
Lecture 7
HASHING!!!!!

Announcements

ÅNo HW this week

ÅNeeded: OAE note taker!
ÅApply at oaeconnect.stanford.edu

The big picture

Sorting:

ÅɡὲÌÏÇὲ time
ÅMergeSort (Lecture 2)
ÅQuickSort (Lecture 4)

Å/ŀƴΩǘ Řƻ ōŜǘǘŜǊ
ÅComparison model

lower bound (Lecture 5)

Åɡὲ time!!
ÅRadixSort (Lecture 5)

INSERT/DELETE/SEARCH:

ÅɡÌÏÇὲ time
ÅRed-Black Trees (Lecture 6)

Å/ŀƴΩǘ Řƻ ōŜǘǘŜǊ
ÅComparison model lower

bound (Midterm ς bonus Q)

Åɡρ time!!
ÅHash functions

²ŜΩƭƭ ǎŜŜ ŀƴƻǘƘŜǊ
proof next week

Today: hashing

n=9 buckets

1

2

3

9

13

22

43

9
Χ

NIL

NIL

NIL

NIL

Outline

ÅHash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
Ålike self-balancing binary trees
ÅThe difference is we can get better performance in

expectation by using randomness.

ÅHash families are the magic behind hash tables.

ÅUniversal hash families are even more magic.

ÅActually constructing a universal hash family
 Magic becomes real!

Goal:
Just like on last week

ÅWe are interesting in putting nodes with keys into a
data structure that supports fast
INSERT/DELETE/SEARCH.

ÅINSERT

ÅDELETE

ÅSEARCH

5

data structure

5

4

52

HERE IT IS

ƴƻŘŜ ǿƛǘƘ ƪŜȅ άнέ

Today:

ÅHash tables:
ÅO(1) expected time INSERT/DELETE/SEARCH

ÅWorse worst-case performance, but often great in practice.

Last week

ÅSelf balancing trees:
ÅO(log(n)) deterministic INSERT/DELETE/SEARCH

#prettysweet

#evensweeterinpractice

egΣ tȅǘƘƻƴΩǎ dictΣ WŀǾŀΩǎ HashSet/HashMapΣ /ҌҌΩǎ unordered_map

Hash tables are used for databases, caching, object representation, Χ

¸ƻǳΩǾŜ ŀƭǎƻ ōŜŜƴ ǳǎƛƴƎ ŀ
hash ŦΩƴ for feedback

question in HW!

One way to get O(1) time
ÅSay all keys are in the set {1,2,3,4,5,6,7,8,9}.

ÅINSERT:

ÅDELETE:

ÅSEARCH:

9 6 3 5

4 5 6 7 8 9

9 6 3 5

1 2 3

6

3 2

3 is here.

This is called
άŘƛǊŜŎǘ ŀŘŘǊŜǎǎƛƴƎέ

That should look familiar

ÅKind of like BUCKETSORT from Lecture 6.

ÅSame problem: if the keys may come from a
universe U = {1,2, Χ., 10000000000}Χ.

The solution then wasΧ
ÅPut things in buckets based on one digit.

1 2 3 4 5 6 7 8 9 0

3
4
5 50 13 21

101

1

2
3
4

21 345 13 101 50 234 1

INSERT:

Now SEARCH 21

LǘΩǎ ƛƴ ǘƘƛǎ ōǳŎƪŜǘ ǎƻƳŜǿƘŜǊŜΧ
go through until we find it.

22 342 12 102 52 232 2

INSERT:

ProblemΧ

1 2 3 4 5 6 7 8 9 0

3
4
2

52

12

22

102

2

232

Now SEARCH 22
ΧΦǘƘƛǎ ƘŀǎƴΩǘ ƳŀŘŜ
our lives easierΧ

Hash tables

ÅThat was an example of a hash table.
Ånot a very good one, though.

ÅWe will be more clever (and less deterministic) about
our bucketing.

ÅThis will result in fast (expected time)
INSERT/DELETE/SEARCH.

But first! Terminology.
ÅWe have a universe U, of size M.
ÅM is really big.

ÅBut only a few όǎŀȅ ŀǘ Ƴƻǎǘ ƴ ŦƻǊ ǘƻŘŀȅΩǎ ƭŜŎǘǳǊŜύ
elements of M are ever going to show up.
ÅM is waaaayyyyyyy bigger than n.

Å.ǳǘ ǿŜ ŘƻƴΩǘ ƪƴƻǿ ǿƘƛŎƘ ƻƴŜǎ ǿƛƭƭ ǎƘƻǿ ǳǇ ƛƴ ŀŘǾŀƴŎŜΦ

All of the keys in the
universe live in this

blob.

Universe U

A few elements are special
and will actually show up.

Example: U is the set of all strings of at most
140 ascii characters. (128140 of them).

The only ones which I care about are those
which appear as trending hashtags on
twitter. #hashinghashtags
There are way fewer than 128140 of these.

