

xACGGA XACGGT

Y |A|C|IG|IC|T|IT|A YjACGCTTA
J

23

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure.

AStep 2:Find a for the length
of the longest common subseqguence.

AStep 3:Use dynamic programmirtg find the
length of the longest common subsequence.

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual LCS.

24

LCS DPBvcG BBO

ALCSX, Y):
ACIi,0] = C[0,j] = O for alE 1X,m, j=1Xn.
AFori=1X,mand j = X,n:

Alf X[i] = Y[il:
ACI,jl = Cli1,j-1] +1 R
AElse: "”ni,,
ACJ,j] = max{ C[isL], C[i1,j] } oy, § time.
nln} .
Tt E® ntl @ m
O[AQ o6[Q phQ p] p EFEDQP QAT HQ n

| A@B[AQ p]B[Q ph3} EEFQ QAT BQ m

25

Example

Y

Al

OJ 0O} O] O
A o)
C o)
G o)
[a| |[o
A o)

6[AQ

Tt E®B nl @ 1
6[Q phQ p] p EEDR QAT HQ n
I AB[AQ pIM[Q ph®} EER QAT HQ m

26

Example
Y

NBEE
OjJO0o]JO0O0}O
A 0 1 1 1 1
C 0 1 2 2 2
G oOj1|2) 2|3
G 0 1|12) 2] 3
A o) 112)| 2) 3

So the LCM of X

and Y hasength 3.

T EB i @ 1

O[aQ 6[Q phQ p] p EEDR QAT @Q T
I AB[AQ pIM[Q ph®} EER QAT HQ m

27

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure.

AStep 2:Find a for the length
of the longest common subseqguence.

AStep 3:Use dynamic programmirtg find the
length of the longest common subsequence. {

AStep 4:1f needed, keep track of some addition
Info so that the algorithm from Step 3 cénd the
actual LCS.

28

Example

Y

Al

OJ 0O} O] O
A o)
C o)
G o)
[a| |[o
A o)

6[AQ

Tt E®B nl @ 1
6[Q phQ p] p EEDR QAT HQ n
I AB[AQ pIM[Q ph®} EER QAT HQ m

29

Example
Y
NBEE
OjJO0o]JO0O0}O
A 0 1 1 1 1
C 0 1 2 2 2
G oO|1)|2) 2] 3
? 0 1|12) 2] 3
A o) 112)| 2) 3
6['aAQ

Tt E®B nl @ 1
6[Q phQ p] p EEDR QAT HQ n
I AB[AQ pIM[Q ph®} EER QAT HQ m

30

Example
Y
alc|T]e
OjJO0o]JO0O0}O
A o) 1 1 1 1
C 0 1 2 2 2
G oOj1|2) 2|3
? O|1}| 2| 2] 3
A oO|1}|2 2] 3
6['aAQ

AhyOS 46SQ0S TFAf
we can work backwards.

Tt E®B nl @ 1
6[Q phQ p] p EEDR QAT HQ n
I AB[AQ pIM[Q ph®} EER QAT HQ m

31

Example
Y

NBEE
OjJO0o]JO0O0}O
A o) 1 1 1 1
C 0 1 2 2 2
G oOj1|2) 2|3
G O|1}| 2| 2] 3
A Oj1112}| 2] 3

AhyOS 46SQ0S TFAf
we can work backwards.

That 3 must have come

from the 3 above it.

T EB i @ 1

O[aQ 6[Q phQ p] p EEFQ QAT 8O m
I AB[AQ pIM[Q ph®} EER QAT HQ m

32

Example
Y
NBEE
OjJO0o]JO0O0}O
A 0 1 1 1 1
C 0 1 2 2 2
G o) 1|12} 2] 3
? 0 112) 2] 3
A o) 112)| 2) 3
6['aAQ

AhyOS 6SQ@S TAft
we can work backwards.
A A diagonal jump means

that we found an element
of the LCS!

This 3 came from that @
we found a match!

