
Lecture 11 
More dynamic programming! 

Longest Common Subsequences, Knapsack, and  

(if time) independent sets in trees. 
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Last time 

ÅNot coding in an action movie. 

Tom Cruise programs dynamically 
in Mission Impossible 
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Last time 

ÅDynamic programming is an algorithm design 
paradigm. 

ÅBasic idea: 
ÅIdentify optimal sub-structure 
ÅOptimum to the big problem is built out of optima of small 

sub-problems 

ÅTake advantage of overlapping sub-problems 
ÅOnly solve each sub-problem once, then use it again and again 

ÅKeep track of the solutions to sub-problems in a table 
as you build to the final solution. 
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Floyd Warshall 
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Label the vertices 1,2,Χ,n 
(We omit some edges in the 

picture below). 

Let D(k-1)[u,v] be the solution 
to Sub-problem(k-1).  

This is the shortest 
path from u to v 

through the blue set.  
It has length D(k-1)[u,v] 

Sub-problem(k-1):  
For all pairs, u,v, find the cost of the  shortest 
path from u to v, so that all the internal 
vertices on that path are in {1,Χ,k-1}.  

[Actual algorithm] 
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Floyd Warshall 
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Label the vertices 1,2,Χ,n 
(We omit some edges in the 

picture below). 

Let D(k-1)[u,v] be the solution 
to Sub-problem(k-1).  

This is the shortest 
path from u to v 

through the blue set.  
It has length D(k-1)[u,v] 

Sub-problem(k-1):  
For all pairs, u,v, find the cost of the  shortest 
path from u to v, so that all the internal 
vertices on that path are in {1,Χ,k-1}.  

Question: How can we find D(k)[u,v] using D(k-1)? 
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How can we find D(k)[u,v] using D(k-1)? 
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n 

D(k)[u,v] is the cost of the shortest path from u to v so 
that all internal vertices on that path are in {1, Χ, k}. 
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How can we find D(k)[u,v] using D(k-1)? 
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D(k)[u,v] is the cost of the shortest path from u to v so 
that all internal vertices on that path are in {1, Χ, k}. 

Case 1: we donôt 
need vertex k. 

D(k)[u,v] = D(k-1)[u,v]  
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How can we find D(k)[u,v] using D(k-1)? 
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n 

D(k)[u,v] is the cost of the shortest path from u to v so 
that all internal vertices on that path are in {1, Χ, k}. 

Case 2: we need 
vertex k. 
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Case 2 continued 
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ÅSuppose there are no negative 
cycles. 
Å Then WLOG the shortest path from 

u to v through {1,Χ,k} is simple. 
 

Å If that path passes through k, it 
must look like this: 
 

ÅThis path is the shortest path 
from u to k through {1,Χ,k-1}. 
Å sub-paths of shortest paths are 

shortest paths 

ÅSame for this path. 

Case 2: we need 
vertex k. 

D(k)[u,v] = D(k-1)[u,k] + D(k-1)[k,v]  
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Today 

ÅExamples of dynamic programming: 
1. Longest common subsequence 

2. Knapsack problem 
ÅTwo versions! 

3. Independent sets in trees  
ÅIf we have timeΧ 

Å(If not the slides will be there as a reference) 
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The goal of this lecture 

ÅFor you to get really bored of dynamic programming 
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Longest Common Subsequence 

ÅHow similar are these two species? 

 

 

 

 

 

 AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG 
DNA: DNA: 

You saw this in HW 4! 
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Longest Common Subsequence 

ÅHow similar are these two species? 

 

 

 

 

 

 

ÅPretty similar, their DNA has a long common subsequence: 

AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG 

AGCCTAAGCTTAGCTT 

DNA: DNA: 

You saw this in HW 4! 
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Longest Common Subsequence 

ÅSubsequence: 
ÅBDFH is a subsequence of ABCDEFGH 

ÅIf X and Y are sequences, a common subsequence 
is a sequence which is a subsequence of both. 
ÅBDFH is a common subsequence of ABCDEFGH and of 

ABDFGHI 

ÅA longest common subsequenceΧ 
ÅΧis a common subsequence that is longest. 

ÅThe longest common subsequence of ABCDEFGH and 
ABDFGHI is ABDFGH. 

You saw this in HW 4! 
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We sometimes want to find these 

ÅApplications in bioinformatics 

 

 

 

 

ÅThe unix command diff 

ÅMerging in version control  
Åsvn, git, etcΧ 

ά{ƻƳŜǘƛƳŜǎέ ƛǎ ŀ ƧƻƪŜΗ 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the length 
of the longest common subsequence. 