9ȄŀƳǇƭŜǎ ŀǎƛŘŜΣ LΩƳ ƎƻƛƴƎ ǘƻ ŘǊŀǿ ŜƭŜƳŜƴǘǎ ƭƛƪŜ L
always do, as blue boxes with integers in themΧ

The previous example
with this terminology

ÅWe have a universe U, of size M.
Åat most n of which will show up.

ÅM is waaaayyyyyy bigger than n.

ÅWe will put items of U into n buckets.

ÅThere is a hash function h:U Ҧ ϑмΣΧ,n} which says what
element goes in what bucket.

All of the keys in the
universe live in this

blob.

Universe U

n buckets 1

2

3

h(x) = least
significant digit of x.

CƻǊ ǘƘƛǎ ƭŜŎǘǳǊŜΣ LΩƳ ŀǎǎǳƳƛƴƎ ǘƘŀǘ ǘƘŜ
number of things is the same as the

number of buckets, both are n.
¢Ƙƛǎ ŘƻŜǎƴΩǘ ƘŀǾŜ ǘƻ ōŜ ǘƘŜ ŎŀǎŜΣ

although we do want:
#buckets = O(#things which show up)

This is a hash table (with chaining)

ÅArray of n buckets.

ÅEach bucket stores a linked list.
ÅWe can insert into a linked list in time O(1)
ÅTo find something in the linked list takes time O(length(list)).

Åh:U Ҧ {1,Χ,n} can be any function:
Åōǳǘ ŦƻǊ ŎƻƴŎǊŜǘŜƴŜǎǎ ƭŜǘΩǎ ǎǘƛŎƪ ǿƛǘƘ h(x) = least significant digit of x.

n buckets (say n=9)

1

2

3

9

13 22 43

For demonstration
purposes only!

This is a terrible hash
ŦǳƴŎǘƛƻƴΗ 5ƻƴΩǘ ǳǎŜ ǘƘƛǎΗ

9

INSERT:

13

22

43

9

Χ

SEARCH 43:

Scan through all the elements in
bucket h(43) = 3.

Aside: Hash tables with open addressing

ÅThe previous slide is about hash tables with chaining.

Å¢ƘŜǊŜΩǎ ŀƭǎƻ ǎƻƳŜǘƘƛƴƎ ŎŀƭƭŜŘ άƻǇŜƴ ŀŘŘǊŜǎǎƛƴƎέ

ÅRead in CLRS if you are interested!

n=9 buckets

1

2

3

9

13 43

Χ

¢Ƙƛǎ ƛǎ ŀ άŎƘŀƛƴέ

n=9 buckets

1

2

3

9

Χ

13

43

\end{Aside}

This is a hash table (with chaining)

ÅArray of n buckets.

ÅEach bucket stores a linked list.
ÅWe can insert into a linked list in time O(1)
ÅTo find something in the linked list takes time O(length(list)).

Åh:U Ҧ {1,Χ,n} can be any function:
Åōǳǘ ŦƻǊ ŎƻƴŎǊŜǘŜƴŜǎǎ ƭŜǘΩǎ ǎǘƛŎƪ ǿƛǘƘ h(x) = least significant digit of x.

n buckets (say n=9)

1

2

3

9

13 22 43

For demonstration
purposes only!

This is a terrible hash
ŦǳƴŎǘƛƻƴΗ 5ƻƴΩǘ ǳǎŜ ǘƘƛǎΗ

9

INSERT:

13

22

43

9

Χ

SEARCH 43:

Scan through all the elements in
bucket h(43) = 3.

Sometimes this a good idea
Sometimes this is a bad idea

ÅHow do we pick that function so that this is a good idea?
1. We want there to be not many buckets (say, n).
Å¢Ƙƛǎ ƳŜŀƴǎ ǿŜ ŘƻƴΩǘ ǳǎŜ ǘƻƻ ƳǳŎƘ ǎǇŀŎŜ

2. We want the items to be pretty spread-out in the buckets.
ÅThis means it will be fast to SEARCH/INSERT/DELETE

n=9 buckets

1

2

3

9

13

22

43

9

Χ

n=9 buckets

1

2

3

9

13 43

Χ

21

9
3

vs.

Worst-case analysis

ÅDesign a function h: U -> {1,Χ,n} so that:
ÅNo matter what input (fewer than n items of U)

a bad guy chooses, the buckets will be balanced.

ÅHere, balanced means O(1) entries per bucket.

ÅLŦ ǿŜ ƘŀŘ ǘƘƛǎΣ ǘƘŜƴ ǿŜΩŘ ŀŎƘƛŜǾŜ ƻǳǊ ŘǊŜŀƳ ƻŦ
O(1) INSERT/DELETE/SEARCH

Can you come up with
such a function?

Think-Pair-Share!