Tt E®B nl @ 1
6[Q phQ p] p EEDR QAT HQ n
I AB[AQ pIM[Q ph®} EER QAT HQ m

33

Y|A|C|T|G
Y
NBEE S
AhyOS gSQOS TFTAfL
we can work backwards.
Ojo0o|Jo0|0}oO A A diagonal jump means
A ; that we found an element
1111111 of the LCS!
C 0112} 2] 2| That2 may as well
have come from
G 011]12]2]3 this other 2. G
G 0 1 2 2 3
A 0 1 2 2 3
T EB i @ 1

O[aQ 6[Q phQ p] p EEFQ QAT 8O m
I AB[AQ pIM[Q ph®} EER QAT HQ m

34

Example
Y
NBEE
OjJO0o]JO0O0}O
A 0 1 1 1 1
C 0 1 2 2 2
G o112} 2]) 3
? 0 112) 2] 3
A o) 112)| 2) 3
6['aAQ

AhyOS 6SQ@S TAf
we can work backwards.
A A diagonal jump means

that we found an element
of the LCS!

Tt E®B nl @ 1
6[Q phQ p] p EEDR QAT HQ n
I AB[AQ pIM[Q ph®} EER QAT HQ m

35

Example
Y
NBEE
OjJO0o]JO0O0}O
A 0 1 1 1 1
C 0 1 2 2 2
G o112} 2]) 3
? 0 112) 2] 3
A o) 112)| 2) 3
6['aAQ

AhyOS 6SQ@S TAf
we can work backwards.
A A diagonal jump means

that we found an element
of the LCS!

Tt E®B nl @ 1
6[Q phQ p] p EEDR QAT HQ n
I AB[AQ pIM[Q ph®} EER QAT HQ m

36

Example
Y
NBEE
OJ 0|00} O
A 0 1 1 1 1
C 0 1 2 2 2
G o112} 2]) 3
? 0 112) 2] 3
A o) 112)| 2) 3
6['aAQ

AhyOS 6SQ@S TAf
we can work backwards.
A A diagonal jump means

that we found an element
of the LCS!

A C G

This is the LCS!

Tt E®B nl @ 1
6[Q phQ p] p EEDR QAT HQ n
I AB[AQ pIM[Q ph®} EER QAT HQ m

37

Another way of seeing the same thing:

Telolo]>

Y

NREE
O\LO O|0}| O
oOj1|1})1])|1
oOjl1|2) 2| 2
O 1| 2 ZI?»
oO|1})|2 2] 3
oO|1}|2 2] 3

6[aAQ

Finding length of shortest path
VS
Actually finding the shortest path
(just like your HW!)

A C G

This is the LCS!

Tt E®B nl @ 1
6[Q phQ p] p EEDR QAT HQ n
I AB[AQ pIM[Q ph®} EER QAT HQ m

38

Finding an LCS

ASee lecture notes for pseudocode
ATakes time Qn) to fill the table

ATakes time O(n + m) on top of that to recover the LC
AWe walk up and left in an-by-m array
AWe can only do that for n + m steps.

AAltogether, we can find LCS(X,Y) in timen@)(

39

Time and Space complexity

Alf we are only interested in the length of the LCS:

A Since we go across the table ermv-at-a-time, we can only
keep two rows if we want.

Alf we want to recover the LCS, we need to keep the whole
table.

than0 & € time?
AA bit better.
A By a log factor or so.

ABut doing much better (e.g. & & 8)is an open problem!
A If you can do it let me know :D

40

What have we learned?

AWe can find LCS(X,Y) in time O(nm)
Aif [Y]=n, [X|=m

AWe went through the steps of coming up with a
dynamic programming algorithm.
AWe kept a 2dimensional table, breaking down the
problem by decrementing the length of X and Y.