ÅStep 3: Use dynamic programming to find the 
length of the longest common subsequence. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual LCS. 
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Step 1: Optimal substructure 

A C G G T 

A C G C T T A Y 

X 

Prefixes: 

Notation: denote this prefix ACGC by Y4 

ÅOur sub-ǇǊƻōƭŜƳǎ ǿƛƭƭ ōŜ ŦƛƴŘƛƴƎ [/{Ωǎ ƻŦ ǇǊŜŦƛȄŜǎ ǘƻ · ŀƴŘ ¸Φ 
ÅLet C[i,j] = length_of_LCS( Xi, Yj ) 
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Optimal substructure ctd. 

ÅSubproblem: 
ÅŦƛƴŘƛƴƎ [/{Ωǎ ƻŦ ǇǊŜŦƛȄŜǎ ƻŦ · ŀƴŘ ¸Φ 

 

ÅWhy is this a good choice? 
Å¢ƘŜǊŜΩǎ ǎƻƳŜ ǊŜƭŀǘƛƻƴǎƘƛǇ ōŜǘǿŜŜƴ [/{Ωǎ ƻŦ ǇǊŜŦƛȄŜǎ ŀƴŘ 
[/{Ωǎ ƻŦ ǘƘŜ ǿƘƻƭŜ ǘƘƛƴƎǎΦ 

ÅThese subproblems overlap a lot. 

To see this formally, on toΧ 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the length 
of the longest common subsequence. 

ÅStep 3: Use dynamic programming to find the 
length of the longest common subsequence. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual LCS. 
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Two cases 

A C G G A 

A C G C T T A Yj 

Xi 

ÅOur sub-problems will be finding 
[/{Ωǎ ƻŦ ǇǊŜŦƛȄŜǎ ǘƻ · ŀƴŘ ¸Φ 
ÅLet C[i,j] = length_of_LCS( Xi, Yj ) 

Case 1: X[i] = Y[j] 
i 

j 

These are 
the same 

ÅThen C[i,j] = 1 + C[i-1,j-1]. 
 

Åbecause LCS(Xi,Yj) = LCS(Xi-1,Yj-1) followed by A 
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Two cases 

A C G G T 

A C G C T T A Yj 

Xi 

ÅOur sub-problems will be finding 
[/{Ωǎ ƻŦ ǇǊŜŦƛȄŜǎ ǘƻ · ŀƴŘ ¸Φ 
ÅLet C[i,j] = length_of_LCS( Xi, Yj ) 

Case 2: X[i] != Y[j] 
i 

j 

These are 
not the 
same 

ÅThen C[i,j] = max{ C[i-1,j], C[i,j-1] }. 
Åeither LCS(Xi,Yj) = LCS(Xi-1,Yj) and       is not involved, 

Åor LCS(Xi,Yj) = LCS(Xi,Yj-1) and       is not involved, 

ÅόƳŀȅōŜ ōƻǘƘ ŀǊŜ ƴƻǘ ƛƴǾƻƭǾŜŘΣ ǘƘŀǘΩǎ ŎƻǾŜǊŜŘ ōȅ ǘƘŜ άƻǊέύΦ 

 

A 

T 
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Recursive formulation  
of the optimal solution 

ÅὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
 

A C G G A 

A C G C T T A Yj 

Xi 
A C G G T 

A C G C T T A Yj 

Xi 

Case 1 Case 2 

A C G C T T A Yj 

X0 

Case 0 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the length 
of the longest common subsequence. 

ÅStep 3: Use dynamic programming to find the 
length of the longest common subsequence. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual LCS. 
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LCS DP OMG BBQ 

ÅLCS(X, Y): 
ÅC[i,0] = C[0,j] = 0 for all i = 1,Χ,m, j=1,Χn. 

ÅFor i = 1,Χ,m and j = 1,Χ,n: 

ÅIf X[i] = Y[j]: 

ÅC[i,j] = C[i-1,j-1]  + 1 

ÅElse: 

ÅC[i,j] = max{ C[i,j-1], C[i-1,j] } 
 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                     ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
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Example 
A C G G A 

A C T G Y 

X 

A 

C 

G 

G 

A 

A C T G 

X 

Y 

0 0 0 0 

0 

0 

0 

0 

0 

0 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
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0 0 0 0 

0 

0 

0 

0 

0 

0 

Example 
A C G G A 

A C T G Y 

X 

0 0 0 0 

0 1 1 1 

0 1 2 2 

0 1 2 2 

0 1 2 2 

A 

C 

G 

G 

A 

A C T G 

X 

Y 

0 

1 

2 

3 

3 

0 1 2 2 3 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
 

So the LCM of X 
and Y has length 3. 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the length 
of the longest common subsequence. 

