Lecture 5
Sorting lower bounds and $O(n)$-time sorting
Announcements

• HW3 posted Today
• HW3 is not for submission, but it is the best way to prepare for your midterm.

• BTW, Midterm 1 is a week from today (but you already knew that...)

• Please send any OAE letters to our head CAs (rmu, dkm0713) ASAP.
Last time: Quicksort

We want to sort this array.

First, pick a “pivot.”
(There are a few ways to do this...)

Next, partition the array into “bigger than 5” or “less than 5”

L = array with things smaller than A[pivot]
R = array with things larger than A[pivot]

Recurse on L and R:
Last time: pseudocode

- **QuickSort(A):**
 - **If** len(A) <= 1:
 - **return**
 - Pick some x = A[i] **at random.** Call this the **pivot.**
 - **PARTITION** the rest of A into:
 - L (less than x) and
 - R (greater than x)
 - Replace A with [L, x, R] (that is, rearrange A in this order)
 - **QuickSort(L)**
 - **QuickSort(R)**
Last time: Analysis
- by counting comparisons

\[P(X_{a,b} = 1) \]

= probability \(a, b\) are ever compared
= probability that one of \(a, b\) are picked first out of all of the \(b - a + 1\) numbers between them.

\[= \frac{2}{b - a + 1} \]

Total Comparisons

\[= \sum_{a=1}^{n} \sum_{b=a+1}^{n} \frac{2}{b - a + 1} \leq 2n \ln n \]
Sorting

- We’ve seen a few $O(n \log(n))$-time algorithms.
 - MERGESORT has worst-case running time $O(n \log(n))$
 - QUICKSORT has expected running time $O(n \log(n))$

Can we do better?

Depends on whom you ask...
Today: can you beat $n \log n$?

• Comparison-based sorting model
 • This includes MergeSort, QuickSort, InsertionSort
 • We’ll see that any algorithm must take at least $\Omega(n \log(n))$ steps.

• Faster sorting in other models
 • StickSort – time $O(1)$
 • BucketSort and RadixSort - time $O(n)$
An $O(1)$-time algorithm for sorting: StickSort

- Problem: sort these n sticks by length.

- Algorithm:
 - Drop them on a table.

- Now they are sorted this way.
That may have been unsatisfying

• But **StickSort** does raise some important questions:
 • What is our model of computation?
 • Input: array
 • Output: sorted array
 • Operations allowed: comparisons

 -vs-

 • Input: sticks
 • Output: sorted sticks in vertical order
 • Operations allowed: dropping on tables

• What are reasonable models of computation?
Today: can you beat $n \log n$?

- Comparison-based sorting model
 - This includes MergeSort, QuickSort, InsertionSort
 - We’ll see that any algorithm must take at least $\Omega(n \log(n))$ steps.

- Faster sorting in other models
 - StickSort – time $O(1)$
 - BucketSort and RadixSort - time $O(n)$
Comparison-based sorting

NO.

CAN'T BEAT NLOG(N)
Comparison-based sorting model

There is a genie who knows what the right order is. The genie can answer YES/NO questions of the form: is [this] bigger than [that]?

Want to sort these items. There’s some ordering on them, but we don’t know what it is.

Algorithm

The algorithm’s job is to output a correctly sorted list of all the objects.

There is a genie who knows what the right order is.

The genie can answer YES/NO questions of the form: is [this] bigger than [that]?
All the sorting algorithms we have seen work like this.

eg, QuickSort:

```
7 6 3 5 1 4 2
```

Is 7 bigger than 5? **YES**

Is 6 bigger than 5? **YES**

Is 3 bigger than 5? **NO**

etc.
Lower bound of $\Omega(n \log(n))$.

• Theorem:
 • Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.
 • Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

• How might we prove this?

 1. Consider all comparison-based algorithms, one-by-one, and analyze them.

 2. Don’t do that. Instead, argue that all comparison-based sorting algorithms give rise to a decision tree. Then analyze decision trees.
Decision trees

Sort these three things.

etc...
All comparison-based algorithms look like this

Example: Sort these three things using QuickSort.

In either case, we’re done (after some base case stuff and returning recursive calls).

Then we’re done (after some base-case stuff)
All comparison-based algorithms have an associated decision tree.

The leaves of this tree are all possible orderings of the items: when we reach a leaf we return it.

