
Lecture 13
Greedy algorithms!

Announcements

ÅI am not Prof. Rubinstein
ÅHe will be back next week

ÅMy name is Mary Wootters

ÅNew HW posted today!

Roadmap

Graphs!

Asymptotic
Analysis

Dynamic
Programming

Greedy
Algs

MIDTERM 1

The
Future!

More detailed schedule on the website!

MIDTERM 2

This week

ÅGreedy algorithms!

Greedy algorithms

ÅMake choices one-at-a-time.

ÅNever look back.

ÅHope for the best.

Today

ÅOne example of a greedy algorithm that does not
work:
ÅKnapsack again

ÅThree examples of greedy algorithms that do work:
ÅActivity Selection

ÅJob Scheduling

ÅHuffman Coding

Non-example

ÅUnbounded Knapsack.

ÅUnbounded Knapsack:
ÅSuppose I have infinite copies of all of the items.

ÅWhat’s the most valuable way to fill the knapsack?

ÅάDǊŜŜŘȅέ algorithm for unbounded knapsack:
ÅTacos have the best Value/Weight ratio!

ÅKeep grabbing tacos!

Weight:

Value:

6 2 4 3 11

20 8 14 3513

Item:

Capacity: 10

Total weight: 10
Total value: 42

Total weight: 9
Total value: 39

Example where greedy works
Activity selection

Frisbee Practice

Orchestra

CS161 study
group

Sleep

CS110
Class

Theory Lunch

Theory Seminar

Combinatorics
Seminar

Underwater basket
weaving class

Math 51 Class

CS 161 Class

CS 166 Class

CS 161
Section

CS 161 Office
Hours

Swimming
lessons

Programming
team meeting

Social activity

time

You can only do one activity at a time, and you want to
maximize the number of activities that you do.

What to choose?

Activity selection

ÅInput:
ÅActivities a1, a2, …, an

ÅStart times s1, s2, …, sn

ÅFinish times f1, f2, …, fn

ÅOutput:
ÅHow many activities can you do today?

Think-pair-share!

What greedy algorithm
would you use?

ai

time
si fi

Greedy Algorithm

a3a1

a4
a2

a5

a7

a6

time

ÅPick activity you can add with the smallest finish time.

ÅRepeat.

Greedy Algorithm

a3a1

a4
a2

a5

a7

a6

time

ÅPick activity you can add with the smallest finish time.

ÅRepeat.

Greedy Algorithm

a3a1

a4
a2

a5

a7

a6

time

ÅPick activity you can add with the smallest finish time.

ÅRepeat.

Greedy Algorithm

a3a1

a4
a2

a5

a7

a6

time

ÅPick activity you can add with the smallest finish time.

ÅRepeat.

Greedy Algorithm

a3a1

a4
a2

a5

a7

a6

time

ÅPick activity you can add with the smallest finish time.

ÅRepeat.

Greedy Algorithm

a3a1

a4
a2

a5

a7

a6

time

ÅPick activity you can add with the smallest finish time.

ÅRepeat.

Greedy Algorithm

a3a1

a4
a2

a5

a7

a6

time

ÅPick activity you can add with the smallest finish time.

ÅRepeat.

Greedy Algorithm

a3a1

a4
a2

a5

a7

a6

time

ÅPick activity you can add with the smallest finish time.

ÅRepeat.

At least it’s fast

ÅRunning time:
ÅO(n) if the activities are already sorted by finish time.

ÅOtherwise O(nlog(n)) if you have to sort them first.

What makes it greedy?

ÅAt each step in the algorithm, make a choice.
ÅHey, I can increase my activity set by one,

ÅAnd leave lots of room for future choices,

ÅLet’s do that and hope for the best!!!

ÅHopethat at the end of the day, this results in a
globally optimal solution.

Three Questions

1. Does this greedy algorithm for activity selection work?
ÅYes.

2. In general, when are greedy algorithms a good idea?
ÅWhen the problem exhibits especially nice optimal

substructure.

3. The “greedy” approach is often the first you’d think of…
ÅWhy are we getting to it now, in Week 8?
ÅProving that greedy algorithms work is often not so easy…

(We will see why in a moment…)

Back to Activity Selection

a3a1

a4
a2

a5

a7

a6

time

ÅPick activity you can add with the smallest finish time.

ÅRepeat.

Why does it work?

ÅWhenever we make a choice, ǿŜ ŘƻƴΩǘ ǊǳƭŜ ƻǳǘ ŀƴ
optimal solution.

a3a1

a4
a2

a5

a7

a6

time

a5
a3

a7

There’s some optimal solution that
contains our next choice

Our next
choice would
be this one:

Assuming we can prove that

ÅWe never rule out an optimal solution

ÅAt the end of the algorithm, we’ve got some solution.