ÅStep 3: Use dynamic programming to find the 
length of the longest common subsequence. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual LCS. 
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Example 
A C G G A 

A C T G Y 

X 

A 

C 

G 

G 

A 

A C T G 

X 

Y 

0 0 0 0 

0 

0 

0 

0 

0 

0 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
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0 0 0 0 

0 

0 

0 

0 

0 

0 

Example 
A C G G A 

A C T G Y 

X 

0 0 0 0 

0 1 1 1 

0 1 2 2 

0 1 2 2 

0 1 2 2 

A 
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G 
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A 

A C T G 
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Y 

0 
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0 1 2 2 3 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
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0 0 0 0 

0 

0 

0 

0 

0 

0 

Example 
A C G G A 

A C T G Y 

X 

0 0 0 0 

0 1 1 1 

0 1 2 2 

0 1 2 2 

0 1 2 2 

A 

C 

G 

G 

A 

A C T G 

X 
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3 

0 1 2 2 3 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
 

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ 
we can work backwards. 
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0 0 0 0 

0 

0 

0 

0 

0 

0 

Example 
A C G G A 

A C T G Y 

X 

0 0 0 0 

0 1 1 1 

0 1 2 2 

0 1 2 2 

0 1 2 2 

A 
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A C T G 
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0 1 2 2 3 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
 

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ 
we can work backwards. 
 

That 3 must have come 
from the 3 above it. 
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0 0 0 0 
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Example 
A C G G A 

A C T G Y 

X 

0 0 0 0 

0 1 1 1 

0 1 2 2 

0 1 2 2 

0 1 2 2 
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C 

G 

G 
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A C T G 
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0 1 2 2 3 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
 

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ 
we can work backwards. 
 

This 3 came from that 2 ς 
we found a match! 

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ 
we can work backwards. 

ÅA diagonal jump means 
that we found an element 
of the LCS! 
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0 0 0 0 
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0 
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Example 
A C G G A 

A C T G Y 

X 

0 0 0 0 

0 1 1 1 

0 1 2 2 

0 1 2 2 

0 1 2 2 
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A 

A C T G 
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Y 
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0 1 2 2 3 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
 

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ 
we can work backwards. 

ÅA diagonal jump means 
that we found an element 
of the LCS! 
 

G 

That 2 may as well 
have come from 
this other 2. 
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0 0 0 0 
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Example 
A C G G A 

A C T G Y 

X 

0 0 0 0 

0 1 1 1 

0 1 2 2 

0 1 2 2 

0 1 2 2 
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A C T G 
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0 1 2 2 3 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
 

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ 
we can work backwards. 

ÅA diagonal jump means 
that we found an element 
of the LCS! 
 

G 
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Example 
A C G G A 

A C T G Y 
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0 0 0 0 

0 1 1 1 

0 1 2 2 

0 1 2 2 

0 1 2 2 
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A C T G 

X 

Y 
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0 1 2 2 3 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
 

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ 
we can work backwards. 

ÅA diagonal jump means 
that we found an element 
of the LCS! 
 

G C 
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0 0 0 0 

0 

0 

0 

0 

0 

0 

Example 
A C G G A 

A C T G Y 

X 

0 0 0 0 

0 1 1 1 

0 1 2 2 

0 1 2 2 

0 1 2 2 

A 

C 

G 

G 

A 

A C T G 

X 

Y 

0 

1 

2 

3 

3 

0 1 2 2 3 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
 

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ 
we can work backwards. 

ÅA diagonal jump means 
that we found an element 
of the LCS! 
 

G C A 

This is the LCS! 
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0 0 0 0 

0 

0 

0 

0 

0 

0 

Another way of seeing the same thing: 

0 0 0 0 

0 1 1 1 

0 1 2 2 

0 1 2 2 

0 1 2 2 

A 

C 

G 

G 

A 

A C T G 

X 

Y 

0 

1 

2 

3 

3 

0 1 2 2 3 

ὅὭȟὮ  

π                                    ÉÆ  Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ                      ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ   ÉÆ ὢὭ ὣὮ  ÁÎÄ ὭȟὮ π
 

Finding length of shortest path  
vs  

Actually finding the shortest path 
(just like your HW!) 

 

G C A 

This is the LCS! 
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Finding an LCS 

ÅSee lecture notes for pseudocode 

ÅTakes time O(mn) to fill the table 

ÅTakes time O(n + m) on top of that to recover the LCS 
ÅWe walk up and left in an n-by-m array 

ÅWe can only do that for n + m steps. 