²Ŝ ǊŜŀƭƭȅ ŎŀƴΩǘ ōŜŀǘ ǘƘŜ ōŀŘ Ǝǳȅ ƘŜǊŜΦ

.

Universe U

h(x)
n buckets

These are all the things that
hash to the first bucket.

ÅThe universe U has M items
ÅThey get hashed into n buckets
ÅAt least one bucket has at least M/n items hashed to it.
ÅM is WAAYYYYY bigger then n, so M/n is bigger than n.
ÅBad guy chooses n of the items that landed in this

very full bucket.

Solution:

Randomness

The game

13 22 43 92

1. An adversary chooses any n items
όȟόȟȣȟό ᶰὟȟ and any sequence
of INSERT/DELETE/SEARCH
operations on those items.

2. You, the algorithm,
chooses a random hash
function ὬȡὟᴼ ρȟȣȟὲ.

3. HASH IT OUT

1

2

3

n

13

22

92

Χ

43
7

7

What does
random mean
here? Uniformly
random?

Plucky the pedantic penguin

INSERT 13, INSERT 22, INSERT 43,
INSERT 92, INSERT 7, SEARCH 43,
DELETE 92, SEARCH 7, INSERT 92

#hashpuns

Example

ÅSay that h is uniformly random.
ÅThat means that h(1) is a uniformly random number

between 1 and n.

Åh(2) is also a uniformly random number between 1 and n,
independent of h(1).

Åh(3) is also a uniformly random number between 1 and n,
independent of h(1), h(2).

ÅΧ

Åh(n) is also a uniformly random number between 1 and n,
independent of h(1), h(2), Χ, h(n-1).

Universe
U

n
 b

u
cke

ts

h

Why should that help?

LƴǘǳƛǘƛǾŜƭȅΥ ¢ƘŜ ōŀŘ Ǝǳȅ ŎŀƴΩǘ Ŧƻƛƭ ŀ ƘŀǎƘ
ŦǳƴŎǘƛƻƴ ǘƘŀǘ ƘŜ ŘƻŜǎƴΩǘ ȅŜǘ ƪƴƻǿΦ

²Ƙȅ ƴƻǘΚ ²Ƙŀǘ ƛŦ ǘƘŜǊŜΩǎ ǎƻƳŜ ǎǘǊŀǘŜƎȅ
that foils a random function with high
probability?

²ŜΩƭƭ ƴŜŜŘ ǘƻ Řƻ ǎƻƳŜ ŀƴŀƭȅǎƛǎΧ

What do we want?

1

2

3

n

14

22

92

Χ

43

8

7 ui 32 5 15

LǘΩǎ bad if lots of items land in uiΩǎ bucket.
So we want not that.

More precisely

1

2

3

n

14

22

92

Χ

43

8

ui

ÅWe want:
ÅFor all ui that the bad guy chose
ÅE[number of items in ui Ψǎ ōǳŎƪŜǘ ϐ 2.

ÅIf that were the case,
ÅFor each operation involving ui
ÅE[time of operation] = O(1)

So, in expectation,
it would takes O(1) time per

INSERT/DELETE/SEARCH
operation.

So we want:

ÅFor all i=1, Χ, n,

E[number of items in ui Ψǎ ōǳŎƪŜǘ ϐ 2.

Aside: why not:
ÅFor all i=1,Χ,n:

E[number of items in bucket i] ___?

1

2

3

n

14 22 92

Χ

43 8

this happens with
probability 1/n

Suppose that:

1

2

3

n

14 22 92

Χ

43 8

and this happens
with probability 1/n

etc.

Then E[number of items in bucket i] = 1 for all i.
But P{ the buckets get big } = 1.

This slide
skipped in class

Expected number of items in uiΩǎ bucket?

Universe U

n
 b

u
cke

ts

h

uj ui

ÅὉ В ὖ Ὤό Ὤό

Å ρ В ὖ Ὤό Ὤό

Å ρ В ρȾὲ

Å ρ ςȢ

¢ƘŀǘΩǎ ǿƘŀǘ
we wanted.

COLLISION!

h is uniformly random

¢ƘŀǘΩǎ ƎǊŜŀǘΗ

ÅFor all i=1, Χ, n,

ÅE[number of items in ui Ψǎ ōǳŎƪŜǘ ϐ 2

ÅThis implies (as we saw before):
ÅFor any sequence of INSERT/DELETE/SEARCH operations on

any n elements of U, the expected runtime (over the
random choice of h) is O(1) per operation.

So, the solution is:

 pick a uniformly random hash function.

The elephant in the room

The elephant in the room

How do we do that?

[ŜǘΩǎ NOT implement this!

ÅSuppose U = { all of the possible hashtags }

ÅIf we completely choose the random function
up front, we have to iterate through all of U.
Å128140 possible ASCII strings of length 140.