ÅSo it must be optimal.

Lucky the Lackadaisical Lemur

To prove we never rule out an optimal solution:

Optimal Substructure

ÅSubproblemi :
ÅSolve the activity selection problem after Activity i finishes.

ÅA[i] = Number of activities you can do after Activity i finishes.

ai

a2

a7

a6

time

a4

ak
a3

Claim

ÅLet ak have the smallest finish time among activities
do-able after ai finishes.

ÅThen A[i] = A[k] + 1.

ak

ai

a2

a7

a6

time

a4

ak

a3

A[k]: how many
activities can I do here?

A[i]: how many activities can I do here?

Proof
ÅLet ak have the smallest

finish time among activities
do-able after ai finishes.

ÅThen A[i] = A[k] + 1.

a1
ai

a2

a7

a6

time

a4

ak
a3

ÅClearly A[i] A[k] + 1
ÅSince we have a solution with A[k] + 1 activities.

Proof
ÅLet ak have the smallest

finish time among activities
do-able after ai finishes.

ÅThen A[i] = A[k] + 1.

ÅNow we’ll show A[i] A[k] + 1.
ÅSay there’s an optimal solution to subproblem(i) that
doesn’t use ak

ÅSay aj ends first after ai in that better solution.
ÅRemove aj and add ak from the better solution.
ÅNow you have a solution of the same size…

but it includes ak so it must have size A[k] + 1.

ak
ai

a2

a7

a6

time

aj

a3 a7
a3

Proof
ÅLet ak have the smallest

finish time among activities
do-able after ai finishes.

ÅThen A[i] = A[k] + 1.

a1
ai

a2

a7

a6

time

a4

ak
a3

ÅClearly A[i] A[k] + 1
ÅSince we have a solution with A[k] + 1 activities.

ÅAnd A[i] A[k] + 1
ÅWe just showed that.

ÅSo A[i] A[k] + 1

We never rule out an optimal solution

ai

a2

a7

a6

time

a4

ak
a3

ÅSuppose that after adding ai, there is an optimal solution:
ÅX activities done and A[i] activities left.
ÅX + A[i] activities total.

ÅThen we add the next thing, ak

ÅA[k] = A[i] - 1 (by the claim)

ÅNow there is some solution extending this one so that:
ÅX+1 activities done and A[i] –1 activities left.
ÅX + A[i] activities total.
ÅStill optimal.

ak

So the algorithm is correct

ÅWe never rule out an optimal solution

ÅAt the end of the algorithm, we’ve got some solution.

ÅSo it must be optimal.

Lucky the Lackadaisical Lemur

So the algorithm is correct

ÅInductive Hypothesis:
ÅAfter adding the t’ththing, there is an optimal solution that

extends the current solution.

ÅBase case:
ÅAfter adding zero activities, there is an optimal solution

extending that.

ÅInductive step:
ÅTO DO

ÅConclusion:
ÅAfter adding the last activity, there is an optimal solution that

extends the current solution.
ÅThe current solution is the only solution that extends the

current solution.
ÅSo the current solution is optimal.

Plucky the Pedantic Penguin

Formally, what do we
need to show here?

Think-pair-share!

Need to show

in the inductive step

ÅSuppose that after adding the t’ththing (ai), there
is an optimal solution extending the current
solution.

ÅThen after adding the next thing (ak), there is still
an optimal solution extending the current solution.

Å(Aka, we don’t rule out an optimal solution).

We just did that!

So the algorithm is correct

ÅInductive Hypothesis:
ÅAfter adding the t’ththing, there is an optimal solution that

extends the current solution.

ÅBase case:
ÅAfter adding zero activities, there is an optimal solution

extending that.

ÅInductive step:
ÅTO DO

ÅConclusion:
ÅAfter adding the last activity, there is an optimal solution that

extends the current solution.
ÅThe current solution is the only solution that extends the

current solution.
ÅSo the current solution is optimal.

Plucky the Pedantic Penguin

Common strategy
for greedy algorithms

ÅMake a series of choices.

ÅShow that, at each step, our choice ǿƻƴΩǘ ǊǳƭŜ ƻǳǘ
an optimal solutionat the end of the day.

ÅAfter we’ve made all our choices, we haven’t ruled
out an optimal solution, so we must have found
one.

Common strategy (formally)
for greedy algorithms

ÅInductive Hypothesis:
ÅAfter greedy choice t, you haven’t ruled out success.

