
Lecture 11
More dynamic programming!

Longest Common Subsequences, Knapsack, and

(if time) independent sets in trees.

2

Last time

ÅNot coding in an action movie.

Tom Cruise programs dynamically
in Mission Impossible

3

Last time

ÅDynamic programming is an algorithm design
paradigm.

ÅBasic idea:
ÅIdentify optimal sub-structure
ÅOptimum to the big problem is built out of optima of small

sub-problems

ÅTake advantage of overlapping sub-problems
ÅOnly solve each sub-problem once, then use it again and again

ÅKeep track of the solutions to sub-problems in a table
as you build to the final solution.

4

Floyd Warshall

k-1

2

Χ

1

3

k
k+1

u

v

n

Label the vertices 1,2,Χ,n
(We omit some edges in the

picture below).

Let D(k-1)[u,v] be the solution
to Sub-problem(k-1).

This is the shortest
path from u to v

through the blue set.
It has length D(k-1)[u,v]

Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest
path from u to v, so that all the internal
vertices on that path are in {1,Χ,k-1}.

[Actual algorithm]

5

Floyd Warshall

k-1

2

Χ

1

3

k
k+1

u

v

n

Label the vertices 1,2,Χ,n
(We omit some edges in the

picture below).

Let D(k-1)[u,v] be the solution
to Sub-problem(k-1).

This is the shortest
path from u to v

through the blue set.
It has length D(k-1)[u,v]

Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest
path from u to v, so that all the internal
vertices on that path are in {1,Χ,k-1}.

Question: How can we find D(k)[u,v] using D(k-1)?

6

How can we find D(k)[u,v] using D(k-1)?

k-1

2

Χ

1

3

k
k+1

u

v

n

D(k)[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {1, Χ, k}.

7

How can we find D(k)[u,v] using D(k-1)?

k-1

2

Χ

1

3

k
k+1

u

v

n

D(k)[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {1, Χ, k}.

Case 1: we donôt
need vertex k.

D(k)[u,v] = D(k-1)[u,v]

8

How can we find D(k)[u,v] using D(k-1)?

k-1

2

Χ

1

3

k
k+1

u

v

n

D(k)[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path are in {1, Χ, k}.

Case 2: we need
vertex k.

9

Case 2 continued

k-1

2

Χ

1

3

k

u
v

n

ÅSuppose there are no negative
cycles.
Å Then WLOG the shortest path from

u to v through {1,Χ,k} is simple.

Å If that path passes through k, it
must look like this:

ÅThis path is the shortest path
from u to k through {1,Χ,k-1}.
Å sub-paths of shortest paths are

shortest paths

ÅSame for this path.

Case 2: we need
vertex k.

D(k)[u,v] = D(k-1)[u,k] + D(k-1)[k,v]

10

Today

ÅExamples of dynamic programming:
1. Longest common subsequence

2. Knapsack problem
ÅTwo versions!

3. Independent sets in trees
ÅIf we have timeΧ

Å(If not the slides will be there as a reference)

11

The goal of this lecture

ÅFor you to get really bored of dynamic programming

12

Longest Common Subsequence

ÅHow similar are these two species?

 AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG
DNA: DNA:

You saw this in HW 4!

13

Longest Common Subsequence

ÅHow similar are these two species?

ÅPretty similar, their DNA has a long common subsequence:

AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

AGCCTAAGCTTAGCTT

DNA: DNA:

You saw this in HW 4!

14

Longest Common Subsequence

ÅSubsequence:
ÅBDFH is a subsequence of ABCDEFGH

ÅIf X and Y are sequences, a common subsequence
is a sequence which is a subsequence of both.
ÅBDFH is a common subsequence of ABCDEFGH and of

ABDFGHI

ÅA longest common subsequenceΧ
ÅΧis a common subsequence that is longest.

ÅThe longest common subsequence of ABCDEFGH and
ABDFGHI is ABDFGH.

You saw this in HW 4!

15

We sometimes want to find these

ÅApplications in bioinformatics

ÅThe unix command diff

ÅMerging in version control
Åsvn, git, etcΧ

ά{ƻƳŜǘƛƳŜǎέ ƛǎ ŀ ƧƻƪŜΗ

16

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the length
of the longest common subsequence.

