Lecture 13

Greedy algorithms!

Announcements

Al am not Prof. Rubinstein
AHe will be back next week
AMy name is Mary Wootters

ANew HW posted today!

More detailed schedule on the websit

Roadmap

Asymptotic
Analysis

Divide and
conguer

We are ere \ MIDTERMZ _Dynamic
7 Programming

Greedy
/ Algs \ Graphs!
lc\)ﬂngeSt ShO
) rte
ax st
and Min_.. 9 \ec“.u"es The ¥

V4

®

&
Future!) %

This week

AGreedy algorithms

Greedy algorithms

AMake choices onat-a-time.
ANever look back.
AHope for the best.

Today

AOne example of greedy algorithnthat does not
work:

AKnapsack again

AThree examples afreedy algorithmshat do work:
A Activity Selection
AJob Scheduling
AHuffman Coding

Non-example

AUnbounded Knapsack.

2 Pr
ltem: h ¥ b J) 5
| _ Weight: 6 E 4 3
$ Capacity: 10 Value: 20 3 14 13

AUnbounded Knapsack:
ASuppose | havifinite copiesof all of the items.
AWh a t ' rsostwatueble way to fill the knaps#k

J J Total weight: 10
/ / = = Total value: 42

Ad D NI algotitim for unbounded knapsack:

ATacos have the best Value/Weight ratio!
AKeep grabbing tacos!

g 7 Total weight: 9
J) J) {) Total value: 39

Example where greedy works

Activity selection

You can only do one activity at a time, and you wa
maximize the number of activities that you do.

What to choose?

Underwaterbasket

CS110 weaving class CS161 study
Class group Swimming
lessons
) , Theory Lunch
Combinatorics

time

Activity selection

Alnput;
AActivities g, &, .., a, ; ;
AStarttimes g s, .., S, —me
AFinish times f,, ... f. S T
] What greedy algorithm
AOUtPUt- would you use?

AHow many activities can you do today? /

Thinkpair-share!

Greedy Algorithm

- a“

time

APick activity you can add with the smallest finish time.
ARepeat.

Greedy Algorithm

- a“

time

APick activity you can add with the smallest finish time.
ARepeat.

Greedy Algorithm

- a“

time

APick activity you can add with the smallest finish time.
ARepeat.

Greedy Algorithm

- a“

time

APick activity you can add with the smallest finish time.
ARepeat.

Greedy Algorithm

- a“

time

APick activity you can add with the smallest finish time.
ARepeat.

Greedy Algorithm

- a“

time

APick activity you can add with the smallest finish time.
ARepeat.

Greedy Algorithm

- a“

time

APick activity you can add with the smallest finish time.
ARepeat.

Greedy Algorithm

- a“

time

APick activity you can add with the smallest finish time.
ARepeat.

At least it’s fast

ARunning time:
AO(n) if the activities are already sorted by finish time.
A Otherwise Oflog(n)) if you have to sort them first.

What makes it greedy?

AAt each step in the algorithm, make a choice.
AHey, | can increase my activity set by one,
AAnd leave lots of room for future choices,
ALet’' s do that and hope for

AHopethat at the end of the day, this results in a
globally optimal solution.

Three Questions

1. Does this greedy algorithm for activity selection work’
AYes. (We will see why in a moment ..

2. In general, when are greedy algorithms a good idea?

AWhen the problem exhibits especially nice optimal
substructure.

3. The approach 1 s often..

AWhy are we getting to it now, in Week 87
AProving that greedy algorithms

Back to Activity Selection

- a“

time

APick activity you can add with the smallest finish time.
ARepeat.

Why does it work?

AWhenever we make a choicé,S R2 Yy QiU NIz
optimal solution.

Our next There’s some opt
choice would contains our next choice

be this one;:

Assuming we can prove that

AWe never rule out an optimal solution
AAt the end of the algor
ASo it must be optimal.

Luckythe Lackadaisical Lemur

To prove we never rule out an optimal solution:

Optimal Substructure

ASubproblem :

A Solve the activity selection problem after Activiifinishes.
AA[i] = Number of activities you can do after Activifinishes.

Claim

ALeta, have the smallest finish time among activities
do-able afterg, finishes.
A[K]: how many

AThen Al] = A[k] + 1. activities can | do here?
\

A

time

[
S
\

>
J

I

All]: how many activities can | do here?