ÅBase case:
ÅSuccess is possible before you make any choices.

ÅInductive step:
ÅTODO

ÅConclusion:
ÅIf you reach the end of the algorithm and haven’t ruled

out success then you must have succeeded.

Relationship to other sorts of algorithms

ÅThis algorithm is most naturally viewed as a
greedy algorithm.
ÅMake greedy choices
ÅNever rule out success

ÅWe could also view it as a divide-and-
conquer algorithm…
ÅWithout the “dividing” part.

ÅWe could also view it as a DP algorithm…
ÅTake advantage of optimal sub-structure and fill

in a table.
ÅSee hidden slides for more detail…

More detail: Greedy vs. DP

ÅJust for pedagogy!

Å(This isn’t the best way to think about activity
selection).

SLIDE SKIPPED IN CLASS

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

ÅStep 5: If needed, code this up like a reasonable
person.

SLIDE SKIPPED IN CLASS

Optimal substructure

ÅSubproblemi:
ÅA[i] = number of activities you can do after Activity i finishes.

ai

a2

a7

a6

time

a4

a1
a3

SLIDE SKIPPED IN CLASS

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

ÅStep 5: If needed, code this up like a reasonable
person.

SLIDE SKIPPED IN CLASS

We did that already

ÅLet ak have the smallest finish time among activities
do-able after ai finishes.

ÅThen A[i] = A[k] + 1.

a1
ai

a2

a7

a6

time

a4

ak
a3

A[k]: how many
activities can I do here?

A[i]: how many activities can I do here?

SLIDE SKIPPED IN CLASS

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

ÅStep 5: If needed, code this up like a reasonable
person.

SLIDE SKIPPED IN CLASS

Top-down DP

ÅInitialize a global array A to [None,…,None]

ÅMake a “dummy” activity that ends at time -1.

Ådef findNumActivities(i):
ÅIf A[i] != None:
ÅReturnA[i]

ÅLet Activity k be the activity I can fit in my schedule after
Activity i with the smallest finish time.
ÅIf there is no such activity k, set A[i] = 0
ÅElse, A[i] = findNumActivities(k) + 1
ÅReturnA[i]

ÅReturnfindNumActivities(0)

This is a terrible way to write this!
The only thing that matters here is that the

highlighted lines are our recursive relationship.

SLIDE SKIPPED IN CLASS

Recipe for applying Dynamic Programming

ÅStep 1: Identify optimal substructure.

ÅStep 2: Find a recursive formulation for the value of
the optimal solution.

ÅStep 3: Use dynamic programming to find the value
of the optimal solution.

ÅStep 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

ÅStep 5: If needed, code this up like a reasonable
person.

SLIDE SKIPPED IN CLASS

Top-down DP

ÅInitialize a global array A to [None,…,None]

ÅInitialize a global array Next to [None, …, None]

ÅMake a “dummy” activity that ends at time -1.

Ådef findNumActivities(i):
ÅIf A[i] != None:
ÅReturnA[i]

ÅLet Activity k be the activity I can fit in my schedule after
Activity i with the smallest finish time.
ÅIf there is no such activity k, set A[i] = 0
ÅElse, A[i] = findNumActivities(k) + 1 andNext[i] = k
ÅReturnA[i]

ÅfindNumActivities(0)

ÅStep through “Next” array to get schedule.

This is a terrible way to write this!
The only thing that matters here is that the

highlighted lines are our recursive relationship.

SLIDE SKIPPED IN CLASS

Let’s step through it.

a3a1

a4
a2

a5

a7

a6

time

ÅStart with the activity with the smallest finish time.

SLIDE SKIPPED IN CLASS

Let’s step through it

a3a1

a4
a2

a5

a7

a6

time

ÅNow find the next activity still do-able with the
smallest finish time, and recurseafter that.

SLIDE SKIPPED IN CLASS

Let’s step through it

a3a1

a4
a2

a5

a7

a6

time

ÅNow find the next activity still do-able with the
smallest finish time, and recurseafter that.

SLIDE SKIPPED IN CLASS

Let’s step through it

a3a1

a4
a2

a5

a7

a6

time

ÅNow find the next activity still do-able with the
smallest finish time, and recurseafter that.

SLIDE SKIPPED IN CLASS

Let’s step through it

a3a1

a4
a2

a5

a7

a6

time

ÅTa-da!

It’s exactly the same* as the greedy solution!

*if you implement the top-down DP solution appropriately.

