
Lecture 17
Approximation algorithms:
Max-Cut and Vertex Cover

2

Last week

• Min-Cut problem

Part 1 Part 2

Algorithms

s-t min-cut: Ford-Fulkerson

Global min-cut: Karger-Stein

3

Last week: s-t Min-Cut
Max-flow min-cut theorem

t s

4

2

6

3

6

3

3

10

4

4

4

2

2

6

6

4

3

1

3

4 3

4

5

5

1

2

The value of a max flow from s to t
is equal to

the cost of a min s-t cut.
Intuition: in a max flow,
the min cut better fill up,
and this is the bottleneck.

USA: s-t Min-Cut
USSR: s-t Max-Flow

4

h

g

e

f b

d

a

c

h

g

e

f

d

a,b

c

h

e

d

a,b

c

f,g

h

e

d

a,b

c

f,g

h

e

d

a,b

c

f,g

e

d

a,b

c

f,g,h

h
d

a,b,e

c

f,g

Contract!

Contract!

Contract!
Contract!

FORK!

etc
etc

This branch
made a bad

choice.

But it’s okay since
this branch made

a good choice.

Last week:
Global Min-Cut

5

• Suppose the first n-t edges that we choose are

e1, e2, …, en-t

• PR[none of the ei cross S* (up to the n-t’th)]

 =
𝑛−2

𝑛

𝑛−3

𝑛−1

𝑛−4

𝑛−2

𝑛−5

𝑛−3

𝑛−6

𝑛−4
⋯

𝑡+1

𝑡+3

𝑡

𝑡+2

𝑡−1

𝑡+1

 =
𝑡⋅(𝑡−1)

𝑛⋅(𝑛−1)

 =

𝑛

2
⋅

𝑛

2
−1

𝑛⋅(𝑛−1)
≈

𝟏

𝟐

Choose 𝒕 = 𝒏/ 𝟐

when n is large

Suppose we contract n – t edges, until
there are t supernodes remaining.

Last week:
Global Min-Cut: when things cancelled nicely

6

Last week

• Min-Cut problem

Part 1 Part 2

Algorithms

s-t min-cut: Ford-Fulkerson

Global min-cut: Karger-Stein

7

Today

• Max-Cut problem

Part 1

Part 2

Possible Algorithms?

Max-Cut Min-Flow??

Contract random non-edge??

8

Max-Cut is NP-hard

• The Max-Cut problem is NP-hard
• We won’t formally discuss what this means (CS103, CS154, etc)

• But we are unlikely to find efficient algorithms (“unless P=NP”)

• So there are no efficient algorithms 

Oh well, see you on Thursday!

9

Max-Cut is NP-hard

Coping with NP-hardness

• Option 1: making more assumptions on the inputs
• In the DP lecture, we saw an algorithm for

 Maximal Weight Independent Set on trees

• Max-Cut has an efficient algorithm if the graph is “planar”

• In practice, a common assumption is that real instances are “nice”

Plucky the
pedantic penguin

What does “nice” mean?

10

Max-Cut is NP-hard

Coping with NP-hardness

• Option 1: Making more assumptions on the inputs

• Option 2: Approximation algorithms

 (we’ll see more on those today!)

11

Max-Cut is NP-hard

Coping with NP-hardness

• Option 1: Making more assumptions on the inputs

• Option 2: Approximation algorithms

• Option 3: Sometimes it’s OK to run in exponential time
 (Only when it’s exponential in a small number!)

12

Approximation Algorithms

Suppose we have an optimization problem 𝑷
max

𝑥
𝑓(𝑥)

With optimal solution 𝑥∗.

We say that algorithm 𝑨 is 𝛼-approximation for 𝑷
if it returns solution 𝑦 such that

𝑓 𝑦 ≥ 𝛼 ⋅ 𝑓(𝑥∗)

(Note that always 𝑓 𝑦 ≤ 𝑓 𝑥∗ , so 𝛼 ≤ 1.)

13

Approximation Algorithms (min)

Suppose we have an optimization problem 𝑷
min

𝑥
𝑓(𝑥)

With optimal solution 𝑥∗.

We say that algorithm 𝑨 is 𝛼-approximation for 𝑷
if it returns solution 𝑦 such that

𝑓 𝑦 ≤ 𝛼 ⋅ 𝑓(𝑥∗)

(Note that always 𝑓 𝑦 ≥ 𝑓 𝑥∗ , so 𝛼 ≥ 1.)

Remember:
𝛼 closer to 1 is better

14

Today

• Max-Cut problem

Part 1

Part 2

Approximation Algorithms

Greedy

Randomized

15

Algorithm 1: Greedy (Iteratively add vertices
 to the side that maximizes the cut)

16

Algorithm 1: Greedy

Greedy_MaxCut(𝐺 = (𝑉, 𝐸)):

• 𝐴, 𝐵 ← ∅

• For 𝑖 in 𝑉:

• If (# of edges from 𝑖 to 𝐴) > (# of edges from 𝑖 to 𝐵)

• 𝐵 ← 𝐵 ∪ *𝑖+

• Else

• 𝐴 ← 𝐴 ∪ *𝑖+

• Return 𝐴, 𝐵

17

Algorithm 1: Greedy

Does it work?