AlLeta,have the smallest
Proof finish time among activities
do-able aftera finishes.

AThen Al = A[K] + 1.

A4

AClearly A] A[K] +1

A Since we have a solution with A[k] + 1 activities.

AlLeta,have the smallest

Proof finish time among activities

do-able aftera, finishes.
AThen Al = A[K] + 1.

A4

ANow we’ |il AKlrdw A]
ASay t her e’ s a n subppblanitodt
doesnagt use
ASaya]- ends first aftera, in that better solution.
A Removes, and adda, from the better solution.
A Now you have a solution of the same size
but it Includesa, so it must have size Alk] + 1.

AlLeta,have the smallest
Proof finish time among activities
do-able aftera finishes.

AThen Al = A[K] + 1.

A4

AClearly A] A[K] +1

A Since we have a solution with A[k] + 1 activities.
AAnd A[] A[K] +1

A We just showed that.
ASo Al A[k]+1

We never rule out an optimal solution

ASuppose that after adding, there is an optimal solution:
A X activities done and Bfactivities left.
A X + A activities total.

AThen we add the next thing,

AA[K] = A] - 1 (by the claim)

ANow there is some solution extending this one so that:
A X+1 activities done and M- 1 activities left.

A X + AJ] activities total.
A Still optimal.

i |
oy SIS gy e
e ==
I

>
l time

So the algorithm is correct

AWe never rule out an optimal solution
AAt the end of the algor
ASo it must be optimal.

Luckythe Lackadaisical Lemur

So the algorithm is correct

i i Plucky thePedantic Penguin
Alnductive Hypothesis: d °

A After adding thet ’ thirfg, there is an optimal solution that
extends the current solution.

ABase case:
A After adding zero activities, there is an optimal solution

extending that.
A| ducti tep: Formally, what do WEA m
NAuctive step. need to show here?

ATO D(_) V V

AConclusion: Thinkpair-share!

A After adding the last activity, there is an optimal solution that
extends the current solution.

A The current solution is the only solution that extends the
current solution.

A So the current solution is optimal.

Need to show
in the inductive step

ASuppose that after adding the ’ thidg @), there
IS an optimal solution extending the current
solution.

AThen after adding the next thingj, there is still
an optimal solution extending the current solution.

ACAka, we don’t rule out

We just did that!

So the algorithm is correct

i i Plucky thePedantic Penguin
Alnductive Hypothesis: d °

A After adding thet ’ thirfg, there is an optimal solution that
extends the current solution.

ABase case:

A After adding zero activities, there is an optimal solution
extending that.

Alnductive step:
ATO DO

AConclusion:

A After adding the last activity, there is an optimal solution that
extends the current solution.

A The current solution is the only solution that extends the
current solution.

A So the current solution is optimal.

Common strategy
for greedy algorithms

AMake aseries of choices

AShow that, at each step, our choige2 v Q 0 NIzt
an optimal solutionat the end of the day.

AAfter we’'ve made all ou
out an optimal solutionso we must have found

one.

Common strategy (formally)
for greedy algorithms

Alnductive Hypothesis:
AAfter greedy choice t, vyol

ABase case:
ASuccess is possible before you make any choices.

Alnductive step:
ATODO

AConclusion:

Alf you reach the end of tF
out success then you must have succeeded.

Relationship to other sorts of algorithms

AThis algorithm is most naturally viewed as a

greedy algorithm.
A Make greedy choices
A Never rule out success
AWe could also view it as a dividad-

conquer algorithm..
AWi t hout the “dividing?”
AWe could also view i:
A Take advantage of optimal stdructure and fill

In a table.
ASee hidden slides for

SLIDE SKIPPED IN CL{

More detail: Greedy vs. DP

A Just for pedagogy!

A(CThis isn’t the best w
selection).

SLIDE SKIPPED IN CL{

Recipe for applying Dynamic Programming

AStep 1:ldentify optimal substructure.-

AStep 2:Find a for the value of
the optimal solution.

AStep 3:Use dynamic programmirtg find the value
of the optimal solution.

AStep 4:f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

AStep 5:1f neededcode this up like a reasonable
person.

SLIDE SKIPPED IN CL{

Optimal substructure

ASubproblemi:

AA[i] = number of activities you can do after Activifinishes.