41

Example 2: Knapsack Problem

AWe have n items with weights and values:

3

ltem: Ly

4
Weight: o 2
Value: 20

AAnd we have a knapsack: %
Ait can only carry so much weight#5sg
& ®

ltem: h < b/ g/

_ Weight: 6 E 4 3
Capacity: 10 Value: 20 8 14 13

(-

» AUnbounded Knapsack:

ASuppose | havifinite copiesof all of the items.
Az K I O Qdostiraki&le way to fill the knapsak

&F . & Total weight: 10
5/ i/ = = Total value: 42
A0/1 Knapsack:

ASuppose | havenly one copyf each item.
Az K I {1 Quaostitaki&ole way to fill the knapsak

Py & Total weight: 9
Y @/ Qf/ Total value: 35

43

Some notation

ltem: | = b

Weight: W, W, W X W,
Value: Vl V2 V3 V

A

Capacity: W

44

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure. -

AStep 2:Find a for the value of
the optimal solution.

AStep 3:Use dynamic programmirtg find the value
of the optimal solution.

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

45

Optimal substructure

ASubproblems:

AUnbounded Knapsack with a smaller knapsack

First solve the

problem for Thenlarger Thenlarger
small knapsacks knapsacks knapsacks

46

Optimal substructure h fem

ASuppose this is an optimal solution for capacity x:

\I’(.‘(\ t‘ﬂt\o"‘
‘\ma\ 0 \east
O @ns L |
ot ocem S
ne cOP T Weightw, o
Value'y Capacity x

AThen this optimal for capacity-w;: valueV

D
s,

If | could do better than the second solution,
then adding a turtle to that improvement
would improve the first solution.

Capacity xx w;
Value \-v.

47

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure. ?
0

AStep 2:Find a for the value
the optimal solution.

AStep 3:Use dynamic programmirto find the value
of the optimal solution.

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

48

Recursive relationship

ALet K[x] be theptimal valuefor capacity x.

& -
Optirhal way to The value of

fill the smaller itemi.
knapsack

K[X] = ma)
The maximum is over
alli so thato ., 0B

o~ ThinkPairShare!

49

Recursive relationship

ALet K[x] be theptimal valuefor capacity x.

+k}

Optimal way to The value of
fill the smaller itemi.
knapsack

K[X] = max

The maximum IS over
alli so thato ., 0B

KIX] = may{ K[X¢ w;] +v;}

A(And K[x] = 0 if the maximum is empty).
A That is, if there are noso that0., ®

50

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure.

AStep 2:Find a for the value of
the optimal solution.

AStep 3:Use dynamic programmirtg find the value
of the optimal solution.

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

51

Let ' s wr rupeP alorithro t

AUnboundedKnapsack(n, weights valuey:

AK[0] =0
Afor x = 1X, W:

AK[x] =0

Afori=1,X, n:

Aifo g
Avfled 1T A@[ado[wo O] U

Areturn K[W]

Running time: G(W)

Why does this work

= max{ K[xqgw] +v;} Because our recursive relationship makes sel

52

Can we do better?

AWriting down W takes log(W) bits.
AWriting down all n weights takes at magbg(W) bits.

Alnput sizenlog(W).
AMaybe we could have an algorithm that runs in time
O(nlogW)) instead of (W)?

AOpen problem!
A (But probably the answer igoXotherwise P = NP)

53

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure.

AStep 2:Find a for the value of
the optimal solution.

AStep 3:Use dynamic programmirto find the value

of the optimal solution. E{

AStep 4:1f needed, keep track of some addition
Info so that the algorithm from Step 3 cénd the
actual solution.

o4

Let ' s wr rupeP alorithro t

AUnboundedKnapsack(n, weights valuey:

AK[0] =0
Afor x = 1X, W:

AK[x] =0

Afori=1,X, n:

AifO ox,
Avfled 1T A@[ado[wo O] U

Areturn K[W]

= max{ Ktwi] + Vi }

25

Let ' s wr rupeP alorithro t

AUnboundedKnapsack(n, weights valuey:
AK[0] =0
AITEMS|O] #
Afor x = 1X, W:

AK[x] =0
Afori=1.,X, n:
Aifvo ag
Avfad T Ao 0] U
Alf K[x] was updated: ’
AITEMS[x] = ITEMS{xv]" {itemi}
Areturn ITEMS[W]

= max{ Ktwi] + Vi }

56

A

ITEMS

A UnboundedKnapsack(n, weights values:
A K[0]=0
A ITEMS[0] #
A forx=1X,W:
A K[x]=0
A fori=1,X, n;
A ifo ax
Aol T A@[Ah[w 0] 0
A If K[x] was updated:
A ITEMS[x] = ITEMS{w]" {itemi}
A return ITEMS[W]

ltem: h oE b/
3
6

Weight: 1 2
Value: 1

8

w

Cabacity: 4

57

A

ITEMS

ITEMS[1] = ITEMS[0] i

A UnboundedKnapsack(n, weights values:
A K[0]=0
A ITEMS[0] #
A forx=1X,W:
A K[x]=0
A fori=1,X, n;
A ifo ax
Aol T A@[Ah[w 0] 0
A If K[x] was updated:
A ITEMS[x] = ITEMS{w]" {itemi}
A return ITEMS[W]

ltem: h =

Weight: 1 2 3
Value: 1 6

X

=

Cabbity: 4

58

A

ITEMS

ITEMS[2] = ITEMS[1]

A UnboundedKnapsack(n, weights values:
A K[0]=0
A ITEMS[0] #
A forx=1X,W:
A K[x]=0
A fori=1,X, n;
A ifo ax
Aol T A@[Ah[w 0] 0
A If K[x] was updated:
A ITEMS[x] = ITEMS{w]" {itemi}
A return ITEMS[W]

ltem: h =

Weight: 1 2 3
Value: 1 6

X

=

Cabbity: 4

59

A

ITEMS

ITEMS[2] = ITEMSIO]

A UnboundedKnapsack(n, weights values:
A K[0]=0
A ITEMS[0] #
A forx=1X,W:
A K[x]=0
A fori=1,X, n;
A ifo ax
Aol T A@[Ah[w 0] 0
A If K[x] was updated:
A ITEMS[x] = ITEMS{w]" {itemi}
A return ITEMS[W]

ltem: h =

Weight: 1 2 3
Value: 1 6

X

w

Cabt:ity: 4

60

A

ITEMS

ITEMS[3] = ITEMS[2 i

A UnboundedKnapsack(n, weights values:
A K[0]=0
A ITEMS[0] #
A forx=1X,W:
A K[x]=0
A fori=1,X, n;
A ifo ax
Aol T A@[Ah[w 0] 0
A If K[x] was updated:
A ITEMS[x] = ITEMS{w]" {itemi}
A return ITEMS[W]

ltem: h =

Weight: 1 2 3
Value: 1 6

X

=

Cabbity: 4

61

A

ITEMS

ITEMS[3] = ITEMS[0li

A UnboundedKnapsack(n, weights values:
A K[0]=0
A ITEMS[0] #
A forx=1X,W:
A K[x]=0
A fori=1,X, n;
A ifo ax
Aol T A@[Ah[w 0] 0
A If K[x] was updated:
A ITEMS[x] = ITEMS{w]" {itemi}
A return ITEMS[W]

ltem: h ¢ b

Weight: 1 2 3
Value: 1 6

X

=

Cabbity: 4

62

A

ITEMS

Example

0

1 2 3 4

0

1 4 6 7

S

ITEMS[4] = ITEMS[Sh

A UnboundedKnapsack(n, weights values:

A K[0]=0
A ITEMS[0] #
A forx=1X, W:
A K[x]=0
A fori=1,X, n;
Aifo ag
Aol T Ad[ddhofw 0] 0
A If K[x] was updated:
A ITEMS[x] = ITEMS{w]" {itemi}
A return ITEMS[W]

ltem: h‘ e b
Weight: 1 2 3
Value: 1 6

i
&

=

Cabéity: 4

63

A

ITEMS

ITEMS[4] = ITEMS[2] _

A UnboundedKnapsack(n, weights values:
A K[0]=0
A ITEMS[0] #
A forx=1X,W:
A K[x]=0
A fori=1,X, n;
A ifo ax
Aol T A@[Ah[w 0] 0
A If K[x] was updated:
A ITEMS[x] = ITEMS{w]" {itemi}
A return ITEMS[W]

ltem: h =

Weight: 1 2 3
Value: 1 6

X

=

Cabbity: 4

64

What have we learned?