ÅAltogether, we can find LCS(X,Y) in time O(mn). 
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Time and Space complexity 

ÅIf we are only interested in the length of the LCS: 
ÅSince we go across the table one-row-at-a-time, we can only 

keep two rows if we want. 

ÅIf we want to recover the LCS, we need to keep the whole 
table. 

 

ÅCan we do better than ὕάὲ time? 
ÅA bit better. 
ÅBy a log factor or so. 

ÅBut doing much better (e.g. ὕάὲȢ ) is an open problem! 
ÅIf you can do it let me know :D  
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What have we learned? 

ÅWe can find LCS(X,Y) in time O(nm)  
Åif |Y|=n, |X|=m  

 

ÅWe went through the steps of coming up with a 
dynamic programming algorithm. 
ÅWe kept a 2-dimensional table, breaking down the 

problem by decrementing the length of X and Y. 
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Example 2: Knapsack Problem 

ÅWe have n items with weights and values: 

 

 

 

 

 

 

ÅAnd we have a knapsack:  
Åit can only carry so much weight: 

Weight: 

Value: 

6 2 4 3 11 

20 8 14 35 13 

Item: 

Capacity: 10 
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ÅUnbounded Knapsack: 
ÅSuppose I have infinite copies of all of the items. 

Å²ƘŀǘΩǎ ǘƘŜ most valuable way to fill the knapsack? 

 

 

 

Å0/1 Knapsack: 
ÅSuppose I have only one copy of each item. 

Å²ƘŀǘΩǎ ǘƘŜ most valuable way to fill the knapsack?  

Weight: 

Value: 

6 2 4 3 11 

20 8 14 35 13 

Item: 

Capacity: 10 

Total weight: 10 
Total value: 42 

Total weight: 9 
Total value: 35 
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Some notation 

Capacity: W 

Weight: 

Value: 

w1 
v1 

Item: 

w2 w3 wn 

v2 v3 vn 

Χ 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 



45 

Optimal substructure 

ÅSub-problems:  
ÅUnbounded Knapsack with a smaller knapsack. 

First solve the 
problem for 
small knapsacks 

Then larger 
knapsacks 

Then larger 
knapsacks 
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Optimal substructure 
ÅSuppose this is an optimal solution for capacity x: 

 

 

 

 

ÅThen this optimal for capacity x - wi: 
Capacity x 
Value V 

Weight wi 

Value vi 

Capacity x ς wi 

Value V - vi 

If I could do better than the second solution, 
then adding a turtle to that improvement 
would improve the first solution. 

item i 



47 

Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 
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ÅLet K[x] be the optimal value for capacity x. 

 

K[x] = maxi {             +         } 

 

 

 

K[x] =    

Recursive relationship 

The maximum is over 
all i so that ύὭ ὼȢ 

Optimal way to 
fill the smaller 
knapsack 

The value of 
item i. 

Think-Pair-Share! 
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ÅLet K[x] be the optimal value for capacity x. 

 

K[x] = maxi {             +         } 

 

 

 

K[x] = maxi { K[x ς wi] + vi } 
 

Å(And K[x] = 0 if the maximum is empty). 
ÅThat is, if there are no i so that ύὭ ὼ 

Recursive relationship 

The maximum is over 
all i so that ύὭ ὼȢ 

Optimal way to 
fill the smaller 
knapsack 

The value of 
item i. 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 
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Let’s write a bottom-up DP algorithm 

ÅUnboundedKnapsack(W, n, weights, values): 
ÅK[0] = 0 

Åfor x = 1, Χ, W: 

ÅK[x] = 0 

Åfor i = 1, Χ, n: 

Åif ύ ὼȡ 

Åὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ  

Åreturn K[W] 

Running time: O(nW) 
 

Why does this work?   
Because our recursive relationship makes sense.        = maxi { K[x ς wi] + vi } 

K[x] = maxi {             +         } 



52 

Can we do better? 

ÅWriting down W takes log(W) bits. 

ÅWriting down all n weights takes at most nlog(W) bits. 

ÅInput size: nlog(W). 
ÅMaybe we could have an algorithm that runs in time 

O(nlog(W)) instead of O(nW)?   

ÅOr even O( n1000000 log1000000(W) )? 