• Claim: Greedy_MaxCut is a 1/2-approximation algorithm.

Think-Pair-Share:
Why is the claim true?

Bonus: how would you prove it?
2X Bonus: what about more than 1/2?

Greedy_MaxCut(𝐺 = (𝑉, 𝐸)):

• 𝐴, 𝐵 ← ∅

• For 𝑖 in 𝑉:

• If more edges from 𝑖 to 𝐴

• 𝐵 ← 𝐵 ∪ *𝑖+

• Else

• 𝐴 ← 𝐴 ∪ *𝑖+

• Return 𝐴, 𝐵

18

Greedy: 1/2-approximation

Claim: Greedy_MaxCut is a 1/2-approximation algorithm.

Proof:
At iteration 𝑖, at least 1/2 of the edges from 𝑖 to 𝐴 ∪ 𝐵
are added to the cut.

In total, the cut returned by Greedy_MaxCut contains at
least 1/2 of all the edges in the graph.

Therefore, the cut returned by Greedy_MaxCut contains
at least 1/2 as many edges as the optimum.

 𝐴𝐿𝐺 ≥ |𝐸|/2 ≥ 𝑂𝑃𝑇/2

19

Algorithm 1: Greedy

Does it work?

• Claim: Greedy_MaxCut is a 1/2-approximation algorithm.

• What about better than 1/2-approximation?

20

This is the complete bipartite graph.
In this graph, all the edges belong to max-cut,
and the greedy solution will always be optimal!

Size of optimal cut = 𝑛/2 2

Can Greedy beat 1/2?

21

What happens when we remove 1 edge for each vertex?

Can Greedy beat 1/2?

22

Can Greedy beat 1/2?

b

Suppose that Greedy first considers vertices a,b:
Since we haven’t seen any edges, both will be added to 𝑨

a a b

23

Can Greedy beat 1/2?

c

d

If the algorithm now proceeds to c,d,
it’ll add them to 𝑩
… and so on

a

c

a b

d

Size of optimal cut = 𝑛/2 2 − 𝑛/2
Size of Greedy’s cut = 𝑛/2 2/2

Conclusion:
Greedy’s approximation factor is

1/2 + 𝑂(1/𝑛)

c

24

Algorithm 1: Greedy

Does it work?

• Claim: Greedy_MaxCut is a 1/2-approximation algorithm

• Claim: Greedy_MaxCut is not much better than 1/2-approx

• Can other algorithms get better approximation?

Goemans-Williamson Algorithm

• Approximates Max-Cut to within 0.878-factor
• Uses Semi-Definite Programming (SDP)
• Runs in polynomial time
• Whether 0.878 is optimal is an important open problem

 (“Unique Games Conjecture”)

(You’re not responsible
for this rectangle)

25

Algorithm 1: Greedy

Does it work?

• Claim: Greedy_MaxCut is a 1/2-approximation algorithm

• Claim: Greedy_MaxCut is not much better than 1/2-approx

Is it fast?

• Yes! 𝑂 𝑛 + 𝑚

• Can we do faster?

(Note: faster algorithms can’t even read the entire input!)

26

?

?

Algorithm 2: Random cut!

?

?

?

?

?

?

27

Algorithm 2: Random cut!

?

?

?

?

?

?

?
?

Random_MaxCut(𝐺 = (𝑉, 𝐸)):

• 𝐴, 𝐵 ← ∅

• For 𝑖 in 𝑉:

• Add 𝑖 to 𝐴 or 𝐵 at random

• Return 𝐴, 𝐵

28

Algorithm 2: Random cut!

?

?

?

?

?

?

?
?

Does it work?

• Claim: Random_MaxCut is a 1/2-approximation algorithm
 in expectation.

Think-Pair-Share:
Prove the claim!

29

Random: 1/2-approximation

Claim:
Random_MaxCut is a 1/2-approximation algorithm in expectation.

Proof:
Every edge has probability exactly 1/2 of crossing the cut

In expectation, the cut returned by Random_MaxCut contains
exactly 1/2 of all the edges in the graph.

Therefore, in expectation, the cut returned by Random_MaxCut
contains at least 1/2 as many edges as the optimum.

 E*𝐴𝐿𝐺+ ≥ |𝐸|/2 ≥ 𝑂𝑃𝑇/2

30

Algorithm 2: Random cut!

?

?

?

?

?

?

?
?

Does it work?

• Claim: Random_MaxCut is a 1/2-approximation algorithm
 in expectation.

Is it fast?

• Very fast, 𝑂 𝑛 time!
(Faster than reading the input!)

31

Vertex Cover

Def’n:
A vertex cover is a set 𝑺 of vertices that “covers” all
the edges (i.e. each edge has an endpoint in 𝑺).

Yes! No! Yes!

32

Vertex Cover Problem

Input: 𝐺 = (𝑉, 𝐸)

Output: Smallest vertex cover 𝑆 ⊆ 𝑉

Obstacle: This problem is also NP-hard

Today: Approximation algorithm!