AWe can solve unbounded knapsack in time\®).
Alf there are n items and our knapsack has capacity W.

AWe again went through the steps to create DP
solution:

AWe kept a onedimensional table, creating smaller
problems by making the knapsack smaller.

ltem: h ¢ b/ g/

Weight: 6 2 4 3

Capacity: 10 Value: 20 8 14 13

AUnbounded Knapsack:

ASuppose | havifinite copiesof all of the items.
Az K I O Qdostiraki&le way to fill the knapsak

{ , i \ Total weight: 10
/ > = ¢ Total value: 42

» A0/1 Knapsack:

ASuppose | havenly one copyf each item.
Az K I {1 Quaostitaki&ole way to fill the knapsak

Py & Total weight: 9
Y @/ Qf/ Total value: 35

66

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure. -

AStep 2:Find a for the value of
the optimal solution.

AStep 3:Use dynamic programmirtg find the value
of the optimal solution.

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

67

Optimal substructure: try 1

ASubproblems:

AUnbounded Knapsack with a smaller knapsack

First solve the

problem for Thenlarger Thenlarger
small knapsacks knapsacks knapsacks

68

Thi s won'’t. quit

AWe are only allowedne copy of each item

AThesubLINR 6 f SY Yy SSR&a 02 da]

$SQVS dzASR YR ¢6KIFG ¢S

L OF yQi
any turtles<

69

Optimal substructure: try 2
ASubproblems

ThinkPairShare!

70

Optimal substructure: try 2
ASubproblems:

First solve the
problem with
few items

Then more
items

Then yet
more
items

71

Our subproblems:

Alndexed byx and]

First j items

Capacity x

72

Two cases W e

ACase 1 Optimal solution for itemsdoes not use item j.
ACase 2 Optimal solution foi itemsdoes use item j.

73

Two cases

Capacity x
Value V
Use only the firsfitems

First j items

AThen this is an optimal solution fpf. items

PO

Capacity x
S Value V
First t1 items Use only the first-L items.

74

TWO cases k e

ACase 2 Optimal solution fof itemsuses item j.

Weightw,
Valuey, Capacity X
Value V
First j items Use only the first j items

AThen this is an optimal solution fpf. itemsand a
maller knapsack e

Capacity xx w;
Value \q v,

First j1 items Use only the first-L items.

75

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure. ?
0

AStep 2:Find a for the value
the optimal solution.

AStep 3:Use dynamic programmirto find the value
of the optimal solution.

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

76

Recursive relationship

ALet Kk,j] be the optimal value for:
Acapacity X,
Awith j items.

K1 = maxiK[x J-1],

Case 1l

A(And K[x,D= 0 and K][0,j] = 0).

77

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure.
AStep 2:Find a for the value of

the optimal solution. ,

AStep 3:Use dynamic programmirtg find the value
of the optimal solution.

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

/8

Bottomrup DP algorithm

AZeroOneKnapsack(W, n, w, v):
AK[x,0] = Gor all x = OX,W
AK[O,i] = Ofor alli= 0X,n
Afor x = 1X,W:

Afor j = 1X,n:
AK[X,] =K[x, }1]
Aif w, x:
AK[x,]| =max{ KX,], }
Areturn K\W,n|

Case 1l

Running time QW)

relevant
previous entry

current Weight:

Value:

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A forx = IX,W:
A forj=1X,n:
A KK, =KIx, 1]
Aifw x

