
Lecture 17 
Approximation algorithms:  
Max-Cut and Vertex Cover 
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Last week 

• Min-Cut problem 
 

 

Part 1 Part 2 

Algorithms 

s-t min-cut: Ford-Fulkerson 

Global min-cut: Karger-Stein 
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Last week: s-t Min-Cut  
Max-flow min-cut theorem 
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The value of a max flow from s to t  
is equal to  

the cost of a min s-t cut. 
Intuition: in a max flow, 
the min cut better fill up, 
and this is the bottleneck. 

USA: s-t Min-Cut 
USSR: s-t Max-Flow 
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Contract! 

Contract! 

Contract! 
Contract! 

FORK! 

etc 
etc 

This branch 
made a bad 

choice. 

But it’s okay since 
this branch made 

a good choice. 

Last week:  
Global Min-Cut 
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• Suppose the first n-t edges that we choose are  

e1, e2, …, en-t 

• PR[ none of the ei cross S* (up to the n-t’th) ] 
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Choose 𝒕 = 𝒏/ 𝟐 

when n is large 

Suppose we contract n – t  edges, until 
there are t supernodes remaining. 

Last week:  
Global Min-Cut: when things cancelled nicely 
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Last week 

• Min-Cut problem 
 

 

Part 1 Part 2 

Algorithms 

s-t min-cut: Ford-Fulkerson 

Global min-cut: Karger-Stein 
 
 



7 

Today 

• Max-Cut problem 
 

 

Part 1 

Part 2 

Possible Algorithms? 

Max-Cut Min-Flow?? 

Contract random non-edge?? 
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Max-Cut is NP-hard 

 

• The Max-Cut problem is NP-hard 
• We won’t formally discuss what this means (CS103, CS154, etc) 

• But we are unlikely to find efficient algorithms (“unless P=NP”) 

• So there are no efficient algorithms  

 

 

Oh well, see you on Thursday! 
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Max-Cut is NP-hard 

Coping with NP-hardness 

• Option 1: making more assumptions on the inputs 
• In the DP lecture, we saw an algorithm for  

   Maximal Weight Independent Set on trees 

• Max-Cut has an efficient algorithm if the graph is “planar” 

• In practice, a common assumption is that real instances are “nice” 

Plucky the  
pedantic penguin 

What does “nice” mean?  
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Max-Cut is NP-hard 

Coping with NP-hardness 

• Option 1: Making more assumptions on the inputs 

• Option 2: Approximation algorithms 

 (we’ll see more on those today!) 
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Max-Cut is NP-hard 

Coping with NP-hardness 

• Option 1: Making more assumptions on the inputs 

• Option 2: Approximation algorithms 

• Option 3: Sometimes it’s OK to run in exponential time 
 (Only when it’s exponential in a small number!) 
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Approximation Algorithms 

Suppose we have an optimization problem 𝑷 
max

𝑥
𝑓(𝑥) 

With optimal solution 𝑥∗. 

 

We say that algorithm 𝑨 is 𝛼-approximation for 𝑷 
if it returns solution 𝑦 such that 

𝑓 𝑦 ≥ 𝛼 ⋅ 𝑓(𝑥∗) 

 

(Note that always 𝑓 𝑦 ≤ 𝑓 𝑥∗ , so 𝛼 ≤ 1.) 
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Approximation Algorithms (min) 

Suppose we have an optimization problem 𝑷 
min

𝑥
𝑓(𝑥) 

With optimal solution 𝑥∗. 

 

We say that algorithm 𝑨 is 𝛼-approximation for 𝑷 
if it returns solution 𝑦 such that 

𝑓 𝑦 ≤ 𝛼 ⋅ 𝑓(𝑥∗) 

 

(Note that always 𝑓 𝑦 ≥ 𝑓 𝑥∗ , so 𝛼 ≥ 1.) 