 

ÅOpen problem! 
Å(But probably the answer is noΧotherwise P = NP) 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 
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Let’s write a bottom-up DP algorithm 

ÅUnboundedKnapsack(W, n, weights, values): 
ÅK[0] = 0 

Åfor x = 1, Χ, W: 

ÅK[x] = 0 

Åfor i = 1, Χ, n: 

Åif ύ ὼȡ 

Åὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ  

Åreturn K[W] 

       = maxi { K[x ς wi] + vi } 

K[x] = maxi {             +         } 
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Let’s write a bottom-up DP algorithm 

ÅUnboundedKnapsack(W, n, weights, values): 
ÅK[0] = 0 
ÅITEMS[0] = ɲ 
Åfor x = 1, Χ, W: 
ÅK[x] = 0 
Åfor i = 1, Χ, n: 
Åif ύ ὼȡ 

Åὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ  
ÅIf K[x] was updated: 
ÅITEMS[x] = ITEMS[x ς wi]  ᷾{ item i } 

Åreturn ITEMS[W] 

       = maxi { K[x ς wi] + vi } 

K[x] = maxi {             +         } 
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Example 

ÅUnboundedKnapsack(W, n, weights, values): 
Å K[0] = 0 
Å ITEMS[0] = ɲ 
Å for x = 1, Χ, W: 

Å K[x] = 0 
Å for i = 1, Χ, n: 

Å if ύ ὼȡ 

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ  

Å If K[x] was updated: 
Å ITEMS[x] = ITEMS[x ς wi]  ᷾{ item i } 

Å return ITEMS[W] 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 4 

K 

IT
E

M
S 

0 1 2 3 4 
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Example 

ÅUnboundedKnapsack(W, n, weights, values): 
Å K[0] = 0 
Å ITEMS[0] = ɲ 
Å for x = 1, Χ, W: 

Å K[x] = 0 
Å for i = 1, Χ, n: 

Å if ύ ὼȡ 

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ  

Å If K[x] was updated: 
Å ITEMS[x] = ITEMS[x ς wi]  ᷾{ item i } 

Å return ITEMS[W] 0 1 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 4 

K 

IT
E

M
S 

0 1 2 3 4 

ITEMS[1] = ITEMS[0] +  
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Example 

ÅUnboundedKnapsack(W, n, weights, values): 
Å K[0] = 0 
Å ITEMS[0] = ɲ 
Å for x = 1, Χ, W: 

Å K[x] = 0 
Å for i = 1, Χ, n: 

Å if ύ ὼȡ 

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ  

Å If K[x] was updated: 
Å ITEMS[x] = ITEMS[x ς wi]  ᷾{ item i } 

Å return ITEMS[W] 0 1 2 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 4 

K 

IT
E

M
S 

0 1 2 3 4 

ITEMS[2] = ITEMS[1] +  
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Example 

ÅUnboundedKnapsack(W, n, weights, values): 
Å K[0] = 0 
Å ITEMS[0] = ɲ 
Å for x = 1, Χ, W: 

Å K[x] = 0 
Å for i = 1, Χ, n: 

Å if ύ ὼȡ 

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ  

Å If K[x] was updated: 
Å ITEMS[x] = ITEMS[x ς wi]  ᷾{ item i } 

Å return ITEMS[W] 0 1 4 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 4 

K 

IT
E

M
S 

0 1 2 3 4 

ITEMS[2] = ITEMS[0] +  
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Example 

ÅUnboundedKnapsack(W, n, weights, values): 
Å K[0] = 0 
Å ITEMS[0] = ɲ 
Å for x = 1, Χ, W: 

Å K[x] = 0 
Å for i = 1, Χ, n: 

Å if ύ ὼȡ 

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ  

Å If K[x] was updated: 
Å ITEMS[x] = ITEMS[x ς wi]  ᷾{ item i } 

Å return ITEMS[W] 0 1 4 5 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 4 

K 

IT
E

M
S 

0 1 2 3 4 

ITEMS[3] = ITEMS[2] +  
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Example 

ÅUnboundedKnapsack(W, n, weights, values): 
Å K[0] = 0 
Å ITEMS[0] = ɲ 
Å for x = 1, Χ, W: 

Å K[x] = 0 
Å for i = 1, Χ, n: 

Å if ύ ὼȡ 

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ  

Å If K[x] was updated: 
Å ITEMS[x] = ITEMS[x ς wi]  ᷾{ item i } 

Å return ITEMS[W] 0 1 4 6 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 4 

K 

IT
E

M
S 

0 1 2 3 4 

ITEMS[3] = ITEMS[0] +  
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Example 

ÅUnboundedKnapsack(W, n, weights, values): 
Å K[0] = 0 
Å ITEMS[0] = ɲ 
Å for x = 1, Χ, W: 

Å K[x] = 0 
Å for i = 1, Χ, n: 