SLIDE SKIPPED IN CLASS

Sub-problem graph view

ÅDivide-and-conquer:

Big problem

sub-problemsub-problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

Sub-problem graph view

ÅDynamic Programming:

Big problem

sub-problemsub-problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-sub-
problem

sub-problem

Sub-problem graph view

ÅGreedy algorithms:

Big problem

sub-sub-
problem

sub-problem

Sub-problem graph view

ÅGreedy algorithms:

Big problem

sub-sub-
problem

sub-problem

ÅNot only is there optimal sub-structure:
Åoptimal solutions to a problem are made up

from optimal solutions of sub-problems

Åbut each problem depends on only one
sub-problem.

Three Questions

1. Does this greedy algorithm for activity selection work?
ÅYes.

2. In general, when are greedy algorithms a good idea?
ÅWhen they exhibit especially nice optimal substructure.

3. The “greedy” approach is often the first you’d think of…
ÅWhy are we getting to it now, in Week 8?
ÅProving that greedy algorithms work is often not so easy.

Let’s see a few more examples

Another example:

Scheduling

Overcommitted
Stanford Student

CS161 HW!

Call your parents!

Math HW!

Econ HW!

Practice musical instrument!

Read CLRS!

Have a social life!

Sleep!

Administrative stuff for your student club!

Do laundry!

Meditate!

Scheduling

Ån tasks

ÅTask i takes t i hours

ÅEverything is already late!
ÅFor every hour that passes until task i is done, pay ci

ÅCS161 HW, then Sleep: costs 10 ẗ2 + (10 + 8) ẗ3 = 74 units

ÅSleep, then CS161 HW: costs 8 ẗ3 + (10 + 8) ẗ2 = 60 units

CS161 HW!

Sleep!

10 hours

8 hours

Cost: 2 units per
hour until it’s done.

Cost: 3 units per
hour until it’s done.

Optimal substructure

ÅThis problem breaks up nicely into sub-problems:

Job A Job B Job C Job D

Suppose this is the optimal schedule:

Then this must be the optimal
schedule on just jobs B,C,D.

Think-pair-share

Why?

Optimal substructure

ÅSeems amenable to a greedy algorithm:

Job A Job B Job C Job D

Take the best job first Then solve this problem

Job BJob C Job D

Take the best job first Then solve this problem

Job BJob D

Take the best job first

(That one’s easy J)

Then solve this problem

What does “best”
mean?

ÅOf these two jobs, which should we do first?

ÅCost(A then B) = xẗz + (x + y) ẗw

ÅCost(B then A) = y ẗw + (x + y) ẗz

Job A

Job B

x hours

y hours

Cost: zunits per
hour until it’s done.

Cost: wunits per
hour until it’s done.

A then B is better than B then A when:
ὼᾀ ὼ ώύ ώύ ὼ ώᾀ
ὼᾀὼύ ώύ ώύ ὼᾀώᾀ

ύὼ ώᾀ
ύ

ώ

ᾀ

ὼ

What matters is the ratio:

ÃÏÓÔÏÆÄÅÌÁÙ

ÔÉÍÅÉÔÔÁËÅÓ

“Best” means
biggest ratio.

Lemma

ÅGiven jobs so that Job i takes timet i with cost ci ,

ÅThere is an optimal schedule so that the first job is the
one that maximizes the ratio ci/ t i

ÅProof:
ÅSay Job B maximizes this ratio, and it’s not first:

ÅSwitch A and B! Nothing else will change, and we showed on
the previous slide that the cost won’t increase.

ÅRepeat until B is first.

Job A Job B

cA/ tA >= cB/ tB

Job C Job D

Job AJob BJob C Job D

Choose greedily:
Biggest cost/time ratio first

ÅJob i takes timet i with cost ci

ÅThere is an optimal schedule so that the first job is
the one that maximizes the ratio ci/ t i

ÅSo if we choose jobs greedily according to ci/ t i, we
never rule out success!

Greedy Scheduling Solution

ÅscheduleJobs(JOBS):
ÅSort JOBS by the ratio:

Å►░
╬░

◄░

ÃÏÓÔÏÆÄÅÌÁÙÉÎÇÊÏÂÉ
ÔÉÍÅÊÏÂÉÔÁËÅÓÔÏÃÏÍÐÌÅÔÅ

ÅSay that sorted_JOBS[i] is the job with the i’thbiggest ri

ÅReturnsorted_JOBS

The running time is O(nlog(n))

Now you can go about your schedule
peacefully, in the optimal way.

Formally, use induction!
ÅInductive hypothesis:

ÅThere is an optimal ordering so that the first t jobs are
sorted_JOBS[:t].