SLIDE SKIPPED IN CL{

Recipe for applying Dynamic Programming

AStep 1:ldentify optimal substructure. [Q

AStep 2:Find a for the value of
the optimal solution.

AStep 3:Use dynamic programmirtg find the value
of the optimal solution.

AStep 4:f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

AStep 5:1f neededcode this up like a reasonable
person.

SLIDE SKIPPED IN CL{

We did that already

ALeta, have the smallest finish time among activities
do-able afterg, finishes.

AThen A = A[K] + 1.

A[K]: how many
activities can | do here?

)

\
BN erwe
_

time

n

All]l: how many activities can | do here?

/

SLIDE SKIPPED IN CL{

Recipe for applying Dynamic Programming

AStep 1:ldentify optimal substructure.

AStep 2:Find a for the value of
the optimal solution. [?

AStep 3:Use dynamic programmirtg find the value
of the optimal solution.

AStep 4:f needed, keep track of some additional
Info so that the algorithm from Step 3 cénd the
actual solution.

AStep 5:1f neededcode this up like a reasonable
person.

SLIDE SKIPPED IN CLA

Top-down DP

Alnitialize a global array A to [NoneNone]
AMake a “dummy” act-l.vity t ha

Adef findNumActivitie$):
Alf Afi] I= None:
AReturnAl[f]

ALet Activity k be the activity | can fit in my schedule after
Activityi with the smallest finish time.

Alf there is no such activity k, setipg 0
AElse Afi] =findNumActivitiegk) + 1
AReturnAl[f]
AReturnfindNumActivitie§0)
This Is a terrible way to write this

The only thing that matters here is that i
highlighted lines are our recursive relationst

SLIDE SKIPPED IN CLA

Recipe for applying Dynamic Programming

AStep 1:ldentify optimal substructure.

AStep 2:Find a for the value of
the optimal solution.

AStep 3:Use dynamic programmirtg find the value

of the optimal solution. [?

AStep 4:If needed, keep track of some additiona
Info so that the algorithm from Step 3 cénd the
actual solution.

AStep 5:1f neededcode this up like a reasonable
person.

SLIDE SKIPPED IN CLA

Top-down DP

A Initialize a global array A to [NoneNone]
A Initialize a global array Next to [None, None]
AMake a “dummy” act4dl.vity that e

Adef findNumActivitie$):
Alf Afi] '= None:
A Return A[f]

A Let Activity k be the activitty | can fit in my schedule after
Activityi with the smallest finish time.

A If there is no such activity k, setilnE O
A Else Ali] =findNumActivitiegk) + land Next[i] = k
A ReturnA[f]

A findNumActivitie$0)
AStep through “Next” array to ¢

This Is a terrible way to write this
The only thing that matters here is that i
highlighted lines are our recursive relationst

SLIDE SKIPPED IN CLA

Let’s step through it.

- a“

time

AStart with the activity with the smallest finish time.

SLIDE SKIPPED IN CLA

Let’s step through it

- a“

time

ANow find the next activity still dable with the
smallest finish time, antecurseafter that.

SLIDE SKIPPED IN CLA

Let’s step through it

- a“

time

ANow find the next activity still dable with the
smallest finish time, antecurseafter that.

SLIDE SKIPPED IN CLA

Let’s step through it

- a“

time

ANow find the next activity still dable with the
smallest finish time, antecurseafter that.

SLIDE SKIPPED IN CLA

Let’s step through it
mm

time

ATadal

| t ’ s teexane*tas tge greedy solution!

*If you implement the topdown DP solution appropriately.

Sub-problem graph view

ADivideand-conquer:

Big problem

sub-problem sub-problem

sub-sub sub-sub- sub-sub sub-sub-
problem problem problem problem

Sub-problem graph view

ADynamic Programming:

Big problem

sub-problem sub-problem sub-problem

sub-sub
problem

Sub-problem graph view

AGreedy algorithms:

Big problem

sub-problem

Sub-problem graph view

AGreedy algorithms:

Big problem

A Not only is thereoptimal sub-structure:
A optimal solutions to a problem are made up
from optimal solutions of suiproblems

sub-problem

A but each problendepends on only one
sub-problem.

Three Questions

AYes.