A K =max{KK.[,
KlxG w, F1] +v;}
A return KW,

"F. i 3

=

Caéty: 3

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

80
Example
x=0 x=1
=0 0 0
0 0
-
0
2
0
@ . h =3
current relevant
entry previous entry

A for x = LX,W;
A forj=1X,n:
A Kk.J =K[x, 1]
Aifw x
X=2 X= A Kx,j] = max{K[x,],
KIxqw;, 1] +v; }
0 0 A return KW,
ltem: b
Weight: 1 2 3
Value: 1 4 6 Capacity: 3

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

81
Example
x=0 x=1
=0 0 0
0 1
) W Y
0)
2
0)
. h =3
current relevant
entry previous entry

A for x = LX,W;
A forj=1X,n:
A Kk.J =K[x, 1]
Aifw x
X=2 X= A Kx,j] = max{K[x,],
KIxqw;, 1] +v; }
0 0 A return KW,
ltem: b
Weight: 1 2 3
Value: 1 4 6 Capacity: 3

82 A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A for x = IX,W:
Example "oy S axn
A K, =K[x, $1]
Aifw X

x=0 X=1 x=2 x= A Kk, = max{Kx],
KIxG w, 111 +v,)
=0 0 0 0 0 A return KW,
0 1
e Sy
0 1
™
0
W . h =3
ltem: b
current relevant Weight: . - 3
entry previous entry Value: 1 4 6

83 A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A for x = IX,W:
Example "oy S axn
A K, =K[x, $1]
Aifw X

x=0 X=1 x=2 x= A Kk, = max{Kx],
KIxG w, 1]+,)
=0 0 0 0 0 A return KW,
o |2
) W =
0 1
Y .
0 1
@ . W b
ltem: b
current relevant Weight: ! E 3
entry previous entry Value: 1 4 6

relevant
previous entry

current Weight:

Value:

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A forx = IX,W:
A forj=1X,n:
A KK, =KIx, 1]
Aifw x

A K, =max{KK.],
KlxG w, F1] +v;}
A return KW,

Weight:
Value:

relevant
previous entry

current

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A forx = IX,W:
A forj=1X,n:
A KK, =KIx, 1]
Aifw x

A K, =max{KK.],
KlxG w, F1] +v;}
A return KW,

=

Cabty: 3

Weight:
Value:

relevant
previous entry

current

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A forx = IX,W:
A forj=1X,n:
A KK, =KIx, 1]
Aifw x

A K, =max{KK.],
KlxG w, F1] +v;}
A return KW,

=

Cabty: 3

relevant
previous entry

current Weight:

Value:

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A forx = IX,W:
A forj=1X,n:
A KK, =KIx, 1]
Aifw x

A K, =max{KK.],
KlxG w, F1] +v;}
A return KW,

Weight:
Value:

relevant
previous entry

current

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A forx = IX,W:
A forj=1X,n:
A KK, =KIx, 1]
Aifw x

A K, =max{KK.],
KlxG w, F1] +v;}
A return KW,

=

Cabty: 3

Weight:
Value:

relevant
previous entry

current

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A forx = IX,W:
A forj=1X,n:
A KK, =KIx, 1]
Aifw x

A K, =max{KK.],
KlxG w, F1] +v;}
A return KW,

=

Cabty: 3

Weight:
Value:

relevant
previous entry

current

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A forx = IX,W:
A forj=1X,n:
A KK, =KIx, 1]
Aifw x

A K, =max{KK.],
KlxG w, F1] +v;}
A return KW,

=

Cabty: 3

Weight:
Value:

relevant
previous entry

current

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A forx = IX,W:
A forj=1X,n:
A KK, =KIx, 1]
Aifw x

A K, =max{KK.],
KlxG w, F1] +v;}
A return KW,

=

Cabty: 3

Weight:
Value:

relevant
previous entry

current

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A forx = IX,W:
A forj=1X,n:
A KK, =KIx, 1]
Aifw x

A K, =max{KK.],
KlxG w, F1] +v;}
A return KW,

=

Cabty: 3

o

o | -

@

Fal¥

@

relevant
previous entry

current

ltem:

Weight:
Value:

A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

A forx = IX,W:
A forj=1X,n:
A KK, =KIx, 1]
Aifw x

A K, =max{KK.],
KlxG w, F1] +v;}
A return KW,

=

Cabty: 3

94 A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

Example o S

A K, =K[x, $1]

Aifw x
=0 x=1 x=2 x= A K] = max{K[x.],
Kxc w, -1] + }
=0 0 0 0 0 A return KW,
0
W
0
e
0
W . h =3
ltem: b
current relevant Weight: 1 2 3 e L
entry previous entry Value: 1 4 6 Capacity: 3

95 A ZeroOneKnapsack(W, n, w, v):
A K[x,0] = Gor all x = OX,W
A K[0,i] = Ofor alli= 0X,n

Example o S

A K, =K[x, $1]

Aifw x
=0 X=1 x=2 x= A K] = max{Kx.],
KIxqw;, 1] +v; }
=0 0 0 0 0 A return KW,
_ 0 1 1 1
- |
0 1 4 5
= h =2 h ¢ o & So the optimal solution is to
0 1 4 6 put one watermelon in your
= - knapsack!
b = h =3 h & b g
ltem: b
current relevant Weight: 1 2 3 e L
entry previous entry Value: 1 4 6 Capacity: 3

96

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure.

AStep 2:Find a for the value of
the optimal solution.

AStep 3:Use dynamic programmirtg find the value

of the optimal solution. (

AStep 4:1f needed, keep track of some addition
Info so that the algorithm from Step 3 cénd the
actual solution.

You do this one!
(We did it on the slide in the previo
example, just not in the pseudocode!

97

What have we learned?

AWe can solve 0/1 knapsack in timen@.J).
Alf there are n items and our knapsack has capacity W.

AWe again went through the steps to create DP
solution:

AWe kept a twedimensional table, creating smaller
problems by restricting the set of allowable items.

98

Question

AHow did we know which substructure to use in
which variant of knapsack?

Answer in retrospect:

This one made sense for
unbounded knapsack
0SOFdzaS Al F
any memory of what
items have been used.

In O/1 knapsack, we
can only use each itermr
once, so it makes sens

to leave out one item
at a time.

Operational Answertry some stuff, see what works!

Example 3: Independent Set

If we still have time

Anindependent set
IS a set of vertices
so that no pair has
an edge between
them.

A Given a graph with
weights on the
verticesX

A What is the

independent set with
(. the largest weight?

100

Actually this problem IsFPcomplete

So we are unlikely to find an efficient algorithm

ABut if we also assume that the graph igeeX

ﬂ

Atreelis a
connected
graph with no
cycles.

Problent

find a maximal independent set in a tree (with vertex weights).

G

101
R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure. -

AStep 2:Find a for the value of
the optimal solution

AStep 3:Use dynamic programmirtg find the value
of the optimal solution

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

102

Optimal substructure

ASubtreesare a natural candidate.
AThere arewo cases ‘

1. The root of this tree is in@ot in
a maximal independent set.

(U
A

103

Case 1:
the root isnot in an maximal independent set
AUse the optimal solution ‘
from these smaller problems: .
- N ,’l \
\ e \\ { “\
,,’ ‘ \\ I ‘ \
e 1 i \
K¢ \ 1 \
y \ 1 \
,/ \‘ 1 \
/7 v ‘\
U4 \ 1
/ \ 1 “
/ Vol \
OO0 v O
[P \
= /NN ‘
1 1 \
\ /] :
\ J ‘\ I

104

Case 2:
the root Is In an maximal independent set

ACKSY Ada OKAf RN Ol y Qi

ABelow that, use the optimal

solution fromthese smaller
subproblems

[pe——.

105
R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure. ?
0

AStep 2:Find a for the value
the optimal solution.

AStep 3:Use dynamic programmirto find the value
of the optimal solution

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

1

Recursive formulation: try 1

ALet A[u] be the weight of a maximal independent set
In the tree rooted at u.