Å(More than the number of particles in the universe)

ÅAnd even ignoring the time considerations

ÅWe have to store h(x) for every x L

Issues:

Another thoughtΧ
ÅJust remember h on the relevant values

Algorithm now Algorithm later

13
22

43
92

7

h(13) = 6

h(13) = 6

h(22) = 3

h(92) = 3

How much space does it take

to store h?

ÅFor each element x of U:
Åstore h(x)

Å(which is a random number in {1,Χ,n}).

ÅStoring a number in {1,..,n} takes log(n) bits.

ÅSo storing M of them takes Mlog(n) bits.

ÅIn contrast, direct addressing would require M bits.

Hang on now

ÅSure, that ǿŀȅ ƻŦ ǎǘƻǊƛƴƎ ǘƘŜ ŦǳƴŎǘƛƻƴ Ƙ ǿƻƴΩǘ ǿƻǊƪΦ

Å.ǳǘ ƳŀȅōŜ ǘƘŜǊŜΩǎ ŀƴƻǘƘŜǊ ǿŀȅΚ

Aside: description length

ÅSay I have a set S with s things in it.

ÅI get to write down the elements of S however I like.
Å(in binary)

ÅHow many bits do I need?

S

LΩƭƭ Ŏŀƭƭ ǘƘƛǎ ƻƴŜ άCƛŘƻέ
¢Ƙƛǎ ƻƴŜ ƛǎ ƴŀƳŜŘ άIŜǊŎǳƭŜǎέ Or, 01101011

Or, 101
On board: the answer is log(s)

Space needed to store a random fn h?

ÅSay that this elephant-shaped blob represents the set
of all hash functions.
ÅIt has size nM. (Really big!)

ÅTo write down a random hash function, we need
log(nM) = Mlog(n) bits. L

Solution
ÅPick from a smaller set of functions.

A cleverly chosen subset
of functions. We call such
a subset a hash family.

We need only log|H| bits
to store an element of H.

H

Outline

ÅHash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
Ålike self-balancing binary trees
ÅThe difference is we can get better performance in

expectation by using randomness.

ÅHash families are the magic behind hash tables.

ÅUniversal hash families are even more magic.

ÅActually constructing a universal hash family
 Magic becomes real!

Hash families

ÅA hash family is a collection of hash functions.

έ!ƭƭ ƻŦ ǘƘŜ ƘŀǎƘ ŦǳƴŎǘƛƻƴǎέ ƛǎ
an example of a hash family.

Example:
a smaller hash family

ÅH = { function which returns the least sig. digit,

 function which returns the most sig. digit }

ÅPick h in H at random.

ÅStore just one bit
to remember
which we picked.

This is still a terrible idea!
5ƻƴΩǘ ǳǎŜ ǘƘƛǎ ŜȄŀƳǇƭŜΗ

For pedagogical purposes only!

H

The game

19 22 42 92

1. An adversary (who knows H) chooses any n
items όȟόȟȣȟό ᶰὟȟ and any sequence
of INSERT/DELETE/SEARCH operations on
those items.

2. You, the algorithm, chooses a random hash
function ὬȡὟᴼ πȟȣȟω. Choose it
randomly from H.

3. HASH IT OUT

0

1

2

9 19

22 92

Χ

42

0
0

INSERT 19, INSERT 22, INSERT 42,
INSERT 92, INSERT 0, SEARCH 42,
DELETE 92, SEARCH 0, INSERT 92

#hashpuns

h0 = Most_significant_digit
h1 = Least_significant_digit
H = {h0, h1}

I picked h1

The game

1. An adversary (who knows H) chooses any n
items όȟόȟȣȟό ᶰὟȟ and any sequence
of INSERT/DELETE/SEARCH operations on
those items.

2. You, the algorithm, chooses a random hash
function ὬȡὟᴼ πȟȣȟω. Choose it
randomly from H.

3. HASH IT OUT

0

1

2

9

11

Χ

101

#hashpuns

h0 = Most_significant_digit
h1 = Least_significant_digit
H = {h0, h1}

I picked h1

11
101

111

121

131

141

111

121

131 141

This adversary
could have been
more adversarial!

Outline

ÅHash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
Ålike self-balancing binary trees
ÅThe difference is we can get better performance in

expectation by using randomness.

ÅHash families are the magic behind hash tables.

ÅUniversal hash families are even more magic.

ÅActually constructing a universal hash family
 Magic becomes real!

How to pick the hash family?

ÅDefinitely not like in that example.

Å[ŜǘΩǎ Ǝƻ ōŀŎƪ ǘƻ ǘƘŀǘ ŎƻƳǇǳǘŀǘƛƻƴ ŦǊƻƳ ŜŀǊƭƛŜǊΧ.

H

Expected number of items in uiΩǎ bucket?

Universe U

n
 b

u
cke

ts

h

uj ui

ÅὉ В ὖ Ὤό Ὤό

Å ρ В ὖ Ὤό Ὤό

Å ρ В ρȾὲ

Å ρ ςȢ

So the number
of items in uiΩǎ
bucket is O(1).