2. In general, when are greedy algorithms a good idea?
AWnhen they exhibit especially nice optimal substructuf

1. Does t?greedy algorithm for activity selection work’

3. The" greapproach 1 s often..
AWhy are we getting to it now, in Week 8? /

A Proving that greedy algorithms work is often not so easy.

Let’s see a few more examples

Another example:

Scheduling

CS161 HW!

Call your parents!

Math HW!

Administrative stuff for your student club!

Econ HW!

Do laundry!
Meditate!

Practice musical instrument!

Read CLRS!

Have a social life!

Overcommitted
Stanford Student

Sleep!

Scheduling

An tasks
ATaski takest. hours

AEverything is already late!
AFor every hour that passes until task done, pay.c

10Ahours

| Cost:2 units per
CS161 HW! hour unt.i
Cost:3 units per
\

/

hour unt i | |t

8 hours

ACS161 HW, then Sleeposts10t 2 + (10 + 8)3 = 74 units
ASleep, then CS161 HWasts8t 3 + (10 + 8)2 = 60 units

Optimal substructure

AThis problem breaks up nicely into sptomblems:

Suppose this is theptimal schedule:

A: @Why?

Thinkpair-share

Optimal substructure

ASeems amenable to a greedy algorithm:

Take the best job first Then solve this problem

A then Bis better than when:
What does “best” ba @ DO G (G O

5 WA OO OO0 OO Od wa
0 & ®a
mean: & @
®

AOf these two jobs, which should we do first?

X hours

\
| Cost: units per

N

Job B Cost: wunits per
hour unti | i

\)

f
y hours What matters is the ratioj
. . Al D&EAT AU
ACost(A then B) = xt z + (X + yjw GEEBAEAO
ACost()=ytw + (X +y}z “Best” md
biggest ratio.

Lemma

AGiven jobs so thatobi takes timet, with costc,

AThere is an optimal schedule so that the first job is tt
one that maximizes the ratio/1

AProof:
ASay Job B maxi mizes this

Cal L, >=Col 1
A Switch A and B! Nothing else will change, and we showe4
t he previous sli de that

ARepeat until B is first.

Choose greedily:
Biggest cost/ ratio first

AJobi takes timet, with costc,

AThere is an optimal schedule so that the first job is
the one that maximizes the raticy

ASo if we choose jobs greedily according:to, we
never rule out success!

Greedy Scheduling Solution

AscheduleJobSJOBS):

ASort JOBS by the ratio:
An & _ATDBAI ABEAC
. « GEITRATEDABERAI 1T bl AOA

ASay thasorted JOB[is the job with thé ’ bighestr
AReturnsorted JOBS

The running time is @(og(n))

Now you can go about yogchedule
peacefully, in the optimal way

Formally, use induction!

SLIDE SKIPPED IN CLA\SS

A Inductive hypothesis
AThere is an optimal ordering so that the first t jobs are
sorted JOBH.

A Base case

AWhen t=0, thisreads: Ther e
the first O jJobs

AThat '.s true

A Inductive Step:

ABoils down tothere is an optimal ordering on
sorted JOHBE] so thatsorted JOBSY is first.

AThis follows from the Lemma.

A Conclusion:

AWhen t=n, thisreads: There i s an optin
the first n jobs aresorted JOBS”

Aaka, what we returned is an optimal ordering.

i an optin
e[]”

S
ar

What have we |learned?

AA greedy algorithnworks for scheduling

AThis followed the same outline as the previous examj
Aldentify optimal substructure:

AFind a way to make choicesthatz y Qi NMz S 2 d
solution.

A largest ratios first.

One more example
Huffman coding

Aeverydayenglishsentence

A 01100101 01110110 01100101 01110010 01111001 01100100 01100001
01111001 00100000 01100101 01101110 01100111 01101100 01101001
01110011 01101000 00100000 01110011 01100101 01101110 01110100
01100101 01101110 01100011 01100101

Agwertyui_opasdfg+hjklzxcv

A 01110001 01110111 01100101 01110010 01110100 01111001 01110101
01101001 01011111 01101111 01110000 01100001 01110011 01100100
01100110 01100111 00101011 01101000 01101010 01101011 01101100
01111010 01111000 01100011 01110110