ÅStep 3: Use dynamic programming to find the
length of the longest common subsequence.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

17

Step 1: Optimal substructure

A C G G T

A C G C T T A Y

X

Prefixes:

Notation: denote this prefix ACGC by Y4

ÅOur sub-ǇǊƻōƭŜƳǎ ǿƛƭƭ ōŜ ŦƛƴŘƛƴƎ [/{Ωǎ ƻŦ ǇǊŜŦƛȄŜǎ ǘƻ · ŀƴŘ ¸Φ
ÅLet C[i,j] = length_of_LCS(Xi, Yj)

18

Optimal substructure ctd.

ÅSubproblem:
ÅŦƛƴŘƛƴƎ [/{Ωǎ ƻŦ ǇǊŜŦƛȄŜǎ ƻŦ · ŀƴŘ ¸Φ

ÅWhy is this a good choice?
Å¢ƘŜǊŜΩǎ ǎƻƳŜ ǊŜƭŀǘƛƻƴǎƘƛǇ ōŜǘǿŜŜƴ [/{Ωǎ ƻŦ ǇǊŜŦƛȄŜǎ ŀƴŘ
[/{Ωǎ ƻŦ ǘƘŜ ǿƘƻƭŜ ǘƘƛƴƎǎΦ

ÅThese subproblems overlap a lot.

To see this formally, on toΧ

19

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the length
of the longest common subsequence.

ÅStep 3: Use dynamic programming to find the
length of the longest common subsequence.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

20

Two cases

A C G G A

A C G C T T A Yj

Xi

ÅOur sub-problems will be finding
[/{Ωǎ ƻŦ ǇǊŜŦƛȄŜǎ ǘƻ · ŀƴŘ ¸Φ
ÅLet C[i,j] = length_of_LCS(Xi, Yj)

Case 1: X[i] = Y[j]
i

j

These are
the same

ÅThen C[i,j] = 1 + C[i-1,j-1].

Åbecause LCS(Xi,Yj) = LCS(Xi-1,Yj-1) followed by A

21

Two cases

A C G G T

A C G C T T A Yj

Xi

ÅOur sub-problems will be finding
[/{Ωǎ ƻŦ ǇǊŜŦƛȄŜǎ ǘƻ · ŀƴŘ ¸Φ
ÅLet C[i,j] = length_of_LCS(Xi, Yj)

Case 2: X[i] != Y[j]
i

j

These are
not the
same

ÅThen C[i,j] = max{ C[i-1,j], C[i,j-1] }.
Åeither LCS(Xi,Yj) = LCS(Xi-1,Yj) and is not involved,

Åor LCS(Xi,Yj) = LCS(Xi,Yj-1) and is not involved,

ÅόƳŀȅōŜ ōƻǘƘ ŀǊŜ ƴƻǘ ƛƴǾƻƭǾŜŘΣ ǘƘŀǘΩǎ ŎƻǾŜǊŜŘ ōȅ ǘƘŜ άƻǊέύΦ

A

T

22

Recursive formulation
of the optimal solution

ÅὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

A C G G A

A C G C T T A Yj

Xi
A C G G T

A C G C T T A Yj

Xi

Case 1 Case 2

A C G C T T A Yj

X0

Case 0

23

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the length
of the longest common subsequence.

ÅStep 3: Use dynamic programming to find the
length of the longest common subsequence.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

24

LCS DP OMG BBQ

ÅLCS(X, Y):
ÅC[i,0] = C[0,j] = 0 for all i = 1,Χ,m, j=1,Χn.

ÅFor i = 1,Χ,m and j = 1,Χ,n:

ÅIf X[i] = Y[j]:

ÅC[i,j] = C[i-1,j-1] + 1

ÅElse:

ÅC[i,j] = max{ C[i,j-1], C[i-1,j] }

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

25

Example
A C G G A

A C T G Y

X

A

C

G

G

A

A C T G

X

Y

0 0 0 0

0

0

0

0

0

0

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

26

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T G Y

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

So the LCM of X
and Y has length 3.

27

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the length
of the longest common subsequence.

ÅStep 3: Use dynamic programming to find the
length of the longest common subsequence.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

28

Example
A C G G A

A C T G Y

X

A

C

G

G

A

A C T G

X

Y

0 0 0 0

0

0

0

0

0

0

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

29

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T G Y

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

30

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T G Y

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ
we can work backwards.

31

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T G Y

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ
we can work backwards.