ÅBase case:

ÅWhen t=0, this reads: “There is an optimal ordering so that
the first 0 jobs are []”
ÅThat’s true.

ÅInductive Step:

ÅBoils down to: there is an optimal ordering on
sorted_JOBS[t:] so that sorted_JOBS[t] is first.
ÅThis follows from the Lemma.

ÅConclusion:

ÅWhen t=n, this reads: “There is an optimal ordering so that
the first n jobs are sorted_JOBS.”
Åaka, what we returned is an optimal ordering.

SLIDE SKIPPED IN CLASS

What have we learned?

ÅA greedy algorithm works for scheduling

ÅThis followed the same outline as the previous example:
ÅIdentify optimal substructure:

ÅFind a way to make choices that ǿƻƴΩǘ ǊǳƭŜ ƻǳǘ ŀƴ ƻǇǘƛƳŀƭ
solution.
Ålargest ratios first.

Job A Job B Job C Job D

One more example
Huffman coding

Åeveryday englishsentence
Å01100101 01110110 01100101 01110010 01111001 01100100 01100001

01111001 00100000 01100101 01101110 01100111 01101100 01101001
01110011 01101000 00100000 01110011 01100101 01101110 01110100
01100101 01101110 01100011 01100101

Åqwertyui_opasdfg+hjklzxcv
Å01110001 01110111 01100101 01110010 01110100 01111001 01110101

01101001 01011111 01101111 01110000 01100001 01110011 01100100
01100110 01100111 00101011 01101000 01101010 01101011 01101100
01111010 01111000 01100011 01110110

One more example
Huffman coding

Åeveryday englishsentence
Å0110010101110110 0110010101110010 01111001 01100100 01100001

01111001 00100000 0110010101101110 01100111 01101100 01101001
01110011 01101000 00100000 01110011 0110010101101110 01110100
0110010101101110 01100011 01100101

Åqwertyui_opasdfg+hjklzxcv
Å01110001 01110111 01100101 01110010 01110100 01111001 01110101

01101001 01011111 01101111 01110000 01100001 01110011 01100100
01100110 01100111 00101011 01101000 01101010 01101011 01101100
01111010 01111000 01100011 01110110

ASCII is pretty wasteful. If e
shows up so often, we should

have a more parsimonious way
of representing it!

Suppose we have some
distribution on characters

Suppose we have some
distribution on characters

A B C D E F

P
e

rc
e

n
ta

g
e

Letter

45

13
12

16

9

5

For simplicity,
let’s go with this

made-up example

How to encode them as
efficiently as possible?

Try 0
(like ASCII)

A B C D E F

P
e

rc
e

n
ta

g
e

Letter

45

13
12

16

9

5

000 011001 010 100 101

ÅEvery letter is assigned a binary string
of three bits.

Wasteful!
Å 110 and 111 are never used.
Å We should have a shorter way of

representing A.

Try 1

A B C D E F

P
e

rc
e

n
ta

g
e

Letter

45

13
12

16

9

5

0 100 01 10 11

ÅEvery letter is assigned a binary string
of one or two bits.

ÅThe more frequent letters get the
shorter strings.

ÅProblem:
ÅDoes 000 mean AAA or BA or AB?

Try 2: prefix-free coding

A B C D E F

P
e

rc
e

n
ta

g
e

Letter

45

13
12

16

9

5

01 00101 110 111 100

ÅEvery letter is assigned a binary string.
ÅMore frequent letters get shorter strings.
ÅNo encoded string is a prefix of any other.

10010101

Confusingly, “prefix-free codes” are also sometimes
called “prefix codes” (including in CLRS).

Try 2: prefix-free coding

A B C D E F

P
e

rc
e

n
ta

g
e

Letter

45

13
12

16

9

5

01 00101 110 111 100

ÅEvery letter is assigned a binary string.
ÅMore frequent letters get shorter strings.
ÅNo encoded string is a prefix of any other.

10010101 F

Confusingly, “prefix-free codes” are also sometimes
called “prefix codes” (including in CLRS).

Try 2: prefix-free coding

A B C D E F

P
e

rc
e

n
ta

g
e

Letter

45

13
12

16

9

5

01 00101 110 111 100

ÅEvery letter is assigned a binary string.
ÅMore frequent letters get shorter strings.
ÅNo encoded string is a prefix of any other.

10010101 FB

Confusingly, “prefix-free codes” are also sometimes
called “prefix codes” (including in CLRS).