ASCII is pretty wasteful. df

O n e m O re exa m p | e shows up so often, we should

have a more parsimonious way

Huffman codi Nng of representing it!

verydayenglishsentenc

01110110 01110010 01111001 01100100 01100001
01111001 00100000 01101110 01100111 01101100 01101001
01110011 01101000 00100000 01110017 01101110 01110100

01101110 0110001

Agwertyui_opasdfg+hjklzxcv

A 01110001 01110111 01100101 01110010 01110100 01111001 01110101
01101001 01011111 01101111 01110000 01100001 01110011 01100100
01100110 01100111 00101011 01101000 01101010 01101011 01101100
01111010 01111000 01100011 01110110

Suppose we have some
distribution on characters

0,14 —
0.12 —

0.1 -

0.08

0.08

0.04

0.0z

a b cde f ghi |k I mnopqgrs:tuwwxy Z

Suppose we have some For simplicy,

| et ’ s go

distribution on characters madeup example

Percentage

How to encode them as
efficiently as possible?

45

Letter

Try 0 A Every letter is assignedanary string

(like ASCII) of three bits.
Wasteful!
o A 110 and 111 are never used.
g 45 A We should have a shorter way of
S representing A.
)
o

000 001 010 011 100 101 Letter

Try 1 A Every letter is assignedbénary string
of one or two bits.
A The more frequent letters get the
shorter strings.
45 A Problem:
A Does 000 mean AAA or BA or AB?

Percentage

0 00 01 1 10 11 Letter

Confusinglree cpdefsi”x al
called “prefix co

Try 2: prefix-free coding

A Every letter is assignedbénary string.
A More frequent letters get shorter strings.

45 A No encoded string is parefix of any other.

10010101

Percentage

01 101 110 00 111 100 Letter

Confusinglree cpdefsi”x al
called “prefix co

Try 2: prefix-free coding

A Every letter is assignedbénary string.
A More frequent letters get shorter strings.

45 A No encoded string is parefix of any other.

10010101 F

Percentage

01 101 110 00 111 100 Letter

Confusinglree cpdefsi”x al
called “prefix co

Try 2: prefix-free coding

A Every letter is assignedbénary string.
A More frequent letters get shorter strings.

45 A No encoded string is parefix of any other.

10010101 FB

Percentage

01 101 110 00 111 100 Letter

Confusinglree cpdefsi”x al
called “prefix co

Try 2: prefix-free coding

Percentage

A Every letter is assignedbénary string.
A More frequent letters get shorter strings.
A No encoded string is refix of any other.

10010101 FBA

45

Questiornn What is the most
efficient wayto do prefixfree
coding?l. Thi s 1 sn’|t

01 101 110 00 111 100 Letter

A prefix-free code is a tree

B: 13 bel ow me

‘ makes up 13% of the
characters that ever appear.

1 0]

A: 45

00

F:5

As long as all the letters
show up as leaves, this 100 101 110 111
code isprefix-free.

How good is a tree?

A Imagine choosing a letter at random from the language.
A Not uniform, but according to our histogram!
A Thecost of a treeis the expected length of the encoding of that letter.

The depth in the
Cost = tree is the length
of the encoding
ANy R . 0 1
V(WItAADOE
P(x) is the
probability ’ ‘
of letter x
1
y 1 0

0 1

A: 45 D: 16

00 01 0

) C:12

100 101 110 111

Expected cost of encoding a letter with this tree:
(8 8) (8 8 8 8) 8

Question

AGiven a distributiorP on letters, find the lowest
cost tree, where

Al OOAA D(WTAADOE
P(x) is the The depth in the

probability tree is the length
of letter x of the encoding

Optimal sub-structure

ASuppose this is an optimal tree:

Then this is an
optimal tree on
fewer letters.

Otherwise, we could
change this sultree
and end up with a
better overall tree.

Greedy algorithm

AGreedily build sultrees from the bottom up.

AGreedy goal: less frequent letters should be further
down the tree.

Solution
greedily build subtrees, starting with the infrequent letters

Solution
greedily build subtrees, starting with the infrequent letters

Solution
greedily build subtrees, starting with the infrequent letters

Solution
greedily build subtrees, starting with the infrequent letters

Solution @ 1

greedily build suptrees,starting with the infrequent letters

Solution
greedily build subtrees, starting with the infrequent letters

Expected cost of encoding a lette
t 8

100 101

1110 1111

What exactly was the algorithm?