What does the decision tree for MERGESORTING four elements look like?

Running the algorithm on a given input corresponds to taking a particular path through the tree.
What’s the runtime on a particular input?

At least the number of comparisons that are made on that input.

If we take this path through the tree, the runtime is Ω(length of the path).
What’s the **worst-case** runtime?

At least $\Omega(\text{length of the longest path})$.
How long is the longest path?

We want a statement: in all such trees, the longest path is at least _____

Think-Pair-Share!
How long is the longest path?

We want a statement: in all such trees, the longest path is at least _____

• This is a binary tree with at least _____ leaves.

• The shallowest tree with n! leaves is the completely balanced one, which has depth _____.

• So in all such trees, the longest path is at least log(n!).

• log(n!) = \Omega(n \log(n))
 [on the board / Stirling’s approx*].

Conclusion: the longest path has length at least \Omega(n \log(n)).
Lower bound of $\Omega(n \log(n))$.

• Theorem:
 • Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

• Proof recap:
 • Any deterministic comparison-based algorithm can be represented as a decision tree with $n!$ leaves.
 • The worst-case running time is at least the depth of the decision tree.
 • All decision trees with $n!$ leaves have depth $\Omega(n \log(n))$.
 • So any comparison-based sorting algorithm must have worst-case running time at least $\Omega(n \log(n))$.
Aside:
What about randomized algorithms?

• For example, QuickSort?

• Theorem:
 • Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

• Proof:
 • see lecture notes
 • (same ideas as deterministic case)

\end{Aside}
So that’s bad news.

- Theorem:
 - Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

- Theorem:
 - Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

But look on the bright side!
The good news:

MergeSort is optimal!

- This is one of the cool things about lower bounds like this: we know when we can declare victory!
Today: can you beat $n \log n$?

• Comparison-based sorting model
 • This includes MergeSort, QuickSort, InsertionSort
 • We’ll see that any algorithm must take at least $\Omega(n \log(n))$ steps.

• Faster sorting in other models
 • StickSort – time $O(1)$
 • BucketSort and RadixSort - time $O(n)$
2 minute pep talk
Today: can you beat $n \log n$?

- Comparison-based sorting model
 - This includes MergeSort, QuickSort, InsertionSort
 - We’ll see that any algorithm must take at least $\Omega(n \log(n))$ steps.

- Faster sorting in other models
 - StickSort – time $O(1)$
 - BucketSort and RadixSort - time $O(n)$
Beyond comparison-based sorting algorithms

YES!

WE CAN DO WAY BETTER!
Another model of computation

• The items you are sorting have meaningful values.

Instead of

9 6 3 5 2 1 2
Why might this help?

BucketSort:

Note: this is a simplification of what CLRS calls “BucketSort”

Implement the **buckets** as linked lists. They are first-in, first-out. This will be useful later.

In time $O(n)$.

Concatenate the buckets!

SORTED!
Issues

• Need to be able to know what bucket to put something in.
 • Where does \(\text{fire truck} \) go?
 • That’s okay for now: it’s part of the model.

• Need to know what values might show up ahead of time.

\[
\begin{array}{cccccc}
2 & 12345 & 13 & 2^{1000} & 50 & 100000000 & 1 \\
\end{array}
\]

• Space...
One solution: **RadixSort**

Say we’re sorting integers.

- **Idea:** BucketSort on the least-significant digit first, then the next least-significant, and so on.

Step 1: BucketSort on LSB:

```
21  345  13  101  50  234  1
```

```
0   1   2   3   4   5   6   7   8   9
```

```
50  21  101  21  13  234  345  345
```
Step 2: BucketSort on the 2nd digit

\begin{align*}
50 & \quad 21 & \quad 101 & \quad 1 & \quad 13 & \quad 234 & \quad 345 \\
\begin{array}{c}
\begin{array}{c}
1 \\
101
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
13
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
21
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
234
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
345
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
50
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
1
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
2
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
3
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
4
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
5
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
6
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
7
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
8
\end{array}
\end{array} &
\begin{array}{c}
\begin{array}{c}
9
\end{array}
\end{array}
\end{align*}
Step 3: BucketSort on the 3rd digit

It worked!!
Why does this work?