Å if ύ ὼȡ 

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ  

Å If K[x] was updated: 
Å ITEMS[x] = ITEMS[x ς wi]  ᷾{ item i } 

Å return ITEMS[W] 0 1 4 6 7 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 4 

K 

IT
E

M
S 

0 1 2 3 4 

ITEMS[4] = ITEMS[3] +  
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Example 

ÅUnboundedKnapsack(W, n, weights, values): 
Å K[0] = 0 
Å ITEMS[0] = ɲ 
Å for x = 1, Χ, W: 

Å K[x] = 0 
Å for i = 1, Χ, n: 

Å if ύ ὼȡ 

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ  

Å If K[x] was updated: 
Å ITEMS[x] = ITEMS[x ς wi]  ᷾{ item i } 

Å return ITEMS[W] 0 1 4 6 8 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 4 

K 

IT
E

M
S 

0 1 2 3 4 

ITEMS[4] = ITEMS[2] +  
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What have we learned? 

ÅWe can solve unbounded knapsack in time O(nW). 
ÅIf there are n items and our knapsack has capacity W. 

 

ÅWe again went through the steps to create DP 
solution: 
ÅWe kept a one-dimensional table, creating smaller 

problems by making the knapsack smaller. 
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ÅUnbounded Knapsack: 
ÅSuppose I have infinite copies of all of the items. 

Å²ƘŀǘΩǎ ǘƘŜ most valuable way to fill the knapsack? 

 

 

 

Å0/1 Knapsack: 
ÅSuppose I have only one copy of each item. 

Å²ƘŀǘΩǎ ǘƘŜ most valuable way to fill the knapsack?  

Weight: 

Value: 

6 2 4 3 11 

20 8 14 35 13 

Item: 

Capacity: 10 

Total weight: 10 
Total value: 42 

Total weight: 9 
Total value: 35 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 
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Optimal substructure: try 1 

ÅSub-problems:  
ÅUnbounded Knapsack with a smaller knapsack. 

First solve the 
problem for 
small knapsacks 

Then larger 
knapsacks 

Then larger 
knapsacks 
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This won’t quite work… 

ÅWe are only allowed one copy of each item. 

ÅThe sub-ǇǊƻōƭŜƳ ƴŜŜŘǎ ǘƻ άƪƴƻǿέ ǿƘŀǘ ƛǘŜƳǎ 
ǿŜΩǾŜ ǳǎŜŘ ŀƴŘ ǿƘŀǘ ǿŜ ƘŀǾŜƴΩǘΦ 

L ŎŀƴΩǘ ǳǎŜ 
any turtlesΧ 
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Optimal substructure: try 2 
ÅSub-problems: 

Think-Pair-Share! 
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Optimal substructure: try 2 
ÅSub-problems: 
Å0/1 Knapsack with fewer items. 

First solve the 
problem with 
few items 

Then yet 
more 
items 

Then more 
items 

²ŜΩƭƭ ǎǘƛƭƭ ƛƴŎǊŜŀǎŜ ǘƘŜ ǎƛȊŜ ƻŦ the knapsacks. 
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Our sub-problems: 

ÅIndexed by x and j 

Capacity x First j items 
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Two cases 

ÅCase 1:  Optimal solution for j items does not use item j. 

ÅCase 2:  Optimal solution for j items does use item j. 

 

 

 

 

 

item j 

First j items Capacity x 
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Two cases 
ÅCase 1:  Optimal solution for j items does not use item j. 

 

 

 

 

 

ÅThen this is an optimal solution for j-1 items: 

Capacity x 
Value V 
Use only the first j items 

Capacity x  

Value V 
Use only the first j-1 items. 

item j 

First j items 

First j-1 items 
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Two cases 
ÅCase 2:  Optimal solution for j items uses item j. 

 

 

 

 

 

ÅThen this is an optimal solution for j-1 items and a 
smaller knapsack: 

Capacity x 
Value V 
Use only the first j items 

Weight wj 

Value vj 

Capacity x ς wi 

Value V ς vi 
Use only the first j-1 items. 

item j 

First j items 

First j-1 items 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 
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Recursive relationship 

ÅLet K[x,j] be the optimal value for:  
Åcapacity x,  

Åwith j items. 

 

K[x,j] = max{ K[x, j-1] , K[x ς wj, j-1] + vj } 

 
 

Å(And K[x,0] = 0 and K[0,j] = 0). 