ACreate a node Iik for each letter/frequency
AThe key is the frequency (16 in this case)

ALet CURRENBe the list of all these nodes.

Awhile len(CURREN® 1:
AXand¥YN the nodes iINCURRENWith the smallest keys.
ACreate a new nod&with 7. key= X key+Y.key
ASet” left= X, Z.right=Y
AAddZto CURRENENd removeXandY

Areturn CURRENO]

Does it work?

AYes.

ASame strategy:

AShow that at each step, the choices we are making
g2y Qu |diloptinal otition.
ALemma:

A Suppose that x and y are the two ledistquent letters. Then
there is an optimal tree where x and y are siblings.

If x and y are the two leadtequent letters, there
I_e MIiMNd IS an optimal tree where x and y are siblings.

proof idea

ASay that an optimal tree looks like this:

é - Lowestlevel sibling
nodes: at least one of
them is neither x nory

AWhat happens to the cost if we swagor a?
Athe cost can’t |l ncrease; a w
just made its encoding shorter.

ARepea}t this logic until we get an optimal tree with x and
y as siblings
A The cost never increased so this tree is still optimal.

If x and y are the two leadtequent letters, there
I_e MIiMNd IS an optimal tree where x and y are siblings.

proof idea

ASay that an optimal tree looks like this:

‘ - Lowestlevel sibling
nodes: at least one of
them is neither x nory

AWhat happens to the cost if we swagor a?
Athe cost can’t |l ncrease; a w
just made its encoding shorter.

ARepea}t this logic until we get an optimal tree with x and
y as siblings.
A The cost never increased so this tree is still optimal.

Proof strategy

just like before

AShow that at each step, the choices we are making
g2y Qi IMadeptiehal Rotlzion.
ALemma:

ASuppose that x and y are the two ledistquent letters.
Then there is an optimal tree where x and y are siblings.

Proof strategy

just like before

AShow that at each step, the choices we are making
g2y Qi IMadeptiehal Rotlzion.
ALemma:

ASuppose that x and y are the two ledistquent letters.
Then there is an optimal tree where x and y are siblings.

7
w’n

¢KFOdQa Syz2dzaK
R2Yy Qi Nz S 2 dzi
the first step.
What about once we start
grouping stuff? 0

aKz2g Uf
LIGAY] £ A

2
2

Lemma 2
this distinction doesn’t really matter

The first thingis an optimal
tree on{A,B,C,D,E,F}

if and only if

the second things an
optimal tree on{A,G,H}

Lemma 2
this distinction doesn’t really matter

AFor a proof:

ASee CLRS, Lemma 16.3
A Rigorous although presented in a slightly different way

ASee the Lecture Notes
A A bit sketchier, but presented in the same way as here

AProve it yourself!

A This is the best! Getting all the details
Il sn’t that 1 mportant

you should convince
yourself that this is true =

Siggithe Studious Stork

Together

ALemma 1:

ASuppose that x and y are the two ledistquent letters.
Then there is an optimal tree where x and y are siblings

ALemma 2:
AWe may as well imagine th@URRENdontains only leaves.

AThese imply:
AAt each step, our
Write this out formally as a

proof by induction! (See hidden
slides for a starting point).

Siggithe Studious Storl

THIS SLIDE SKIPPED IN CL

ﬁThe whole argument

After thell QEIIKS LI ¢S Q@S 3I2 0 -treesd dzy O

Alnductive hypothesis: m g 22
Aafter thet ’ step,
At here is an optimal tree cont
ABase case: Inductivehyp. asserts

RAafter t he O’ t h step ’thatoursubtreescanbe

) i o assembled into ar
A there is an optimal tree containing all the characters. optimal tree:

Alnductive step:
ATO DO

AConclusion:

Aafter the last step,
A there is an optimal tree containing this whole tree as a subtree.

Aaka,

Aafter the | ast step the tree

THIS SLIDE SKIPPED IN CLASS 2 SQ@S 320 | odmeeskK 2F O

Inductive step . 2 22

say that x and y are the two smalle

ASuppose that the inductive hypothesis holds fdr t

AAfter t-1 steps, there is an optimal tree containing all the
currentsubt r ees as “ |l eaves.’