COLLISION!

How to pick the hash family?

Å[ŜǘΩǎ Ǝƻ ōŀŎƪ ǘƻ ǘƘŀǘ ŎƻƳǇǳǘŀǘƛƻƴ ŦǊƻƳ ŜŀǊƭƛŜǊΧ.

Å Ὁ ÎÕÍÂÅÒ ÏÆ ÔÈÉÎÇÓ ÉÎ ÂÕÃËÅÔ Ὤό

Å В ὖ Ὤό Ὤό

Å ρ В ὖ Ὤό Ὤό

Å ρ В ρȾὲ

Å ρ ςȢ

ÅAll we needed was that this 1/n.

Strategy

ÅPick a small hash family H, so that when I choose h
randomly from H,

ÆÏÒ ÁÌÌ όȟόᶰὟ ×ÉÔÈ ό όȟ

ὖᶰ Ὤό Ὤό
ρ

ὲ

H

h

ÅA hash family H that satisfies this is
called a universal hash family.
ÅThen we still get O(1)-sized buckets in

expectation.
ÅBut now the space we need is

log(|H|) bits.
ÅHopefully pretty small!

In English: fix any
two elements of U.

The probability
that they collide

under a random h
in H is small.

So the whole scheme will be

n
 b

u
cke

ts

h

ui

Universe U

Choose h randomly
from a universal hash
family H

We can store h in small space
since H is so small.

Probably
these

buckets will
be pretty
balanced.

Universal hash family
[ŜǘΩǎ ǎǘŀǊŜ ŀǘ ǘƘƛǎ ŘŜŦƛƴƛǘƛƻƴ

ÅH is a universal hash family if:
ÅWhen h is chosen uniformly at random from H,

ÆÏÒ ÁÌÌ όȟόᶰὟ ×ÉÔÈ ό όȟ

ὖᶰ Ὤό Ὤό
ρ

ὲ

Check our understandingΧ

ÅH is a universal hash family if:
ÅWhen h is chosen uniformly at random from H,

ÆÏÒ ÁÌÌ όȟόᶰὟ ×ÉÔÈ ό όȟ

ὖᶰ Ὤό Ὤό
ρ

ὲ

ÅH is [something else] if:
ÅWhen h is chosen uniformly at random from H,

ÆÏÒ ÁÌÌ ό ɴ ὟȟÆÏÒ ÁÌÌ ὼɴ πȟȣȟὲ ρȟ

ὖᶰ Ὤό ὼ
ρ

ὲ

Are these
different?

Think-Pair-Share!

Frogs like Ice-cream

Universe = { vanilla, chocolate }
Buckets = { like, dislike }

Toads = different possible ways of distributing items

Statement 1: P[random toad likes vanilla] = ½, P[random toad likes chocolate] = ½
 Pώ άǾŀƴƛƭƭŀέ ƭŀƴŘǎ ƛƴ ǘƘŜ ōǳŎƪŜǘ άƭƛƪŜέ ϐ Ґ ѹ
Statement 2: P[random toad feels the same about chocolate and vanilla] = ½
 P [vanilla and chocolate land in the same bucket] = ½

Slide skipped in class

Frogs like Ice-cream

Universe = { vanilla, chocolate }
Buckets = { like, dislike }

Toads = different possible ways of distributing items Seem like they might be the sameΧ?

Statement 1: P[random toad likes vanilla] = ½, P[random toad likes chocolate] = ½
 Pώ άǾŀƴƛƭƭŀέ ƭŀƴŘǎ ƛƴ ǘƘŜ ōǳŎƪŜǘ άƭƛƪŜέ ϐ Ґ ѹ
Statement 2: P[random toad feels the same about chocolate and vanilla] = ½
 P [vanilla and chocolate land in the same bucket] = ½

Slide skipped in class

Frogs like Ice-cream

Universe = { vanilla, chocolate }
Buckets = { like, dislike }

Toads = different possible ways of distributing items But no! 1 is true but 2 is not.

Statement 1: P[random toad likes vanilla] = ½, P[random toad likes chocolate] = ½
 Pώ άǾŀƴƛƭƭŀέ ƭŀƴŘǎ ƛƴ ǘƘŜ ōǳŎƪŜǘ άƭƛƪŜέ ϐ Ґ ѹ
Statement 2: P[random toad feels the same about chocolate and vanilla] = ½
 P [vanilla and chocolate land in the same bucket] = ½

Slide skipped in class

Check our understandingΧ

ÅH is a universal hash family if:
ÅWhen h is chosen uniformly at random from H,

ÆÏÒ ÁÌÌ όȟόᶰὟ ×ÉÔÈ ό όȟ

ὖᶰ Ὤό Ὤό
ρ

ὲ

ÅH is [something else] if:
ÅWhen h is chosen uniformly at random from H,

ÆÏÒ ÁÌÌ ό ɴ ὟȟÆÏÒ ÁÌÌ ὼɴ πȟȣȟὲ ρȟ

ὖᶰ Ὤό ὼ
ρ

ὲ

These are
different!