That 3 must have come
from the 3 above it.

32

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T G Y

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ
we can work backwards.

This 3 came from that 2 ς
we found a match!

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ
we can work backwards.

ÅA diagonal jump means
that we found an element
of the LCS!

33

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T G Y

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ
we can work backwards.

ÅA diagonal jump means
that we found an element
of the LCS!

G

That 2 may as well
have come from
this other 2.

34

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T G Y

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ
we can work backwards.

ÅA diagonal jump means
that we found an element
of the LCS!

G

35

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T G Y

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ
we can work backwards.

ÅA diagonal jump means
that we found an element
of the LCS!

G C

36

0 0 0 0

0

0

0

0

0

0

Example
A C G G A

A C T G Y

X

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÅhƴŎŜ ǿŜΩǾŜ ŦƛƭƭŜŘ ǘƘƛǎ ƛƴΣ
we can work backwards.

ÅA diagonal jump means
that we found an element
of the LCS!

G C A

This is the LCS!

37

0 0 0 0

0

0

0

0

0

0

Another way of seeing the same thing:

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 2

0 1 2 2

A

C

G

G

A

A C T G

X

Y

0

1

2

3

3

0 1 2 2 3

ὅὭȟὮ

π ÉÆ Ὥ π ÏÒ Ὦ π

ὅὭ ρȟὮ ρ ρ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

ÍÁØ ὅὭȟὮ ρȟὅὭ ρȟὮ ÉÆ ὢὭ ὣὮ ÁÎÄ ὭȟὮ π

Finding length of shortest path
vs

Actually finding the shortest path
(just like your HW!)

G C A

This is the LCS!

38

Finding an LCS

ÅSee lecture notes for pseudocode

ÅTakes time O(mn) to fill the table

ÅTakes time O(n + m) on top of that to recover the LCS
ÅWe walk up and left in an n-by-m array

ÅWe can only do that for n + m steps.

ÅAltogether, we can find LCS(X,Y) in time O(mn).

39

Time and Space complexity

ÅIf we are only interested in the length of the LCS:
ÅSince we go across the table one-row-at-a-time, we can only

keep two rows if we want.

ÅIf we want to recover the LCS, we need to keep the whole
table.

ÅCan we do better than ὕάὲ time?
ÅA bit better.
ÅBy a log factor or so.

ÅBut doing much better (e.g. ὕάὲȢ) is an open problem!
ÅIf you can do it let me know :D

40

What have we learned?

ÅWe can find LCS(X,Y) in time O(nm)
Åif |Y|=n, |X|=m

ÅWe went through the steps of coming up with a
dynamic programming algorithm.
ÅWe kept a 2-dimensional table, breaking down the

problem by decrementing the length of X and Y.

41

Example 2: Knapsack Problem

ÅWe have n items with weights and values:

ÅAnd we have a knapsack:
Åit can only carry so much weight:

Weight:

Value:

6 2 4 3 11

20 8 14 35 13

Item:

Capacity: 10

42

ÅUnbounded Knapsack:
ÅSuppose I have infinite copies of all of the items.

Å²ƘŀǘΩǎ ǘƘŜ most valuable way to fill the knapsack?

Å0/1 Knapsack:
ÅSuppose I have only one copy of each item.

Å²ƘŀǘΩǎ ǘƘŜ most valuable way to fill the knapsack?

Weight:

Value:

6 2 4 3 11

20 8 14 35 13

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 35

43

Some notation

Capacity: W

Weight:

Value:

w1
v1

Item:

w2 w3 wn

v2 v3 vn

Χ

44

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

45

Optimal substructure

ÅSub-problems:
ÅUnbounded Knapsack with a smaller knapsack.

First solve the
problem for
small knapsacks

Then larger
knapsacks

Then larger
knapsacks

46

Optimal substructure
ÅSuppose this is an optimal solution for capacity x:

ÅThen this optimal for capacity x - wi:
Capacity x
Value V

Weight wi

Value vi

Capacity x ς wi

Value V - vi

If I could do better than the second solution,
then adding a turtle to that improvement
would improve the first solution.

item i

47

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

48

ÅLet K[x] be the optimal value for capacity x.

K[x] = maxi { + }

K[x] =

Recursive relationship

The maximum is over
all i so that ύὭ ὼȢ

Optimal way to
fill the smaller
knapsack

The value of
item i.