Yes!

Think-Pair-Share:
Design an approx. algorithm!

33

Attempt 1: Greedy

Looks good! 

34

Attempt 1: Greedy

How about this graph?

Conclusion:
Greedy’s approximation factor is

Ω(𝑛)

Plucky the
pedantic penguin

Since this is a min problem,
the approx. factor is > 1.
(We still want to be close to 1)

35

Attempt 1: Greedy

What went wrong?

Consider edge (x,y) -
we have two choices:
Add x or y to the cover.

We probably should’ve picked y
since it has higher degree
(so it covers more edges)

This suggests another
 greedy algorithm…

36

Attempt 2: DegreeGreedy

Looks good…?

DegreeGreedy (𝐺 = (𝑉, 𝐸)):

• 𝑆 ← ∅

• While 𝐸 isn’t empty

• 𝑣∗ ← arg max
𝑣∈𝑉

deg(𝑣)

• Add 𝑣∗ to 𝑆

• Remove 𝑣∗’s edges from 𝐸

• Return 𝑆

37

Attempt 2: DegreeGreedy

[On whiteboard:
example where DegreeGreedy
has a bad approximation]

Conclusion:
Greedy’s approximation factor is

Ω(log 𝑛)

What went wrong?

Consider edge (x,y) -
we have two choices:
Add x or y to the cover.

And we really don’t know
 which one is better…

38

Attempt 3: Take both x and y!

39

Attempt 3: Take both x and y!

Approx_VertexCover (𝐺 = (𝑉, 𝐸)):

• 𝑆 ← ∅

• While 𝐸 isn’t empty

• (x, y) ← arbitrary edge ∈ 𝐸

• Add 𝑥 and 𝑦 to 𝑆

• Remove their edges from 𝐸

• Return 𝑆

40

Attempt 3: Take both x and y!

Does it work?

• Claim: Approx_VertexCover is a 2-approximation algorithm

• Proof:

Think-Pair-Share!

41

Attempt 3: Take both x and y!

Approx_VC (𝐺 = (𝑉, 𝐸)):

• 𝑆 ← ∅

• While 𝐸 isn’t empty

• (x, y) ← arbitrary edge

• Add 𝑥 and 𝑦 to 𝑆

• Remove their edges

• Return 𝑆

Claim: Approx_VC is a
2-approximation algorithm

Proof
The edges selected by the Approx_VC:
1. Don’t share any endpoints
2. We need ≥ 1 vertex for each edge
Therefore, 𝑂𝑃𝑇 ≥ # edges

The cover 𝑆 that we return has 2
vertices for each edge
Therefore, 𝐴𝐿𝐺 = 2 # edges

𝐴𝐿𝐺 ≤ 2𝑂𝑃𝑇

42

Attempt 3: Take both x and y!

Does it work?

• Claim: Approx_VertexCover is a 2-approximation algorithm

• Proof idea:
 ∀ edge (x,y), we have to add at least one of x,y to S;
 adding both x,y only costs a factor of 2.

Better approximation?

Open problem!
(also related to “Unique Games Conjecture”)

(You’re not responsible
for this rectangle)

43

Attempt 3: Take both x and y!

Does it work?

• Claim: Approx_VertexCover is a 2-approximation algorithm

• Proof idea:
 ∀ edge (x,y), we have to add at least one of x,y to S;
 adding both x,y only costs a factor of 2.

Is it fast?

 𝑂(𝑛 + 𝑚)

44

Recap

Coping with NP-hard problems
• Useful special cases

• Approximation algorithms

• Exponential time algorithms

Max-Cut
• Greedy algorithm is a 1/2-approximation algorithm

• Random cut is also 1/2-approximation algorithm
 (in expectation)

Min Vertex Cover
• Take-both-endpoints-of-an-edge is a 2-approximation

45

Next Time

• CS161 recap + the world beyond

• Review session in section!

Before next time

46

Next Tuesday (12/11)

• Finally, your final!
Hewlett 200 3:30-6:30

• New: partial credit for wrong algorithms.
• You have to clearly state that the algorithm is incorrect
• + short explanation of why the algorithm is incorrect

+ short explanation of why you’re stuck
• Demonstrate some knowledge of course material

• Read instructions carefully!
• We really hate taking off points because you didn’t

understand the question (and we know you hate it too…)

47

Final plan
1. A few short questions (25 pts ~ 30 min)

2. Choose 3 out of 4:
Design+analyze an algorithm (25 pts ~ 50 min each)
(Note: this is NOT best 3 out of 4)

Study resources:

(This is just my guess!)

Practice
Problems

Review
session

HW, Sections,
Lecture notes Office

Hours

Piazza

Classmates

Textbooks

48

Course Feedback

• You’ve done a great job giving feedback
throughout the quarter, let’s do it one more time!
(This one is “official”.)

• I will only be see to aggregate, anonymous responses.

• Your course feedback is very important.

• Axess > Student > Course and Section Evaluations

