Lecture 1/

Approximation algorithms:
Max-Cut and Vertex Cover

Algorithms

Last week

s-t min-cut: Ford-Fulkerson
Global min-cut: Karger-Stein

* Min-Cut problem

Last week: s-t Min-Cut

Max-flow min-cut theorem

The value of a max flow fromstot
is equal to
the cost of a min s-t cut.

Intuition: in a max flow,
the min cut better fill up,
and this is the bottleneck.

5

Last week:
Global Min-Cut: when things cancelled nicely

Suppose we contract n —t edges, until
there are t supernodes remaining.

e Suppose the first n-t edges that we choose are
€1, €y, vy €14
* PR[none of the e, cross S* (up to the n-t'th)]

t-(t—1)
n-(n—1)

Choose t = n/+/2

n(n
= V2 (\E) ~ 1 when n is large
n-(n—1) 2

Algorithms

Last week

s-t min-cut: Ford-Fulkerson
Global min-cut: Karger-Stein

* Min-Cut problem

Possible Algorithms?

Today

WM

* Max-Cut problem

Max-Cut is NP-hard

* The Max-Cut problem is NP-hard
* We won’t formally discuss what this means (CS103, CS154, etc)
* But we are unlikely to find efficient algorithms (“unless P=NP”)
* So there are no efficient algorithms ®

Oh well, see you on Thursday!

Max-Cut is NP-hard

Coping with NP-hardness

* Option 1: making more assumptions on the inputs

* In the DP lecture, we saw an algorithm for
Maximal Weight Independent Set on trees

* Max-Cut has an efficient algorithm if the graph is “planar”
* In practice, a common assumption is that real instances are “nice”

ﬁ What does “nice” mean?

Plucky the
pedantic penguin

10

Max-Cut is NP-hard

Coping with NP-hardness
* Option 1: Making more assumptions on the inputs
* Option 2: Approximation algorithms

(we’ll see more on those today!)

11

Max-Cut is NP-hard

Coping with NP-hardness
* Option 1: Making more assumptions on the inputs
* Option 2: Approximation algorithms

* Option 3: Sometimes it’'s OK to run in exponential time
(Only when it’s exponential in a small number!)

12

Approximation Algorithms

Suppose we have an optimization problem P
max f (x)
X

With optimal solution x™.

We say that algorithm A is a¢-approximation for P
iIf it returns solution y such that

f)za-f(x?)

(Note that always f(y) < f(x*),soa < 1.)

13

Approximation Algorithms (min)

Suppose we have an optimization problem P
min f (x)
X

With optimal solution x™.

We say that algorithm A is a-approximation for P
iIf it returns solution y such that

f) <a-f(x?)

(Note that always f(y) = f(x*),soa = 1.)

Remember:
a closer to 1 is better

14

Today

* Max-Cut problem

Approximation Algorithms
Greedy
Randomized

15

Algorithm 1: Greedy

(Iteratively add vertices
to the side that maximizes the cut)

16

Algorithm 1: Greedy

Greedy_MaxCut(¢G = (V,E)):
e A,B « (@
* ForiinV:
* |f (# of edges from i to A) > (# of edges from i to B)
* B« BU{i}
 Else
e A< AU {i}
e Return A4, B

17

Algorithm 1: Greedy

\ - VI

Does it work? -

* Claim: Greedy MaxCut is a 1/2-approximation algorithm.

Greedy_MaxCut(G¢G = (V,E)):

e AB« Q@
e Foriinl:
Think-Pair-Share: * |f more edges fromito A
Why is the claim true? * B« BU{i}
Bonus: how would you prove it? e Else
2X Bonus: what about more than 1/2? e Ae AU

e Return 4, B

18

Greedy: 1/2-approximation
Claim: Greedy MaxCut is a 1/2-approximation algorithm.

Proof:
At iteration i, at least 1/2 of the edges fromito AU B
are added to the cut.