Think-Pair-Share!

49

ÅLet K[x] be the optimal value for capacity x.

K[x] = maxi { + }

K[x] = maxi { K[x ς wi] + vi }

Å(And K[x] = 0 if the maximum is empty).
ÅThat is, if there are no i so that ύὭ ὼ

Recursive relationship

The maximum is over
all i so that ύὭ ὼȢ

Optimal way to
fill the smaller
knapsack

The value of
item i.

50

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

51

Let’s write a bottom-up DP algorithm

ÅUnboundedKnapsack(W, n, weights, values):
ÅK[0] = 0

Åfor x = 1, Χ, W:

ÅK[x] = 0

Åfor i = 1, Χ, n:

Åif ύ ὼȡ

Åὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ

Åreturn K[W]

Running time: O(nW)

Why does this work?
Because our recursive relationship makes sense. = maxi { K[x ς wi] + vi }

K[x] = maxi { + }

52

Can we do better?

ÅWriting down W takes log(W) bits.

ÅWriting down all n weights takes at most nlog(W) bits.

ÅInput size: nlog(W).
ÅMaybe we could have an algorithm that runs in time

O(nlog(W)) instead of O(nW)?

ÅOr even O(n1000000 log1000000(W))?

ÅOpen problem!
Å(But probably the answer is noΧotherwise P = NP)

53

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

54

Let’s write a bottom-up DP algorithm

ÅUnboundedKnapsack(W, n, weights, values):
ÅK[0] = 0

Åfor x = 1, Χ, W:

ÅK[x] = 0

Åfor i = 1, Χ, n:

Åif ύ ὼȡ

Åὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ

Åreturn K[W]

 = maxi { K[x ς wi] + vi }

K[x] = maxi { + }

55

Let’s write a bottom-up DP algorithm

ÅUnboundedKnapsack(W, n, weights, values):
ÅK[0] = 0
ÅITEMS[0] = ɲ
Åfor x = 1, Χ, W:
ÅK[x] = 0
Åfor i = 1, Χ, n:
Åif ύ ὼȡ

Åὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ
ÅIf K[x] was updated:
ÅITEMS[x] = ITEMS[x ς wi] ᷾{ item i }

Åreturn ITEMS[W]

 = maxi { K[x ς wi] + vi }

K[x] = maxi { + }

56

Example

ÅUnboundedKnapsack(W, n, weights, values):
Å K[0] = 0
Å ITEMS[0] = ɲ
Å for x = 1, Χ, W:

Å K[x] = 0
Å for i = 1, Χ, n:

Å if ύ ὼȡ

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ

Å If K[x] was updated:
Å ITEMS[x] = ITEMS[x ς wi] ᷾{ item i }

Å return ITEMS[W] 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

57

Example

ÅUnboundedKnapsack(W, n, weights, values):
Å K[0] = 0
Å ITEMS[0] = ɲ
Å for x = 1, Χ, W:

Å K[x] = 0
Å for i = 1, Χ, n:

Å if ύ ὼȡ

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ

Å If K[x] was updated:
Å ITEMS[x] = ITEMS[x ς wi] ᷾{ item i }

Å return ITEMS[W] 0 1

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[1] = ITEMS[0] +

58

Example

ÅUnboundedKnapsack(W, n, weights, values):
Å K[0] = 0
Å ITEMS[0] = ɲ
Å for x = 1, Χ, W:

Å K[x] = 0
Å for i = 1, Χ, n:

Å if ύ ὼȡ

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ

Å If K[x] was updated:
Å ITEMS[x] = ITEMS[x ς wi] ᷾{ item i }

Å return ITEMS[W] 0 1 2

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[2] = ITEMS[1] +

59

Example

ÅUnboundedKnapsack(W, n, weights, values):
Å K[0] = 0
Å ITEMS[0] = ɲ
Å for x = 1, Χ, W:

Å K[x] = 0
Å for i = 1, Χ, n:

Å if ύ ὼȡ

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ

Å If K[x] was updated:
Å ITEMS[x] = ITEMS[x ς wi] ᷾{ item i }

Å return ITEMS[W] 0 1 4

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[2] = ITEMS[0] +

60

Example

ÅUnboundedKnapsack(W, n, weights, values):
Å K[0] = 0
Å ITEMS[0] = ɲ
Å for x = 1, Χ, W:

Å K[x] = 0
Å for i = 1, Χ, n:

Å if ύ ὼȡ

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ

Å If K[x] was updated:
Å ITEMS[x] = ITEMS[x ς wi] ᷾{ item i }

Å return ITEMS[W] 0 1 4 5

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[3] = ITEMS[2] +

61

Example

ÅUnboundedKnapsack(W, n, weights, values):
Å K[0] = 0
Å ITEMS[0] = ɲ
Å for x = 1, Χ, W:

Å K[x] = 0
Å for i = 1, Χ, n:

Å if ύ ὼȡ

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ

Å If K[x] was updated:
Å ITEMS[x] = ITEMS[x ς wi] ᷾{ item i }

Å return ITEMS[W] 0 1 4 6

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[3] = ITEMS[0] +

62

Example

ÅUnboundedKnapsack(W, n, weights, values):
Å K[0] = 0
Å ITEMS[0] = ɲ
Å for x = 1, Χ, W:

Å K[x] = 0
Å for i = 1, Χ, n:

Å if ύ ὼȡ

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ

Å If K[x] was updated:
Å ITEMS[x] = ITEMS[x ς wi] ᷾{ item i }

Å return ITEMS[W] 0 1 4 6 7

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[4] = ITEMS[3] +

63

Example

ÅUnboundedKnapsack(W, n, weights, values):
Å K[0] = 0
Å ITEMS[0] = ɲ
Å for x = 1, Χ, W:

Å K[x] = 0
Å for i = 1, Χ, n:

Å if ύ ὼȡ

Å ὑὼ ÍÁØ ὑὼȟὑὼ ύ ὺ

Å If K[x] was updated:
Å ITEMS[x] = ITEMS[x ς wi] ᷾{ item i }

Å return ITEMS[W] 0 1 4 6 8

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 4

K

IT
E

M
S

0 1 2 3 4

ITEMS[4] = ITEMS[2] +

64

What have we learned?

ÅWe can solve unbounded knapsack in time O(nW).
ÅIf there are n items and our knapsack has capacity W.

ÅWe again went through the steps to create DP
solution:
ÅWe kept a one-dimensional table, creating smaller

problems by making the knapsack smaller.

65

ÅUnbounded Knapsack:
ÅSuppose I have infinite copies of all of the items.

Å²ƘŀǘΩǎ ǘƘŜ most valuable way to fill the knapsack?

Å0/1 Knapsack:
ÅSuppose I have only one copy of each item.

Å²ƘŀǘΩǎ ǘƘŜ most valuable way to fill the knapsack?

Weight:

Value:

6 2 4 3 11

20 8 14 35 13

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 35

66

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

67

Optimal substructure: try 1

ÅSub-problems:
ÅUnbounded Knapsack with a smaller knapsack.

First solve the
problem for
small knapsacks

Then larger
knapsacks

Then larger
knapsacks

68

This won’t quite work…

ÅWe are only allowed one copy of each item.

ÅThe sub-ǇǊƻōƭŜƳ ƴŜŜŘǎ ǘƻ άƪƴƻǿέ ǿƘŀǘ ƛǘŜƳǎ
ǿŜΩǾŜ ǳǎŜŘ ŀƴŘ ǿƘŀǘ ǿŜ ƘŀǾŜƴΩǘΦ

L ŎŀƴΩǘ ǳǎŜ
any turtlesΧ

69

Optimal substructure: try 2
ÅSub-problems:

Think-Pair-Share!

70

Optimal substructure: try 2
ÅSub-problems:
Å0/1 Knapsack with fewer items.

First solve the
problem with
few items

Then yet
more
items

Then more
items

²ŜΩƭƭ ǎǘƛƭƭ ƛƴŎǊŜŀǎŜ ǘƘŜ ǎƛȊŜ ƻŦ the knapsacks.

71

Our sub-problems:

ÅIndexed by x and j

Capacity x First j items

72

Two cases

ÅCase 1: Optimal solution for j items does not use item j.

ÅCase 2: Optimal solution for j items does use item j.

item j

First j items Capacity x

73

Two cases
ÅCase 1: Optimal solution for j items does not use item j.

ÅThen this is an optimal solution for j-1 items:

Capacity x
Value V
Use only the first j items

Capacity x

Value V
Use only the first j-1 items.

item j

First j items

First j-1 items

74

Two cases
ÅCase 2: Optimal solution for j items uses item j.