Slide skipped in class

Example

ÅUniformly random hash function h
Å[We just saw this]

Å[Of course, this one has other downsidesΧ]

ÅPick a small hash family H, so that when I
choose h randomly from H,

ÆÏÒ ÁÌÌ όȟόᶰὟ ×ÉÔÈ ό όȟ

ὖᶰ Ὤό Ὤό
ρ

ὲ

Non-example

Åh0 = Most_significant_digit

Åh1 = Least_significant_digit

ÅH = {h0, h1}

ÅPick a small hash family H, so that when I
choose h randomly from H,

ÆÏÒ ÁÌÌ όȟόᶰὟ ×ÉÔÈ ό όȟ

ὖᶰ Ὤό Ὤό
ρ

ὲ

0

1

2

9

Χ

101
101

111

121

131

141

111

121

131 141

Outline

ÅHash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
Ålike self-balancing binary trees
ÅThe difference is we can get better performance in

expectation by using randomness.

ÅHash families are the magic behind hash tables.

ÅUniversal hash families are even more magic.

ÅActually constructing a universal hash family
 Magic becomes real!

A small universal hash family??

ÅIŜǊŜΩǎ ƻƴŜΥ
ÅPick a prime ὴ ὓȢ

ÅDefine
Ὢȟ ὼ ὥὼ ὦ άέὨ ὴ

Ὤȟ ὼ Ὢȟ ὼ άέὨ ὲ

ÅClaim:

Ὄ Ὤȟ ὼ Ḋ ὥᶰρȟȣȟὴ ρȟὦɴ πȟȣȟὴ ρ

is a universal hash family.

Say what?

ÅExample: M = p = 5, n = 3

ÅTo draw h from H:
ÅPick a random a in {1,Χ,4}, b in {0,Χ,4}

ÅAs per the definition:
ÅὪȟὼ ςὼ ρ άέὨ υ

ÅὬȟ ὼ Ὢȟὼ άέὨ σ

1,2,3,4,5
a = 2, b = 1

1

2 3

4
0

Ὢȟ ὼ

1

2 3

4 0

Ὢȟρ

Ὢȟ π

Ὢȟ σ

Ὢȟτ
Ὢȟς U =

1

2

3

mod 3

This step just
scrambles stuff up.
No collisions here!

This step is the one
where two different
elements might collide.

Where did this come from?
ÅPick a prime ὴ ὓȢ

ÅDefine
Ὢȟ ὼ ὥὼ ὦ άέὨ ὴ

Ὤȟ ὼ Ὢȟ ὼ άέὨ ὲ

Ὄ Ὤȟ ὼ Ḋ ὥᶰρȟȣȟὴ ρȟὦɴ πȟȣȟὴ ρ

ÅWhat goes wrong if we fix ὥ (e.g. ὥ ρ)?

ÅWhat goes wrong if we fix ὦ (e.g. ὦ π)?

Å²Ƙŀǘ ƎƻŜǎ ǿǊƻƴƎ ƛŦ ǿŜ ŘƻƴΩǘ ǳǎŜ ŀ ǇǊƛƳŜ όŜΦƎΦ ὴ ς)?

Think-Pair-Share!

Where did this come from?
ÅPick a prime ὴ ὓȢ

ÅDefine
Ὢȟ ὼ ὥὼ ὦ άέὨ ὴ

Ὤȟ ὼ Ὢȟ ὼ άέὨ ὲ

Ὄ Ὤȟ ὼ Ḋ ὥᶰρȟȣȟὴ ρȟὦɴ πȟȣȟὴ ρ

ÅQ: What goes wrong if we fix ὥ (e.g. ὥ ρ)?

ÅA: π and ὲ (almost) always hash to same key (ὦ ÍÏÄ ὲ)!

Å(except when ὦ is very close to ὴ)

Where did this come from?
ÅPick a prime ὴ ὓȢ

ÅDefine
Ὢȟ ὼ ὥὼ ὦ άέὨ ὴ

Ὤȟ ὼ Ὢȟ ὼ άέὨ ὲ

Ὄ Ὤȟ ὼ Ḋ ὥᶰρȟȣȟὴ ρȟὦɴ πȟȣȟὴ ρ

ÅQ: What goes wrong if we fix ὦ (e.g. ὦ π)?

ÅAΥ IƳƳΧ ƘŜǊŜ ƛǎ ƻƴŜ ŜȄŀƳǇƭŜΥ
ὲ σ, ὴ υ, then ρ and τ collide on ὥ ρ and ὥ τ

 so ρȾς probability of collision -> more than ρȾσ!