AG[0]

| AQ

When we implement this, how do
we keep track ofhis ternt?

C

107

Recursive formulation: try 2

Keep two arrays!

ALet A[u] be the weight of a maximal independent set
In the tree rooted at u.

ALetBlul=B , AEE] GBAT ;

| N

- B AEE] RDAT
Acle] | A
x A E@FE OB , AEE] AOAI

108

R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure.
AStep 2:Find a for the value of

the optimal solution. ,

AStep 3:Use dynamic programmirtg find the value
of the optimal solution.

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

109

A top-down DP algorithm

AMIS_subtree(u): it
Aif u is a leaf:

Wiy, ~""ays

: th Use; ~A,

A Alu] = weight(u) € reCUrs,-,,:e "N all of ’
AB[u]=0 “alls,

Aelse

A for v inu.children
A MIS_subtre¢v)

AB[6] 1 AB, see) RbKAEGEO }
Running time?
AM |S(T)Z A We visit each vertex once, and :
every vertex we do O(1) work:
AMIS—SUbtreéT' roof) A Make a recursive call
Areturn A[T.roof A look stuff up in tables

A Running time is O(|V|)

110

Why is this different from dividand-conquer?

That ' s al ways worked for wus with tr

AMIS_subtree(u):

This js ©xactly ¢h

Alf uis a Ieaf: eXcep? We've ditecfs,ame pseudocode
A return weight(u) ~are jyst calling I\/ﬁg the table a5y
Aelse "NStead of looking upiUbtree()
A for v inu.children Wlor By
A MIS_subtreév)
Aretunl A @B | AEE] 'A)O@\@A OO A
x AEQ@E O ¥

AMIS(T):
Areturn MIS_subtre€T.roof)

111

Why is this different from dividand-conquer?

That ' s al ways worked for wus with tr

How often would we ask ’

about the subtree rooted

here? ‘ ‘
Once forthis node . ‘ ‘ ‘

and once for

But we then ask . . a ‘ ‘

aboutthis node

twice, here and here. \ @ @

This will blow up exponentially
without using dynamic <) @ O
programming to take advantage @ @ () O @

of overlappingsubproblems

112
R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure.

AStep 2:Find a for the value of
the optimal solution.

AStep 3:Use dynamic programmirto find the value

of the optimal solution. 1

AStep 4:1f needed, keep track of some addition
Info so that the algorithm from Step 3 cénd the

actual solution.
You do thine! k

113

What have we learned?

AWe can find maximal independent sets in trees in
time O(|V|) using dynamic programming!

AFor this example, it was natural to implement our
DP algorithm in a tojplown way.

114

Recap

AToday we saw examples of how to come up with
dynamic programming algorithms.
ALongest Common Subsequence
AKnapsack two ways
maximal independent set in trees.

AThere is aecipefor dynamic programming
algorithms.

115
R@Cipeor applying Dynamic Programming

AStep 1:ldentify optimal substructure.

AStep 2:Find a for the value of
the optimal solution.

AStep 3:Use dynamic programmirto find the value
of the optimal solution.

AStep 4:1f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

116

Recap

' SOBORINGI
AToday we saw examples of how to come up with
dynamic programming algorithms.
ALongest Common Subsequence

AKnapsack two ways
maximal independent set in trees.

AThere is aecipefor dynamic programming
algorithms.

ASometimes coming up with the right substructure
takes somecreativity

117

Next time

AMidterm 2
In CubberleyAuditorium

Beforenext time

AReview session:
Sundayll/4, 4-6 PM,
Main Quad 4240

Al 0dzRé O6dag2N] aYl NI £
AGet some rest the night before

118

Mldterm 2 plan (This is just my guess!)
/

1. A few short questions (20ts ~ 15 min)
2. Design+analyzan algorithm (4(ts ~ 30 min)
3. Design+analyzanother algorithm (4(ts ~ 30 min)

Study resources:

Practice Review
Problems session TethOOkS

HW, Sections,
Lecture notes