Case 1 Case 2 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 
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Bottom-up DP algorithm 

ÅZero-One-Knapsack(W, n, w, v): 

ÅK[x,0] = 0 for all x = 0,Χ,W 

ÅK[0,i] = 0 for all i = 0,Χ,n 

Åfor x = 1,Χ,W: 

Åfor j = 1,Χ,n: 

ÅK[x,j] = K[x, j-1] 

Åif wj  x: 

ÅK[x,j] = max{ K[x,j], K[x ς wj, j-1] + vj } 

Åreturn K[W,n] 

Case 1 

Case 2 

Running time O(nW) 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 

0 

0 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 0 

0 

0 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 

0 

0 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 

0 1 

0 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 

0 1 

0 1 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 0 

0 1 

0 1 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 1 

0 1 

0 1 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 1 

0 1 1 

0 1 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 1 

0 1 4 

0 1 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 1 

0 1 4 

0 1 4 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 1 0 

0 1 4 

0 1 4 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 1 1 

0 1 4 

0 1 4 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 1 1 

0 1 4 1 

0 1 4 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 1 1 

0 1 4 5 

0 1 4 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 1 1 

0 1 4 5 

0 1 4 5 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 1 1 

0 1 4 5 

0 1 4 6 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

current 
entry 

relevant 
previous entry 
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0 0 0 0 

Weight: 

Value: 

1 2 3 

1 4 6 

Item: 

Capacity: 3 

Example 

0 1 1 1 

0 1 4 5 

0 1 4 6 

j=0 

j=1 

j=2 

j=3 

x=0 x=1 x=2 x=3 

Å Zero-One-Knapsack(W, n, w, v): 
ÅK[x,0] = 0 for all x = 0,Χ,W 
ÅK[0,i] = 0 for all i = 0,Χ,n 
Å for x = 1,Χ,W: 

Å for j = 1,Χ,n: 
ÅK[x,j] = K[x, j-1] 
Å if wj  x: 

Å K[x,j] = max{ K[x,j],    
           K[x ς wj, j-1] + vj } 

Å return K[W,n] 

So the optimal solution is to 
put one watermelon in your 
knapsack! 

current 
entry 

relevant 
previous entry 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 

You do this one! 
(We did it on the slide in the previous 
example, just not in the pseudocode!) 
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What have we learned? 

ÅWe can solve 0/1 knapsack in time O(nW). 
ÅIf there are n items and our knapsack has capacity W. 

 

ÅWe again went through the steps to create DP 
solution: 
ÅWe kept a two-dimensional table, creating smaller 

problems by restricting the set of allowable items. 
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Question 
ÅHow did we know which substructure to use in 

which variant of knapsack? 

vs. 

This one made sense for 
unbounded knapsack 
ōŜŎŀǳǎŜ ƛǘ ŘƻŜǎƴΩǘ ƘŀǾŜ 

any memory of what 
items have been used. 

In 0/1 knapsack, we 
can only use each item 
once, so it makes sense 
to leave out one item 

at a time. 

Operational Answer: try some stuff, see what works! 

Answer in retrospect: 
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Example 3: Independent Set 
if we still have time 

2 

2 

3 

5 

1 

2 

1 

ÅGiven a graph with 
weights on the 
verticesΧ 

 
ÅWhat is the 

independent set with 
the largest weight? 

An independent set 
is a set of vertices 
so that no pair has 
an edge between 
them. 

5 

1 

2 

1 
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Actually this problem is NP-complete. 
So we are unlikely to find an efficient algorithm 

ÅBut if we also assume that the graph is a treeΧ 

5 2 

1 

3 

3 

2 

2 

5 

5 

3 
5 3 

2 

2 

5 

5 

3 

Problem:  
    find a maximal independent set in a tree (with vertex weights). 

A tree is a 
connected 

graph with no 
cycles. 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 
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Optimal substructure 
ÅSubtrees are a natural candidate. 

ÅThere are two cases: 
1. The root of this tree is in a not in 

a maximal independent set. 

2. Or it is. 
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Case 1:  
the root is not in an maximal independent set 

ÅUse the optimal solution 
from these smaller problems. 
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Case 2:  
the root is in an maximal independent set 

Å¢ƘŜƴ ƛǘǎ ŎƘƛƭŘǊŜƴ ŎŀƴΩǘ ōŜΦ 

ÅBelow that, use the optimal 
solution from these smaller 
subproblems. 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 
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Recursive formulation: try 1 

ÅLet A[u] be the weight of a maximal independent set 
in the tree rooted at u. 

 

Åὃό

        ÍÁØ

В ὃὺ
ᶰȢÃÈÉÌÄÒÅÎ

 
×ÅÉÇÈÔό  В ὃὺ

ᶰȢÇÒÁÎÄÃÈÉÌÄÒÅÎ

 

When we implement this, how do 
we keep track of this term? 
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Recursive formulation: try 2 
Keep two arrays! 