ρ ρ ÍÏÄ υ ρ
τ ρ ÍÏÄ υ τ
ρ τ ÍÏÄ υ τ
τ τ ÍÏÄ υ ρ

ÍÏÄ σ ρ

Where did this come from?
ÅPick a prime ὴ ὓȢ

ÅDefine
Ὢȟ ὼ ὥὼ ὦ άέὨ ὴ

Ὤȟ ὼ Ὢȟ ὼ άέὨ ὲ

Ὄ Ὤȟ ὼ Ḋ ὥᶰρȟȣȟὴ ρȟὦɴ πȟȣȟὴ ρ

ÅQ: What goes wrong if we ŘƻƴΩǘ ǳǎŜ ŀ ǇǊƛƳŜ όŜΦƎ. ὴ ς)?

ÅA: π and ς way too likely to hash to same key!

Å(whenever ὥ is even)

Why does this work?

ÅThis is actually a little complicated.
ÅThere are some hidden slides here about why.

ÅAlso see the lecture notes.

ÅThe thing we have to show is that the collision
probability is not very large.

ÅIntuitively, this is because:
Åfor any (fixed, not random) pair ὼ ώ in {0,Χ.,p-1},

ÅIf a and b are random,

Åax + b and ay + b are independent random variables. (why?)

Why does this work?

ÅWant to show:

ÅÆÏÒ ÁÌÌ όȟόᶰὟ ×ÉÔÈ ό όȟ ὖᶰ Ὤό Ὤό

Åaka, the probability of any two elements colliding is small.

Å[ŜǘΩǎ Ƨǳǎǘ ŦƛȄ ǘǿƻ ŜƭŜƳŜƴǘǎ ŀƴŘ ǎŜŜ ŀƴ ŜȄŀƳǇƭŜΦ
Å[ŜǘΩǎ ŎƻƴǎƛŘŜǊ όȟ πȟό ρȢ

1

2 3

4
0

Ὢȟ ὼ

1

2 3

4 0
U =

1

2

3

mod 3

ὥὼ ὦ άέὨ ὴ

Convince
yourself that it

will be the same
for any pair!

This slide skipped in class ς here for reference!

The probability that 0 and 1 collide is small

ÅWant to show:

Åὖᶰ Ὤπ Ὤρ

ÅFor any ώ ώᶰπȟρȟςȟσȟτȟ how many a,b are there
so that Ὢȟ π ώ ŀƴŘ Ὢȟ ρ ώ ?

ÅClaim: ƛǘΩǎ ŜȄŀŎǘƭȅ ƻƴŜΦ
ÅProof: solve the system of eqs. for a and b.

1

2 3

4
0

Ὢȟ ὼ

1

2 3

4 0
U =

1

2

3

mod 3

ὥὼ ὦ άέὨ ὴ

eg, y0 = 3, y1 = 1.

ὥẗρ ὦ ώ άέὨ ὴ

ὥẗπ ὦ ώ άέὨ ὴ

This slide skipped in class ς here for reference!

The probability that 0 and 1 collide is small

ÅWant to show:

Åὖᶰ Ὤπ Ὤρ

ÅFor any ώ ώᶰπȟρȟςȟσȟτȟ exactly one pair a,b have
Ὢȟ π ώ ŀƴŘ Ὢȟ ρ ώȢ

ÅLŦ л ŀƴŘ м ŎƻƭƭƛŘŜ ƛǘΩǎ ōκŎ ǘƘŜǊŜΩǎ ǎƻƳŜ ώ ώ so that:
ÅὪȟ π ώ ŀƴŘ Ὢȟ ρ ώȢ

Åώ ώ άέὨ ὲȢ

1

2 3

4
0

Ὢȟ ὼ

1

2 3

4 0
U =

1

2

3

mod 3

ὥὼ ὦ άέὨ ὴ

eg, y0 = 3, y1 = 1.

This slide skipped in class ς here for reference!

The probability that 0 and 1 collide is small
ÅWant to show:

Åὖᶰ Ὤπ Ὤρ

ÅThe number of a,b so that 0,1 collide under ha,b is at most
the number of ώ ώ so that ώ ώ άέὨ ὲȢ

ÅHow many is that?
ÅWe have p choices for ώ, then at most 1/n of the remaining p-1 are

valid choices for ώΧ

ÅSo at most ὴẗ Ȣ

1

2 3

4
0

Ὢȟ ὼ

1

2 3

4 0
U =

1

2

3

mod 3

ὥὼ ὦ άέὨ ὴ

eg, y0 = 3, y1 = 1.

This slide skipped in class ς here for reference!

The probability that 0 and 1 collide is small

ÅWant to show:

Åὖᶰ Ὤπ Ὤρ

ÅThe # of (a,b) so that 0,1 collide under ha,b is ὴẗ Ȣ

ÅThe probability (over a,b) that 0,1 collide under ha,b is:

Åὖᶰ Ὤπ Ὤρ
ẗ

Å
ẗ

Å Ȣ

This slide skipped in class ς here for reference!