Remember:  
𝛼 closer to 1 is better 
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Today 

• Max-Cut problem 
 

 

Part 1 

Part 2 

Approximation Algorithms 

Greedy 

Randomized 
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Algorithm 1: Greedy (Iteratively add vertices 
 to the side that maximizes the cut) 
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Algorithm 1: Greedy 

Greedy_MaxCut(𝐺 =  (𝑉, 𝐸)): 

• 𝐴, 𝐵 ← ∅ 

• For 𝑖 in 𝑉: 

• If (# of edges from 𝑖 to 𝐴) > (# of edges from 𝑖 to 𝐵) 

• 𝐵 ← 𝐵 ∪ *𝑖+ 

• Else 

• 𝐴 ← 𝐴 ∪ *𝑖+ 

• Return 𝐴, 𝐵 
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Algorithm 1: Greedy 

Does it work? 

• Claim: Greedy_MaxCut is a 1/2-approximation algorithm. 

Think-Pair-Share: 
Why is the claim true? 

Bonus: how would you prove it? 
2X Bonus: what about more than 1/2? 

Greedy_MaxCut(𝐺 =  (𝑉, 𝐸)): 

• 𝐴, 𝐵 ← ∅ 

• For 𝑖 in 𝑉: 

• If more edges from 𝑖 to 𝐴 

• 𝐵 ← 𝐵 ∪ *𝑖+ 

• Else 

• 𝐴 ← 𝐴 ∪ *𝑖+ 

• Return 𝐴, 𝐵 
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Greedy: 1/2-approximation 

Claim: Greedy_MaxCut is a 1/2-approximation algorithm. 

 

Proof:  
At iteration 𝑖, at least 1/2 of the edges from 𝑖 to 𝐴 ∪ 𝐵 
are added to the cut. 

In total, the cut returned by Greedy_MaxCut contains at 
least 1/2 of all the edges in the graph. 

Therefore, the cut returned by Greedy_MaxCut contains 
at least 1/2 as many edges as the optimum. 

   𝐴𝐿𝐺 ≥ |𝐸|/2 ≥ 𝑂𝑃𝑇/2 
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Algorithm 1: Greedy 

Does it work? 

• Claim: Greedy_MaxCut is a 1/2-approximation algorithm. 

• What about better than 1/2-approximation? 
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This is the complete bipartite graph. 
In this graph, all the edges belong to max-cut,  
and the greedy solution will always be optimal! 

Size of optimal cut = 𝑛/2 2 

Can Greedy beat 1/2? 
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What happens when we remove 1 edge for each vertex? 

Can Greedy beat 1/2? 
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Can Greedy beat 1/2? 

b 

Suppose that Greedy first considers vertices a,b: 
Since we haven’t seen any edges, both will be added to 𝑨  

a a b 
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Can Greedy beat 1/2? 

c 

d 

If the algorithm now proceeds to c,d,  
it’ll add them to 𝑩 
… and so on 

a 

c 

a b 

d 

Size of optimal cut = 𝑛/2 2 − 𝑛/2 
Size of Greedy’s cut = 𝑛/2 2/2 

Conclusion: 
Greedy’s approximation factor is 

1/2 + 𝑂(1/𝑛) 

c 
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Algorithm 1: Greedy 

Does it work? 

• Claim: Greedy_MaxCut is a 1/2-approximation algorithm 

• Claim: Greedy_MaxCut is not much better than 1/2-approx 

• Can other algorithms get better approximation? 

Goemans-Williamson Algorithm 
 

• Approximates Max-Cut to within 0.878-factor 
• Uses Semi-Definite Programming (SDP) 
• Runs in polynomial time 
• Whether 0.878 is optimal is an important open problem  

     (“Unique Games Conjecture”) 

(You’re not responsible 
for this rectangle) 
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Algorithm 1: Greedy 

Does it work? 

• Claim: Greedy_MaxCut is a 1/2-approximation algorithm 

• Claim: Greedy_MaxCut is not much better than 1/2-approx 

 

 

Is it fast? 