Try 2: prefix-free coding

A B C D E F

P
e

rc
e

n
ta

g
e

Letter

45

13
12

16

9

5

01 00101 110 111 100

ÅEvery letter is assigned a binary string.
ÅMore frequent letters get shorter strings.
ÅNo encoded string is a prefix of any other.

10010101 FBA

Question: What is the most
efficient way to do prefix-free
coding? (This isn’t it).

Confusingly, “prefix-free codes” are also sometimes
called “prefix codes” (including in CLRS).

A prefix-free code is a tree

D: 16 A: 45

B:13F:5 C:12 E:9

0

0 0

0 0 1

1

1

1

1

00 01

100 101 110 111
As long as all the letters
show up as leaves, this

code isprefix-free.

B:13 below means that ‘B’
makes up 13% of the

characters that ever appear.

How good is a tree?

D: 16 A: 45

B:13F:5 C:12 E:9

0

0 0

0 0 1

1

1

1

1

00 01

100 101 110 111

Å Imagine choosing a letter at random from the language.
Å Not uniform, but according to our histogram!

Å The cost of a tree is the expected length of the encoding of that letter.

Expected cost of encoding a letter with this tree:
Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ

Cost =

ὖὼẗÄÅÐÔÈὼ

P(x) is the
probability
of letter x

The depth in the
tree is the length
of the encoding

Question

ÅGiven a distribution Pon letters, find the lowest-
cost tree, where

ÃÏÓÔÔÒÅÅ ὖὼẗÄÅÐÔÈὼ
P(x) is the
probability
of letter x

The depth in the
tree is the length
of the encoding

Optimal sub-structure

ÅSuppose this is an optimal tree:

1 0

Then this is an
optimal tree on
fewer letters.

Otherwise, we could
change this sub-tree
and end up with a
better overall tree.

Greedy algorithm

ÅGreedily build sub-trees from the bottom up.

ÅGreedy goal: less frequent letters should be further
down the tree.

Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1

Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1

30

1

0

Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1

30

1

0

55
1

0

Solution
greedily build subtrees, starting with the infrequent letters

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

25

0 1

30

1

0

55
1

0

100
1

0

Solution
greedily build subtrees, starting with the infrequent letters

D: 16

A: 45

B:13

F:5

C:12

E:9

14

0 1

25

0 1

30

10

55
10

100

10

0

100 101 110

1110 1111

Expected cost of encoding a letter:
ẗȢ

ẗȢ

ẗȢ

Ȣ

What exactly was the algorithm?

ÅCreate a node like for each letter/frequency
ÅThe key is the frequency (16 in this case)

ÅLet CURRENTbe the list of all these nodes.

Åwhile len(CURRENT) > 1:
ÅXand Yᴺthe nodes in CURRENTwith the smallest keys.

ÅCreate a new node Zwith Z.key= X.key+ Y.key

ÅSet Z.left = X, Z.right= Y

ÅAdd Z to CURRENTand remove Xand Y

Åreturn CURRENT[0]

D: 16

F:5 E:9

14

0 1

Y

Z

X
D: 16 A: 45 B:13 C:12

Does it work?

ÅYes.

ÅSame strategy:
ÅShow that at each step, the choices we are making
ǿƻƴΩǘ ǊǳƭŜ ƻǳǘ an optimal solution.

ÅLemma:
ÅSuppose that x and y are the two least-frequent letters. Then

there is an optimal tree where x and y are siblings.

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

Lemma
proof idea

ÅSay that an optimal tree looks like this:

ÅWhat happens to the cost if we swap x for a?
Åthe cost can’t increase; a was more frequent than x, and we

just made its encoding shorter.

ÅRepeat this logic until we get an optimal tree with x and
y as siblings.
ÅThe cost never increased so this tree is still optimal.

If x and y are the two least-frequent letters, there
is an optimal tree where x and y are siblings.

x

a

Lowest-level sibling
nodes: at least one of
them is neither x nor y

Lemma
proof idea

ÅSay that an optimal tree looks like this:

ÅWhat happens to the cost if we swap x for a?
Åthe cost can’t increase; a was more frequent than x, and we

just made its encoding shorter.

ÅRepeat this logic until we get an optimal tree with x and
y as siblings.
ÅThe cost never increased so this tree is still optimal.

x y

Lowest-level sibling
nodes: at least one of
them is neither x nor y

If x and y are the two least-frequent letters, there
is an optimal tree where x and y are siblings.

Proof strategy
just like before

ÅShow that at each step, the choices we are making
ǿƻƴΩǘ ǊǳƭŜ ƻǳǘ an optimal solution.

ÅLemma:
ÅSuppose that x and y are the two least-frequent letters.