In total, the cut returned by Greedy MaxCut contains at
least 1/2 of all the edges in the graph.

Therefore, the cut returned by Greedy MaxCut contains
at least 1/2 as many edges as the optimum.

ALG > |E|/2 = OPT/2

19

Algorithm 1: Greedy

\VO)

\ .~
e

Does it work?
* Claim: Greedy MaxCut is a 1/2-approximation algorithm.
* What about better than 1/2-approximation?

20

Can Greedy beat 1/27

This is the complete bipartite graph.
In this graph, all the edges belong to max-cut,
and the greedy solution will always be optimal!

Size of optimal cut = (n/2)?

21

Can Greedy beat 1/27

What happens when we remove 1 edge for each vertex?

22

Can Greedy beat 1/27 =

Suppose that Greedy first considers vertices a,b:
Since we haven’t seen any edges, both will be added to A

23

Conclusion:
Greedy’s approximation factor is

Can Greedy beat 1/27? V200 g

If the algorithm now proceeds to c,d,
it’ll add them to B
...and so on

Size of optimal cut = (n/2)? — n/2
Size of Greedy’s cut =(n/2)?%/2

24

Algorithm 1: Greedy

\ -)

Does it work? -

* Claim: Greedy MaxCut is a 1/2-approximation algorithm
* Claim: Greedy MaxCut is not much better than 1/2-approx
* Can other algorithms get better approximation?

Goemans-Williamson Algorithm
(You’re not responsible

for this rectangle)

Approximates Max-Cut to within 0.878-factor

Uses Semi-Definite Programming (SDP)

Runs in polynomial time

Whether 0.878 is optimal is an important open problem
(“Unique Games Conjecture”)

25

Algorithm 1: Greedy

\ s W)

Does it work?
* Claim: Greedy MaxCut is a 1/2-approximation algorithm
* Claim: Greedy MaxCut is not much better than 1/2-approx

Is it fast?
* Yes! O(n + m)
e Can we do faster?

(Note: faster algorithms can’t even read the entire input!)

26

Algorithm 2: Random cut!

27

Algorithm 2: Random cut!

Random_MaxCut(G = (V,E)):
e A,B « (@
* ForiinV:

* Addi to A or B at random

e Return 4, B

28

Algorithm 2: Random cut!

Does it work?

* Claim: Random_MaxCut is a 1/2-approximation algorithm
in expectation.

Think-Pair-Share:
Prove the claim!

29

Random: 1/2-approximation

Claim:
Random_MaxCut is a 1/2-approximation algorithm in expectation.

Proof:
Every edge has probability exactly 1/2 of crossing the cut

In expectation, the cut returned by Random_MaxCut contains
exactly 1/2 of all the edges in the graph.

Therefore, in expectation, the cut returned by Random_MaxCut
contains at least 1/2 as many edges as the optimum.

E[ALG] = |E|/2 = OPT /2

30

Algorithm 2: Random cut!

Does it work?

* Claim: Random_MaxCut is a 1/2-approximation algorithm
in expectation.

Is it fast?

* Very fast, O(n) time!
(Faster than reading the input!) ~ 4

31

Vertex Cover

Def’'n:
A vertex cover is a set S of vertices that “covers” all
the edges (i.e. each edge has an endpoint in).

32

Vertex Cover Problem

Input: ¢ = (V,E)
Output: Smallest vertex cover S € V

Obstacle: This problem is also NP-hard
Today: Approximation algorithm!

Think-Pair-Share:
Design an approx. algorithm!

33

Attempt 1: Greedy

Looks good! ©

34

Attempt 1: Greedy

How about this graph?

Conclusion:

Greedy’s approximation factor is
Q(n)

Since this is a min problem,
the approx. factor is > 1.
(We still want to be close to 1)

L’“l{?
Plucky the
pedantic penguin

35

Attempt 1: Greedy

What went wrong?