ÅThen this is an optimal solution for j-1 items and a
smaller knapsack:

Capacity x
Value V
Use only the first j items

Weight wj

Value vj

Capacity x ς wi

Value V ς vi
Use only the first j-1 items.

item j

First j items

First j-1 items

75

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

76

Recursive relationship

ÅLet K[x,j] be the optimal value for:
Åcapacity x,

Åwith j items.

K[x,j] = max{ K[x, j-1] , K[x ς wj, j-1] + vj }

Å(And K[x,0] = 0 and K[0,j] = 0).

Case 1 Case 2

77

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

78

Bottom-up DP algorithm

ÅZero-One-Knapsack(W, n, w, v):

ÅK[x,0] = 0 for all x = 0,Χ,W

ÅK[0,i] = 0 for all i = 0,Χ,n

Åfor x = 1,Χ,W:

Åfor j = 1,Χ,n:

ÅK[x,j] = K[x, j-1]

Åif wj x:

ÅK[x,j] = max{ K[x,j], K[x ς wj, j-1] + vj }

Åreturn K[W,n]

Case 1

Case 2

Running time O(nW)

79

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

80

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 0

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

81

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

82

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0 1

0

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

83

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

84

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 0

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

85

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

86

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 1

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

87

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 4

0 1

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

88

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

89

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 0

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

90

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

91

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 1

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

92

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

93

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 5

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

94

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 6

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

current
entry

relevant
previous entry

95

0 0 0 0

Weight:

Value:

1 2 3

1 4 6

Item:

Capacity: 3

Example

0 1 1 1

0 1 4 5

0 1 4 6

j=0

j=1

j=2

j=3

x=0 x=1 x=2 x=3

Å Zero-One-Knapsack(W, n, w, v):
ÅK[x,0] = 0 for all x = 0,Χ,W
ÅK[0,i] = 0 for all i = 0,Χ,n
Å for x = 1,Χ,W:

Å for j = 1,Χ,n:
ÅK[x,j] = K[x, j-1]
Å if wj x:

Å K[x,j] = max{ K[x,j],
 K[x ς wj, j-1] + vj }

Å return K[W,n]

So the optimal solution is to
put one watermelon in your
knapsack!

current
entry

relevant
previous entry

96

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

You do this one!
(We did it on the slide in the previous
example, just not in the pseudocode!)

97

What have we learned?

ÅWe can solve 0/1 knapsack in time O(nW).
ÅIf there are n items and our knapsack has capacity W.

ÅWe again went through the steps to create DP
solution:
ÅWe kept a two-dimensional table, creating smaller

problems by restricting the set of allowable items.

98

Question
ÅHow did we know which substructure to use in

which variant of knapsack?

vs.

This one made sense for
unbounded knapsack
ōŜŎŀǳǎŜ ƛǘ ŘƻŜǎƴΩǘ ƘŀǾŜ

any memory of what
items have been used.

In 0/1 knapsack, we
can only use each item
once, so it makes sense
to leave out one item

at a time.

Operational Answer: try some stuff, see what works!

Answer in retrospect:

99

Example 3: Independent Set
if we still have time

2

2

3

5

1

2

1

ÅGiven a graph with
weights on the
verticesΧ

ÅWhat is the

independent set with
the largest weight?

An independent set
is a set of vertices
so that no pair has
an edge between
them.

5

1

2

1

100

Actually this problem is NP-complete.
So we are unlikely to find an efficient algorithm

ÅBut if we also assume that the graph is a treeΧ

5 2

1

3

3

2

2

5

5

3
5 3

2

2

5

5

3

Problem:
 find a maximal independent set in a tree (with vertex weights).

A tree is a
connected

graph with no
cycles.

101

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution

ÅStep 3: Use dynamic programming to find the value
of the optimal solution

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

102

Optimal substructure
ÅSubtrees are a natural candidate.

ÅThere are two cases:
1. The root of this tree is in a not in

a maximal independent set.

2. Or it is.

103

Case 1:
the root is not in an maximal independent set

ÅUse the optimal solution
from these smaller problems.

104

Case 2:
the root is in an maximal independent set

Å¢ƘŜƴ ƛǘǎ ŎƘƛƭŘǊŜƴ ŎŀƴΩǘ ōŜΦ

ÅBelow that, use the optimal
solution from these smaller
subproblems.