• Yes! 𝑂 𝑛 + 𝑚  

• Can we do faster? 

(Note: faster algorithms can’t even read the entire input!) 
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? 

? 

Algorithm 2: Random cut! 

? 

? 

? 

? 

? 

? 
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Algorithm 2: Random cut! 

? 

? 

? 

? 

? 

? 

? 
? 

Random_MaxCut(𝐺 =  (𝑉, 𝐸)): 

• 𝐴, 𝐵 ← ∅ 

• For 𝑖 in 𝑉: 

• Add 𝑖 to 𝐴 or 𝐵 at random 

• Return 𝐴, 𝐵 
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Algorithm 2: Random cut! 

? 

? 

? 

? 

? 

? 

? 
? 

Does it work? 

• Claim: Random_MaxCut is a 1/2-approximation algorithm 
       in expectation. 

Think-Pair-Share: 
Prove the claim! 
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Random: 1/2-approximation 

Claim:  
Random_MaxCut is a 1/2-approximation algorithm in expectation. 

 

Proof:  
Every edge has probability exactly 1/2 of crossing the cut 

In expectation, the cut returned by Random_MaxCut contains 
exactly 1/2 of all the edges in the graph. 

Therefore, in expectation, the cut returned by Random_MaxCut 
contains at least 1/2 as many edges as the optimum. 

   E*𝐴𝐿𝐺+ ≥ |𝐸|/2 ≥ 𝑂𝑃𝑇/2 
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Algorithm 2: Random cut! 

? 

? 

? 

? 

? 

? 

? 
? 

Does it work? 

• Claim: Random_MaxCut is a 1/2-approximation algorithm 
       in expectation. 

 

 

Is it fast? 

• Very fast, 𝑂 𝑛  time! 
(Faster than reading the input!) 
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Vertex Cover 

Def’n: 
A vertex cover is a set 𝑺 of vertices that “covers” all 
the edges (i.e. each edge has an endpoint in 𝑺). 

Yes! No! Yes! 
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Vertex Cover Problem 

Input: 𝐺 = (𝑉, 𝐸) 

Output: Smallest vertex cover 𝑆 ⊆ 𝑉 

 

Obstacle: This problem is also NP-hard 

Today: Approximation algorithm! 

Yes! 

Think-Pair-Share: 
Design an approx. algorithm! 
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Attempt 1: Greedy 

Looks good!  
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Attempt 1: Greedy 

How about this graph? 

Conclusion: 
Greedy’s approximation factor is 

Ω(𝑛) 

Plucky the  
pedantic penguin 

Since this is a min problem, 
the approx. factor is > 1. 
(We still want to be close to 1) 
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Attempt 1: Greedy 

What went wrong? 
 
Consider edge (x,y) -  
we have two choices: 
Add x or y to the cover. 
 
We probably should’ve picked y 
since it has higher degree  
(so it covers more edges) 
 
This suggests another  
  greedy algorithm… 
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Attempt 2: DegreeGreedy 

Looks good…? 

DegreeGreedy (𝐺 =  (𝑉, 𝐸)): 

• 𝑆 ← ∅ 

• While 𝐸 isn’t empty 

• 𝑣∗ ← arg max
𝑣∈𝑉

deg(𝑣) 

• Add 𝑣∗ to 𝑆 

• Remove 𝑣∗’s edges from 𝐸 

• Return 𝑆 
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Attempt 2: DegreeGreedy 

[On whiteboard: 
example where DegreeGreedy 
has a bad approximation] 

Conclusion: 
Greedy’s approximation factor is 

Ω(log 𝑛) 

What went wrong? 
 
Consider edge (x,y) - 
we have two choices: 
Add x or y to the cover. 
 
And we really don’t know  
 which one is better… 
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Attempt 3: Take both x and y! 
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Attempt 3: Take both x and y! 