Original array:

| 21 | 345 | 13 | 101 | 50 | 234 | 1 |

Next array is sorted by the first digit.

| 50 | 21 | 101 | 1 | 13 | 234 | 345 |

Next array is sorted by the first two digits.

| 101 | 01 | 13 | 21 | 234 | 345 | 50 |

Next array is sorted by all three digits.

| 001 | 013 | 021 | 050 | 101 | 234 | 345 |

Sorted array
Formally...

• Argue by induction.
• Inductive hypothesis:

Or at least a little formally!

Lucky the lackadaisical lemur
Why does this work?

Original array:

![Original array]

Next array is sorted by the first digit.

![Next array sorted by first digit]

Next array is sorted by the first two digits.

![Next array sorted by first two digits]

Next array is sorted by all three digits.

![Next array sorted by all three digits]

Sorted array
Formally...

• Argue by induction.
• Inductive hypothesis:
 • After the k’th iteration, the array is sorted by the first k least-significant digits.
• Base case:
 • “Sorted by 0 least-significant digits” means not sorted.
• Inductive step:
 • (See lecture notes or CLRS)
• Conclusion:
 • After the d’th iteration, the array is sorted by the d least-significant digits. Aka, it’s sorted.
What is the running time?

• Say they are \textbf{d-digit} numbers.
 • There are \textit{d} iterations.
 • Each iteration takes time \(O(n + 10) = O(n)\)
• Total time: \(O(nd)\).

• Say the biggest integer is \(M\). What is \(d\)?
 • \(d = \lfloor \log_{10}(M) \rfloor + 1\)
 • so \(O(nd) = O(n \log_{10}(M))\).

Can we do better?

what if \(M = n\)?
Trade-offs...

• RadixSort works with any base.
• Before we did it base $r=10$.
• But we could do it base $r=2$ or $r=20$ just as easily.

• Running time for general r and M?

Think-Pair-Share!
Reminder: running time with base 10

- Say they are d-digit numbers.
 - There are d iterations.
 - Each iteration takes time $O(n + 10) = O(n)$
- Total time: $O(nd)$.
- Say the biggest integer is M. What is d?
 - $d = \lfloor \log_{10}(M) \rfloor + 1$
 - so $O(nd) = O(n \log_{10}(M))$.

The “10” is because we are working base 10.
Trade-offs...

• RadixSort works with any base.
• Before we did it base $r=10$.
• But we could do it base $r=2$ or $r=20$ just as easily.

• Running time for general r and M?
 • \([On board]\)
 • If we choose $r = n$, running time is
 \[T(n) = O(n \cdot \lfloor \log_n(M) \rfloor) \]
 • If $M = O(n)$, $T(n) = O(n)$. Awesome!
 • If $M = \Omega(n^n)$, $T(n) = O(n^2)$...

Choosing $r = n$ is pretty good. What’s the optimal choice of r?

Ollie the over-achieving ostrich
Trade-offs ctd...

• There are n numbers, biggest one is M.
• What should we choose for r (in terms of M,n)?

There’s some sweet spot... (and maybe it’s growing with M and n?)
The story so far

• If we use a comparison-based sorting algorithm, it MUST run in time $\Omega(n\log(n))$.

• If we assume a bit of structure on the values, we have an $O(n)$-time sorting algorithm.

Why would we ever use a comparison-based sorting algorithm??
Why would we ever use a comparison-based sorting algorithm?

• Lots of precision...

 • We can compare these pretty quickly (just look at the most-significant digit):
 • $\pi = 3.14$.
 • $e = 2.78$.
 • But to do RadixSort we’d have to look at every digit.
 • This is especially problematic since both of these have infinitely many digits...

• RadixSort needs extra memory for the buckets.
 • Not in-place

• I want to sort emoji by talking to a genie.
 • RadixSort makes more assumptions on the input.

Even with integers, if the biggest one is really big, RadixSort is slow.
Recap

• How difficult a problem is depends on the model of computation.
• How reasonable a model of computation is is up for debate.

• Comparison-based sorting model
 • This includes MergeSort, QuickSort, InsertionSort
 • Any algorithm in this model must use at least \(\Omega(n \log(n)) \) operations.

• But if we are sorting small integers (or other reasonable data):
 • BucketSort and RadixSort
 • Both run in time \(O(n) \)
Next time

- Binary search trees!
- Balanced binary search trees!

Before next time

- Go to section
- Send OAE letters