The same argument goes for any pair

ÆÏÒ ÁÌÌ όȟόᶰὟ ×ÉÔÈ ό όȟ

ὖᶰ Ὤό Ὤό
ρ

ὲ

¢ƘŀǘΩǎ ǘƘŜ ŘŜŦƛƴƛǘƛƻƴ ƻŦ ŀ ǳƴƛǾŜǊǎŀƭ ƘŀǎƘ ŦŀƳƛƭȅΦ

So this family H indeed does the trick.

This slide skipped in class ς here for reference!

But is it efficient?

ÅCan we store h with small space?

ÅJust need to store two numbers:
Åa is in {1,Χ,p-1}

Åb is in {0,Χ,p-1}

ÅSo about 2log(p) bits

Å.ȅ ƻǳǊ ŎƘƻƛŎŜ ƻŦ ǇΣ ǘƘŀǘΩǎ hόƭƻƎόaύύ ōƛǘǎΦ

1,2,3,4,5
a = 2, b = 1

Compare: direct addressing was M bits!
Twitter example: log(M) = 140 log(128) = 980 vs M = 128140

Another way to see this
using only the size of H

ÅWe have p-1 choices for a, and p choices for b.

ÅSo |H| = p(p-1) = O(M2)

ÅSpace needed to store an element h:
Ålog(M2) = O(log(M)).

O(M log(n)) bits
per function

O(log(M)) bits
per function

So the whole scheme will be

n
 b

u
cke

ts

ha,b

ui

Universe U

Choose a and b at random
and form the function ha,b

We can store h in space
O(log(M)) since we just need

to store a and b.

Probably
these

buckets will
be pretty
balanced.

Outline

ÅHash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
Ålike self-balancing binary trees
ÅThe difference is we can get better performance in

expectation by using randomness.

ÅHash families are the magic behind hash tables.

ÅUniversal hash families are even more magic.

ÅActually constructing a universal hash family
 Magic becomes real!

Recap

Want O(1)
INSERT/DELETE/SEARCH
ÅWe are interesting in putting nodes with keys into a

data structure that supports fast
INSERT/DELETE/SEARCH.

ÅINSERT

ÅDELETE

ÅSEARCH

5

data structure

5

4

52

HERE IT IS

We studied
this game

13 22 43 92

1. An adversary chooses any n items
όȟόȟȣȟό ᶰὟȟ and any sequence
of L INSERT/DELETE/SEARCH
operations on those items.

2. You, the algorithm,
chooses a random hash
function ὬȡὟᴼ ρȟȣȟὲ.

3. HASH IT OUT

1

2

3

n

13

22

92

Χ

43
7

7

INSERT 13, INSERT 22, INSERT 43,
INSERT 92, INSERT 7, SEARCH 43,
DELETE 92, SEARCH 7, INSERT 92

Uniformly random h was good

ÅIf we choose h uniformly at random,
ÆÏÒ ÁÌÌ όȟόᶰὟ ×ÉÔÈ ό όȟ

ὖᶰ Ὤό Ὤό
ρ

ὲ

Å That was enough to ensure that, in expectation,
ŀ ōǳŎƪŜǘ ƛǎƴΩǘ ǘƻƻ Ŧǳƭƭ.

A bit more formally:

For any sequence of INSERT/DELETE/SEARCH operations
on any n elements of U, the expected runtime (over the
random choice of h) is O(1) per operation.

Uniformly random h was bad

ÅIf we actually want to implement this, we have to
store the hash function h.

ÅThat takes a lot of space!
ÅWe may as well have just

initialized a bucket for every
single item in U.

ÅInstead, we chose a function
randomly from a smaller set.

We needed a smaller set
that still has this property

ÅIf we choose h uniformly at random,
ÆÏÒ ÁÌÌ όȟόᶰὟ ×ÉÔÈ ό όȟ

ὖᶰ Ὤό Ὤό
ρ

ὲ

This was all we needed to make
sure that the buckets were

balanced in expectation!

ÅWe call any set with that property a

universal hash family.

ÅWe gave an example of a really small one J

Conclusion:

ÅWe can build a hash table that supports
INSERT/DELETE/SEARCH in O(1) expected time,
Åif we know that only n items are every going to show up,

where n is waaaayyyyyy less than the size M of the universe.

ÅThe space to implement this hash table is

O(n log(M)) bits.
ÅO(n) buckets

ÅO(n) items with log(M) bits per item

ÅO(log(M)) to store the hash fn.

ÅM is waaayyyyyy ōƛƎƎŜǊ ǘƘŀƴ ƴΣ ōǳǘ ƭƻƎόaύ ǇǊƻōŀōƭȅ ƛǎƴΩǘΦ

¢ƘŀǘΩǎ ƛǘ ŦƻǊ Řŀǘŀ ǎǘǊǳŎǘǳǊŜǎ
(for now)

Data Structure: RBTrees and Hash Tables

Now we can use these going forward!