AWant to show:

A After t steps, there is an optimal tree containing all the
current subtrees as leaves.

THIS SLIDE SKIPPED IN CLASS 2 SQ@S 320 | odieesK 27 O

Inductive step . 2 22

say that x and y are the two smalle

ASuppose that the inductive hypothesis holds fdr t

AAfter t-1 steps, there is an optimal tree containing all the
currentsubt r ees as “ |l eaves.’

“AXL

ABy Lemma 2, may as well tre

THIS SLIDE SKIPPED INCLASs 2 SQ@S 320 | odmee&sk 27 O

Inductive step - 2 22

say that x and y are the two smalle

ASuppose that the inductive hypothesis holds fdr t

AAfter t-1 steps, there is an optimal tree containing all the
currentsubt r ees as “ |l eaves.’

4 B i”\

ABy Lemma 2, may as well tre

Aln particular, optimal trees on this new alphabelj
correspond to optimal trees on the original alphabet.

THIS SLIDE SKIPPED IN CLASS 2 SQ@S 320 | odieesK 27 O

Inductive step . 2 22

say that x and y are the two smalle

ASuppose that the inductive hypothesis holds fdr t

AAfter t-1 steps, there is an optimal tree containing all the
currentsubt r ees as “ |l eaves.’

l
< m
AOur algorithm would do this at level t:

oA

THIS SLIDE SKIPPED IN CLASS 2 SQ@S 320 | odieesK 27 O

Inductive step . 2 22

say that x and y are the two smalle

ASuppose that the inductive hypothesis holds fdr t

AAfter t-1 steps, there is an optimal tree containing all the
currentsubt r ees as “ |l eaves.’

Lemma 1 |1 mpl i
an optimal suktree that looks
like this; aka, what our
algorithm did okay.

THIS SLIDE SKIPPED IN CLASS 2 SQ@S 320 | odieesK 27 O

Inductive step . 2 22

say that x and y are the two smalle

ASuppose that the inductive hypothesis holds fdr t

AAfter t-1 steps, there is an optimal tree containing all the
currentsubt r ees as “ |l eaves.’
Lemma 2 again says that

there’s an of
looks like this

AOur algorithm would do this at level t:

oA

THIS SLIDE SKIPPED IN CLASs 2 SQ@S 320 | odmeesK 2F O

Inductive step - 2 22

say that x and y are the two smalle

ASuppose that the inductive hypothesis holds fdr t

AAfter t-1 steps, there is an optimal tree containing all the
currentsubt r ees as “ |l eaves.’
Lemma 2 again says that

there’s an of
looks like this

This is what we
wanted to showfor
the inductive step.

THIS SLIDE SKIPPED IN CL

Inductive outline:

After thell QEIIKS LI ¢S Q@S 3I2 0 -treesd dzy O

Alnductive hypothesis: m g 22
Aafter thet ’ step,
At here is an optimal tree cont
ABase case: Inductivehyp asserts
Aafter the 0'th st ep,Matousbeesann
A there is an optimal tree containing all the vertices. optimal tree:
Alnductive step;
ATO DO
AConclusion:

Aafter the last step,
A there is an optimal tree containing this whole tree as a subtree.

Aaka,

Aafter the | ast step the tree

*If all we care about is
number of bits.

What have we learned?

AASCI Il isn’t an optimal
t he di stri buti on on | et

AHuffman Coding is an optimal way!

ATo come up with an optimal scheme for any
language efficiently, we can usej&

ATo come up with a : ': \
\
R

Aldentify optimal substructure %

AFind a way to make choices that2 y Q (i NHzZE & 2 ¢
optimal solution.
A Create subtrees out of the smallest two current subtrees.

Recap |

AGreedy algorithms!

AThree examples:
A Activity Selection
AScheduling Jobs
AHuffman Coding

Recap |l

AGreedy algorithms!

AOften easy to write down
ABut may be hard to come up with and hard to justify

AThe natural greedy algorithm may not always be
correct.

AA problem is a good candidate for a greedy
algorithm |if:
Ait has optimal substructure

Athat optimal substructure iIREALLY NICE
A solutions depend on just one other syiooblem.

Next time

AGreedy algorithms follinimum Spanning Tree!

Before next time

AGo to section!