Then there is an optimal tree where x and y are siblings.

D: 16 A: 45 B:13 F:5C:12 E:9

14

0 1

Proof strategy
just like before

ÅShow that at each step, the choices we are making
ǿƻƴΩǘ ǊǳƭŜ ƻǳǘ an optimal solution.

ÅLemma:
ÅSuppose that x and y are the two least-frequent letters.

Then there is an optimal tree where x and y are siblings.

¢ƘŀǘΩǎ ŜƴƻǳƎƘ ǘƻ ǎƘƻǿ ǘƘŀǘ ǿŜ
ŘƻƴΩǘ ǊǳƭŜ ƻǳǘ ƻǇǘƛƳŀƭƛǘȅ ŀŦǘŜǊ

the first step.
What about once we start

grouping stuff?

D: 16 A: 45 B:13 F:5C:12 E:9

0 1

25

0
1

1

0
14

30

Lemma 2
this distinction doesn’t really matter

D: 16

F:5E:9

14

0 1

25

0 1

30

10

55
10

100

10

C:12B:13

A: 45 A: 45
55

10

100

10

G: 25 H: 30

The first thing is an optimal
tree on {A,B,C,D,E,F}

if and only if

the second thing is an
optimal tree on {A,G,H}

ÅFor a proof:
ÅSee CLRS, Lemma 16.3
ÅRigorous although presented in a slightly different way

ÅSee the Lecture Notes
ÅA bit sketchier, but presented in the same way as here

ÅProve it yourself!
ÅThis is the best!

Siggithe Studious Stork

Getting all the details
isn’t that important, but

you should convince
yourself that this is true.

Lemma 2
this distinction doesn’t really matter

Together

ÅLemma 1:
ÅSuppose that x and y are the two least-frequent letters.

Then there is an optimal tree where x and y are siblings.

ÅLemma 2:
ÅWe may as well imagine that CURRENT contains only leaves.

ÅThese imply:
ÅAt each step, our choice doesn’t rule out an optimal tree.

Siggithe Studious Stork

Write this out formally as a
proof by induction! (See hidden

slides for a starting point).

The whole argument

ÅInductive hypothesis:
Åafter the t’thstep,
Åthere is an optimal tree containing the current subtrees as “leaves”

ÅBase case:
Åafter the 0’th step,
Åthere is an optimal tree containing all the characters.

ÅInductive step:
ÅTO DO

ÅConclusion:
Åafter the last step,
Åthere is an optimal tree containing this whole tree as a subtree.

Åaka,
Åafter the last step the tree we’ve constructed is optimal.

After the ǘΩǘƘǎǘŜǇΣ ǿŜΩǾŜ Ǝƻǘ ŀ ōǳƴŎƘ ƻŦ ŎǳǊǊŜƴǘ ǎǳō-trees:

Inductive hyp. asserts
that our subtrees can be

assembled into an
optimal tree:

THIS SLIDE SKIPPED IN CLASS

Inductive step

ÅSuppose that the inductive hypothesis holds for t-1
ÅAfter t-1 steps, there is an optimal tree containing all the

current sub-trees as “leaves.”

ÅWant to show:
ÅAfter t steps, there is an optimal tree containing all the

current sub-trees as leaves.

²ŜΩǾŜ Ǝƻǘ ŀ ōǳƴŎƘ ƻŦ ŎǳǊǊŜƴǘ ǎǳō-trees:

xy

say that x and y are the two smallest.

w
z

THIS SLIDE SKIPPED IN CLASS

Inductive step

ÅSuppose that the inductive hypothesis holds for t-1
ÅAfter t-1 steps, there is an optimal tree containing all the

current sub-trees as “leaves.”

ÅBy Lemma 2, may as well treat as

²ŜΩǾŜ Ǝƻǘ ŀ ōǳƴŎƘ ƻŦ ŎǳǊǊŜƴǘ ǎǳō-trees:

xyw

say that x and y are the two smallest.

a
a

yx
w

z

z

THIS SLIDE SKIPPED IN CLASS

Inductive step

ÅSuppose that the inductive hypothesis holds for t-1
ÅAfter t-1 steps, there is an optimal tree containing all the

current sub-trees as “leaves.”

ÅBy Lemma 2, may as well treat as

ÅIn particular, optimal trees on this new alphabet
correspond to optimal trees on the original alphabet.

²ŜΩǾŜ Ǝƻǘ ŀ ōǳƴŎƘ ƻŦ ŎǳǊǊŜƴǘ ǎǳō-trees:

xyw

say that x and y are the two smallest.

a
a

zw
yx

z
THIS SLIDE SKIPPED IN CLASS

Inductive step

ÅSuppose that the inductive hypothesis holds for t-1
ÅAfter t-1 steps, there is an optimal tree containing all the

current sub-trees as “leaves.”