ÅLet A[u] be the weight of a maximal independent set 
in the tree rooted at u. 

ÅLet B[u] = В ὃὺ
ᶰȢÃÈÉÌÄÒÅÎ 

 

Åὃό ÍÁØ

В ὃὺ
ᶰȢÃÈÉÌÄÒÅÎ

 
×ÅÉÇÈÔό  В ὄὺ

ᶰȢÃÈÉÌÄÒÅÎ
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 
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A top-down DP algorithm 

ÅMIS_subtree(u): 
Åif u is a leaf: 
ÅA[u] = weight(u) 

ÅB[u] = 0 

Åelse: 
Åfor v in u.children: 
ÅMIS_subtree(v) 

Åὃό ÍÁØ  В ὃὺ
ᶰȢÃÈÉÌÄÒÅÎȟ×ÅÉÇÈÔό  В ὄὺ

ᶰȢÃÈÉÌÄÒÅÎ } 

Å"ό  В ὃὺ
ᶰȢÃÈÉÌÄÒÅÎ 

 

ÅMIS(T): 
ÅMIS_subtree(T.root) 

Åreturn A[T.root] 
 

Running time? 
ÅWe visit each vertex once, and at 

every vertex we do O(1) work: 
Å Make a recursive call  
Å look stuff up in tables 

Å Running time is O(|V|) 
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Why is this different from divide-and-conquer? 
That’s always worked for us with tree problems before… 

ÅMIS_subtree(u): 
Åif u is a leaf: 
Åreturn weight(u) 

Åelse: 
Åfor v in u.children: 
ÅMIS_subtree(v) 

Åreturn ÍÁØ  В -)3ͅÓÕÂÔÒÅÅὺ
ᶰȢÃÈÉÌÄÒÅÎ ȟ 

 

        ×ÅÉÇÈÔό  В -)3ͅÓÕÂÔÒÅÅὺ
ᶰȢÇÒÁÎÄÃÈÉÌÄÒÅÎ  } 

 

ÅMIS(T): 
Åreturn MIS_subtree(T.root) 

 



111 

Why is this different from divide-and-conquer? 
That’s always worked for us with tree problems before… 

How often would we ask 
about the subtree rooted 
here? 

Once for this node 
and once for this one. 

But we then ask 
about this node 
twice, here and here. 

This will blow up exponentially 
without using dynamic 
programming to take advantage 
of overlapping subproblems. 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 

You do this one! 
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What have we learned? 

ÅWe can find maximal independent sets in trees in 
time O(|V|) using dynamic programming! 

 

ÅFor this example, it was natural to implement our 
DP algorithm in a top-down way. 
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Recap 

ÅToday we saw examples of how to come up with 
dynamic programming algorithms. 
ÅLongest Common Subsequence 

ÅKnapsack two ways 

Å(If time) maximal independent set in trees. 

ÅThere is a recipe for dynamic programming 
algorithms. 
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Recipe for applying Dynamic Programming 

ÅStep 1: Identify optimal substructure. 

ÅStep 2: Find a recursive formulation for the value of 
the optimal solution. 

ÅStep 3: Use dynamic programming to find the value 
of the optimal solution. 

ÅStep 4: If needed, keep track of some additional 
info so that the algorithm from Step 3 can find the 
actual solution. 



116 

Recap 

ÅToday we saw examples of how to come up with 
dynamic programming algorithms. 
ÅLongest Common Subsequence 

ÅKnapsack two ways 

Å(If time) maximal independent set in trees. 

ÅThere is a recipe for dynamic programming 
algorithms. 

ÅSometimes coming up with the right substructure 
takes some creativity 
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Before next time 
ÅReview session:  

 Sunday 11/4, 4-6 PM,  
 Main Quad 420-040 

 

Å{ǘǳŘȅ όάǿƻǊƪ ǎƳŀǊǘέύ 

ÅGet some rest the night before 

Next time 

ÅMidterm 2 
in Cubberley Auditorium 
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Midterm 2 plan 

1. A few short questions (20 pts ~ 15 min) 

2. Design+analyze an algorithm (40 pts ~ 30 min) 

3. Design+analyze another algorithm (40 pts ~ 30 min) 

 

Study resources: 
 

(This is just my guess!) 

Practice 
Problems 

Review 
session 

HW, Sections, 
Lecture notes Office 

Hours 

Piazza 

Classmates 

Textbooks 