Approx_VertexCover (𝐺 =  (𝑉, 𝐸)): 

• 𝑆 ← ∅ 

• While 𝐸 isn’t empty 

• (x, y) ← arbitrary edge ∈ 𝐸 

• Add 𝑥 and 𝑦 to 𝑆 

• Remove their edges from 𝐸 

• Return 𝑆 

 



40 

Attempt 3: Take both x and y! 

Does it work? 

• Claim: Approx_VertexCover is a 2-approximation algorithm 

• Proof: 

Think-Pair-Share! 
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Attempt 3: Take both x and y! 

Approx_VC (𝐺 =  (𝑉, 𝐸)): 

• 𝑆 ← ∅ 

• While 𝐸 isn’t empty 

• (x, y) ← arbitrary edge 

• Add 𝑥 and 𝑦 to 𝑆 

• Remove their edges 

• Return 𝑆 

 

Claim: Approx_VC is a  
2-approximation algorithm 
 
Proof 
The edges selected by the Approx_VC: 
1. Don’t share any endpoints 
2. We need ≥ 1 vertex for each edge 
Therefore, 𝑂𝑃𝑇 ≥ # edges  
 
The cover 𝑆 that we return has 2 
vertices for each edge 
Therefore, 𝐴𝐿𝐺 = 2 # edges  
 

𝐴𝐿𝐺 ≤ 2𝑂𝑃𝑇 
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Attempt 3: Take both x and y! 

Does it work? 

• Claim: Approx_VertexCover is a 2-approximation algorithm 

• Proof idea: 
 ∀ edge (x,y), we have to add at least one of x,y to S; 
 adding both x,y only costs a factor of 2. 

 

Better approximation? 

 
Open problem!  
(also related to “Unique Games Conjecture”) 
 
 

(You’re not responsible 
for this rectangle) 
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Attempt 3: Take both x and y! 

Does it work? 

• Claim: Approx_VertexCover is a 2-approximation algorithm 

• Proof idea: 
 ∀ edge (x,y), we have to add at least one of x,y to S; 
 adding both x,y only costs a factor of 2. 

 

 

Is it fast? 

 𝑂(𝑛 + 𝑚) 
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Recap 

Coping with NP-hard problems 
• Useful special cases 

• Approximation algorithms 

• Exponential time algorithms 

 

Max-Cut 
• Greedy algorithm is a 1/2-approximation algorithm 

• Random cut is also 1/2-approximation algorithm  
      (in expectation) 

 

Min Vertex Cover 
• Take-both-endpoints-of-an-edge is a 2-approximation 
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Next Time 

• CS161 recap + the world beyond 

 

 

 

 

• Review session in section! 

Before next time 
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Next Tuesday (12/11) 

• Finally, your final! 
Hewlett 200 3:30-6:30 

 

• New: partial credit for wrong algorithms. 
• You have to clearly state that the algorithm is incorrect 
• + short explanation of why the algorithm is incorrect  

+ short explanation of why you’re stuck  
• Demonstrate some knowledge of course material 

 

• Read instructions carefully! 
• We really hate taking off points because you didn’t 

understand the question (and we know you hate it too…) 
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Final plan 
1. A few short questions (25 pts ~ 30 min) 

 

2. Choose 3 out of 4: 
Design+analyze an algorithm (25 pts ~ 50 min each) 
(Note: this is NOT best 3 out of 4) 

Study resources: 
 

(This is just my guess!) 

Practice 
Problems 

Review 
session 

HW, Sections, 
Lecture notes Office 

Hours 

Piazza 

Classmates 

Textbooks 
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Course Feedback 

• You’ve done a great job giving feedback  
throughout the quarter, let’s do it one more time! 
(This one is “official”.) 

 

• I will only be see to aggregate, anonymous responses. 

 

• Your course feedback is very important. 

 

• Axess > Student > Course and Section Evaluations 