Consider edge (x,y) -
we have two choices:
Add x or y to the cover.

We probably should’ve picked y
since it has higher degree
(so it covers more edges)

This suggests another
greedy algorithm...

36

Attempt 2: DegreeGreedy

(O

DegreeGreedy (¢ = (V,E)):
e S0
* While E isn’t empty

* UV « arg max deg(v)

e Addv*to S
* Remove v™*’s edges from E

e Return S

Looks good...?

Attempt 2: DegreeGreedy

[On whiteboard: What went wrong?

example where DegreeGreedy Consider edge (xy) -
has a bad approximation] 5 ,.y
we have two choices:

Add x or y to the cover.

Conclusion: And we really don’t know

Greedy’s approximation factor is i _
Q(logn) which one is better...

38

Attempt 3: Take both x and y!

39

Attempt 3: Take both x and y!

Approx_VertexCover (¢ = (V,E)):
e S0
* While E isn’t empty

* (X,y) « arbitrary edge € E

* Addxandyto S

 Remove their edges from E

e Return S

40

Attempt 3: Take both x and y!

Does it work?
* Claim: Approx_VertexCover is a 2-approximation algorithm

* Proof:

A7
.. "%‘% !

3

{ T P\

Think-Pair-Share!

41

Attempt 3: Take both x and y!

A VC (G = (V,E)):
Claim: Approx VCis a pprox_VC ((V,E))

2-approximation algorithm S0
* While E isn’t empty
Proof * (X,y) < arbitrary edge
The edges selected by the Approx_VC: e AddxandytoS
1. Don’t share any endpoints e Remove their edges
2. We need = 1 vertex for each edge e Return S

Therefore, OPT > (# edges)

The cover S that we return has 2
vertices for each edge
Therefore, ALG = 2(# edges)

ALG < 20PT

42

Attempt 3: Take both x and y!

Does it work?
* Claim: Approx_VertexCover is a 2-approximation algorithm

* Proof idea:
V edge (x,y), we have to add at least one of x,y to S;
adding both x,y only costs a factor of 2.

Better approximation?

Open problem!
(also related to “Unique Games Conjecture”)

(You’re not responsible
for this rectangle)

43

Attempt 3: Take both x and y!

Does it work?
* Claim: Approx_VertexCover is a 2-approximation algorithm

* Proof idea:
V edge (x,y), we have to add at least one of x,y to S;

adding both x,y only costs a factor of 2.

Is it fast?
O(n+m)

44

Recap

Coping with NP-hard problems
* Useful special cases
e Approximation algorithms
* Exponential time algorithms

Max-Cut

* Greedy algorithm is a 1/2-approximation algorithm

e Random cut is also 1/2-approximation algorithm
(in expectation)

Min Vertex Cover
* Take-both-endpoints-of-an-edge is a 2-approximation

45

Next Time

* CS161 recap + the world beyond

Before next time

* Review session in section!

46

Next Tuesday (12/11)

* Finally, your final!
Hewlett 200 3:30-6:30

 New: partial credit for wrong algorithms.
* You have to clearly state that the algorithm is incorrect

* + short explanation of why the algorithm is incorrect
+ short explanation of why you’re stuck

 Demonstrate some knowledge of course material

* Read instructions carefully!

* We really hate taking off points because you didn’t
understand the question (and we know you hate it too...)

47

F| n a | :) | a n (This is just my guess!)

—

1. A few short questions (25 pts ~ 30 min)

2. Choose 3 out of 4:

Design+analyze an algorithm (25 pts ~ 50 min each)
(Note: this is NOT best 3 out of 4)

Study resources:

Practice sl

HW, Sections,
Lecture notes

48

Course Feedback

* You've done a great job giving feedback
throughout the quarter, let’s do it one more time!
(This one is “official”.)

* | will only be see to aggregate, anonymous responses.
* Your course feedback is very important.

e Axess > Student > Course and Section Evaluations