105

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

106

Recursive formulation: try 1

ÅLet A[u] be the weight of a maximal independent set
in the tree rooted at u.

Åὃό

 ÍÁØ

В ὃὺ
ᶰȢÃÈÉÌÄÒÅÎ

×ÅÉÇÈÔό В ὃὺ

ᶰȢÇÒÁÎÄÃÈÉÌÄÒÅÎ

When we implement this, how do
we keep track of this term?

107

Recursive formulation: try 2
Keep two arrays!

ÅLet A[u] be the weight of a maximal independent set
in the tree rooted at u.

ÅLet B[u] = В ὃὺ
ᶰȢÃÈÉÌÄÒÅÎ

Åὃό ÍÁØ

В ὃὺ
ᶰȢÃÈÉÌÄÒÅÎ

×ÅÉÇÈÔό В ὄὺ

ᶰȢÃÈÉÌÄÒÅÎ

108

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

109

A top-down DP algorithm

ÅMIS_subtree(u):
Åif u is a leaf:
ÅA[u] = weight(u)

ÅB[u] = 0

Åelse:
Åfor v in u.children:
ÅMIS_subtree(v)

Åὃό ÍÁØ В ὃὺ
ᶰȢÃÈÉÌÄÒÅÎȟ×ÅÉÇÈÔό В ὄὺ

ᶰȢÃÈÉÌÄÒÅÎ }

Å"ό В ὃὺ
ᶰȢÃÈÉÌÄÒÅÎ

ÅMIS(T):
ÅMIS_subtree(T.root)

Åreturn A[T.root]

Running time?
ÅWe visit each vertex once, and at

every vertex we do O(1) work:
Å Make a recursive call
Å look stuff up in tables

Å Running time is O(|V|)

110

Why is this different from divide-and-conquer?
That’s always worked for us with tree problems before…

ÅMIS_subtree(u):
Åif u is a leaf:
Åreturn weight(u)

Åelse:
Åfor v in u.children:
ÅMIS_subtree(v)

Åreturn ÍÁØ В -)3ͅÓÕÂÔÒÅÅὺ
ᶰȢÃÈÉÌÄÒÅÎ ȟ

 ×ÅÉÇÈÔό В -)3ͅÓÕÂÔÒÅÅὺ
ᶰȢÇÒÁÎÄÃÈÉÌÄÒÅÎ }

ÅMIS(T):
Åreturn MIS_subtree(T.root)

111

Why is this different from divide-and-conquer?
That’s always worked for us with tree problems before…

How often would we ask
about the subtree rooted
here?

Once for this node
and once for this one.

But we then ask
about this node
twice, here and here.

This will blow up exponentially
without using dynamic
programming to take advantage
of overlapping subproblems.

112

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

You do this one!

113

What have we learned?

ÅWe can find maximal independent sets in trees in
time O(|V|) using dynamic programming!

ÅFor this example, it was natural to implement our
DP algorithm in a top-down way.

114

Recap

ÅToday we saw examples of how to come up with
dynamic programming algorithms.
ÅLongest Common Subsequence

ÅKnapsack two ways

Å(If time) maximal independent set in trees.

ÅThere is a recipe for dynamic programming
algorithms.

115

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

116

Recap

ÅToday we saw examples of how to come up with
dynamic programming algorithms.
ÅLongest Common Subsequence

ÅKnapsack two ways

Å(If time) maximal independent set in trees.

ÅThere is a recipe for dynamic programming
algorithms.

ÅSometimes coming up with the right substructure
takes some creativity

117

Before next time
ÅReview session:

 Sunday 11/4, 4-6 PM,
 Main Quad 420-040

Å{ǘǳŘȅ όάǿƻǊƪ ǎƳŀǊǘέύ

ÅGet some rest the night before

Next time

ÅMidterm 2
in Cubberley Auditorium

118

Midterm 2 plan

1. A few short questions (20 pts ~ 15 min)

2. Design+analyze an algorithm (40 pts ~ 30 min)

3. Design+analyze another algorithm (40 pts ~ 30 min)

Study resources:

(This is just my guess!)

Practice
Problems

Review
session

HW, Sections,
Lecture notes Office

Hours

Piazza

Classmates

Textbooks