ÅOur algorithm would do this at level t:

²ŜΩǾŜ Ǝƻǘ ŀ ōǳƴŎƘ ƻŦ ŎǳǊǊŜƴǘ ǎǳō-trees:

xyw

say that x and y are the two smallest.

xy

w
a a = x+y

z

zw
yx

z

THIS SLIDE SKIPPED IN CLASS

Inductive step

ÅSuppose that the inductive hypothesis holds for t-1
ÅAfter t-1 steps, there is an optimal tree containing all the

current sub-trees as “leaves.”

ÅOur algorithm would do this at level t:

²ŜΩǾŜ Ǝƻǘ ŀ ōǳƴŎƘ ƻŦ ŎǳǊǊŜƴǘ ǎǳō-trees:

xyw

say that x and y are the two smallest.

zw

a

yx

xy

w
a a = x+y

Lemma 1 implies that there’s
an optimal sub-tree that looks

like this; aka, what our
algorithm did okay.

z

z

THIS SLIDE SKIPPED IN CLASS

Inductive step

ÅSuppose that the inductive hypothesis holds for t-1
ÅAfter t-1 steps, there is an optimal tree containing all the

current sub-trees as “leaves.”

ÅOur algorithm would do this at level t:

²ŜΩǾŜ Ǝƻǘ ŀ ōǳƴŎƘ ƻŦ ŎǳǊǊŜƴǘ ǎǳō-trees:

xyw

say that x and y are the two smallest.

w

a

xy

w
a a = x+y

Lemma 2 again says that
there’s an optimal tree that

looks like this

z

yx
z

z

THIS SLIDE SKIPPED IN CLASS

Inductive step

ÅSuppose that the inductive hypothesis holds for t-1
ÅAfter t-1 steps, there is an optimal tree containing all the

current sub-trees as “leaves.”

ÅOur algorithm would do this at level t:

²ŜΩǾŜ Ǝƻǘ ŀ ōǳƴŎƘ ƻŦ ŎǳǊǊŜƴǘ ǎǳō-trees:

xyw

say that x and y are the two smallest.

w

a

xy

w
a a = x+y

Lemma 2 again says that
there’s an optimal tree that

looks like this

z

yx
z

This is what we
wanted to show for
the inductive step.

z

THIS SLIDE SKIPPED IN CLASS

Inductive outline:

ÅInductive hypothesis:
Åafter the t’thstep,
Åthere is an optimal tree containing the current subtrees as “leaves”

ÅBase case:
Åafter the 0’th step,
Åthere is an optimal tree containing all the vertices.

ÅInductive step:
ÅTO DO

ÅConclusion:
Åafter the last step,
Åthere is an optimal tree containing this whole tree as a subtree.

Åaka,
Åafter the last step the tree we’ve constructed is optimal.

After the ǘΩǘƘǎǘŜǇΣ ǿŜΩǾŜ Ǝƻǘ ŀ ōǳƴŎƘ ƻŦ ŎǳǊǊŜƴǘ ǎǳō-trees:

Inductive hyp. asserts
that our subtrees can be

assembled into an
optimal tree:

THIS SLIDE SKIPPED IN CLASS

What have we learned?

ÅASCII isn’t an optimal way* to encode English, since
the distribution on letters isn’t uniform.

ÅHuffman Coding is an optimal way!

ÅTo come up with an optimal scheme for any
language efficiently, we can use a greedy algorithm.

ÅTo come up with a greedy algorithm:
ÅIdentify optimal substructure

ÅFind a way to make choices that ǿƻƴΩǘ ǊǳƭŜ ƻǳǘ ŀƴ
optimal solution.
ÅCreate subtrees out of the smallest two current subtrees.

*If all we care about is
number of bits.

Recap I

ÅGreedy algorithms!

ÅThree examples:
ÅActivity Selection

ÅScheduling Jobs

ÅHuffman Coding

Recap II

ÅGreedy algorithms!

ÅOften easy to write down
ÅBut may be hard to come up with and hard to justify

ÅThe natural greedy algorithm may not always be
correct.

ÅA problem is a good candidate for a greedy
algorithm if:
Åit has optimal substructure

Åthat optimal substructure is REALLY NICE
Åsolutions depend on just one other sub-problem.

Next time

ÅGreedy algorithms for Minimum Spanning Tree!

ÅGo to section!

Before next time

