Lecture 12
Bellman-Ford, Floyd-Warshall, and Dynamic Programming!
Announcements

• HW6 out today!
• We are almost done grading the midterm – grades will be released soon.
 • Please follow standard procedure for regrade requests.
• I think the midterm was hard!
 • Great job!
Midterm Feedback

• I messed up.
 • Thank you to those who respectfully pointed out that there is actually some guidance from Stanford about timed take-home midterms.

• I think that students followed the honor code.
 • The grade distribution seems about right for a timed exam.

• However!
 • I don’t want to go against Stanford’s guidance on this, and I do want to address the legitimate concerns raised by students.
 • So...
New plan

• First, we will generate final letter grades as discussed on the website.

• Second, we will generate a *second* set of final letter grades as discussed on the website, except we will drop the midterm.

• You will receive the *maximum* of these two letter grades.

If you have questions, comments, or concerns about this policy, please post privately on Piazza or email the staff list.

This is a Pareto-improving change! No one will receive a worse letter grade than they would under the original grading scheme!
Today

• Bellman-Ford Algorithm
• Bellman-Ford is a special case of *Dynamic Programming*!
• What is dynamic programming?
 • Warm-up example: Fibonacci numbers
• Another example:
 • Floyd-Warshall Algorithm
Recall

- A weighted directed graph:

 - Weights on edges represent costs.
 - The cost of a path is the sum of the weights along that path.
 - A shortest path from s to t is a directed path from s to t with the smallest cost.
 - The single-source shortest path problem is to find the shortest path from s to v for all v in the graph.

This is a path from s to t of cost 22.

This is a path from s to t of cost 10. It is the shortest path from s to t.
Last time

• Dijkstra’s algorithm!
 • Solves the single-source shortest path problem in weighted graphs.
Dijkstra Drawbacks

- Needs **non-negative edge weights**.
- If the weights change, we need to re-run the whole thing.
Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.
 • Can be useful if you want to say that some edges are actively good to take, rather than costly.
 • Can be useful as a building block in other algorithms.

• (+) Allows for some flexibility if the weights change.
 • We’ll see what this means later
Aside: Negative Cycles

• A **negative cycle** is a cycle whose edge weights sum to a negative number.
• Shortest paths aren’t defined when there are negative cycles!

The shortest path from A to B has cost...negative infinity?
Bellman-Ford algorithm

• (-) Slower than Dijkstra’s algorithm

• (+) Can handle negative edge weights.
 • Can detect negative cycles!
 • Can be useful if you want to say that some edges are actively good to take, rather than costly.
 • Can be useful as a building block in other algorithms.

• (+) Allows for some flexibility if the weights change.
 • We’ll see what this means later
Bellman-Ford vs. Dijkstra

• Dijkstra:
 • Find the u with the smallest d[u]
 • Update u’s neighbors: d[v] = min(d[v], d[u] + w(u,v))

• Bellman-Ford:
 • Don’t bother finding the u with the smallest d[u]
 • Everyone updates!
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For $i=0,...,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$
 where we are also taking the min over all u in $v.inNeighbors$
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>d(0)</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>d(1)</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>d(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• For i=0,...,n-2:
 • For v in V:
 • d(i+1)[v] ← min(d(i)[v] , d(i)[u] + w(u,v))
 where we are also taking the min over all u in v.inNeighbors
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^{(0)})</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(d^{(1)})</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>25</td>
</tr>
<tr>
<td>(d^{(2)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(3)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d^{(4)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• For \(i=0,\ldots,n-2\):
 • For \(v\) in \(V\):
 • \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , d^{(i)}[u] + w(u,v)) \)
 where we are also taking the min over all \(u\) in \(v.inNeighbors\)
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For $i=0,\ldots,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , d^{(i)}[u] + w(u,v))$
 where we are also taking the min over all u in v.inNeighbors
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>

These are the final distances!

- **For** $i=0,...,n-2$:
 - **For** v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , d^{(i)}[u] + w(u,v))$
 - where we are also taking the min over all u in v.inNeighbors
Interpretation of $d^{(i)}$

$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>
Why does Bellman-Ford work?

• Inductive hypothesis:
 • $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

• Conclusion:
 • $d^{(n-1)}[v]$ is equal to the cost of the shortest path between s and v with at most $n-1$ edges.

Do the base case and inductive step!
Aside: simple paths
Assume there is no negative cycle.

• Then there is a shortest path from s to t, and moreover there is a simple shortest path.

A simple path in a graph with n vertices has at most n-1 edges in it.

• So there is a shortest path with at most n-1 edges
Why does it work?

• Inductive hypothesis:
 • \(d^{(i)}[v]\) is equal to the cost of the shortest path between \(s\) and \(v\) with at most \(i\) edges.

• Conclusion:
 • \(d^{(n-1)}[v]\) is equal to the cost of the shortest path between \(s\) and \(v\) with at most \(n-1\) edges.
 • If there are no negative cycles, \(d^{(n-1)}[v]\) is equal to the cost of the shortest path.

Notice that negative edge weights are fine. Just not negative cycles.
Bellman-Ford* algorithm

Bellman-Ford*(G,s):

- Initialize arrays d(0),...,d(n-1) of length n
- d(0)[v] = ∞ for all v in V
- d(0)[s] = 0
- For i=0,...,n-2:
 - For v in V:
 - d(i+1)[v] ← min(d(i)[v] , min_{u \in v.inNbrs} \{d(i)[u] + w(u,v)\})
- Now, dist(s,v) = d(n-1)[v] for all v in V.
 - (Assuming no negative cycles)

*Slightly different than some versions of Bellman-Ford...but this way is pedagogically convenient for today’s lecture.
Note on implementation

• Don’t actually keep all \(n \) arrays around.
• Just keep two at a time: “last round” and “this round”

\[
\begin{array}{c|c|c|c|c}
\text{Gates} & \text{Packard} & \text{CS161} & \text{Union} & \text{Dish} \\
\hline
\text{d}^{(0)} & 0 & \infty & \infty & \infty & \infty \\
\text{d}^{(1)} & 0 & 1 & \infty & \infty & 25 \\
\text{d}^{(2)} & 0 & 1 & 2 & 45 & 23 \\
\text{d}^{(3)} & 0 & 1 & 2 & 6 & 23 \\
\text{d}^{(4)} & 0 & 1 & 2 & 6 & 23 \\
\end{array}
\]

Only need these two in order to compute \(d^{(4)} \)
Bellman-Ford take-aways

• Running time is $O(mn)$
 • For each of n rounds, update m edges.

• Works fine with negative edges.

• Does not work with negative cycles.
 • No algorithm can – shortest paths aren’t defined if there are negative cycles.

• B-F can detect negative cycles!
 • See skipped slides to see how, or think about it on your own!
BF with negative cycles

For i=0,…,n-2:
 • For v in V:
 • $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \in v.\text{nbrs}}\{d^{(i)}[u] + w(u,v)\})$
BF with negative cycles

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^{(0)})</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(d^{(1)})</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>-3</td>
</tr>
<tr>
<td>(d^{(2)})</td>
<td>0</td>
<td>-5</td>
<td>2</td>
<td>7</td>
<td>-3</td>
</tr>
<tr>
<td>(d^{(3)})</td>
<td>-4</td>
<td>-5</td>
<td>-4</td>
<td>6</td>
<td>-3</td>
</tr>
<tr>
<td>(d^{(4)})</td>
<td>-4</td>
<td>-5</td>
<td>-4</td>
<td>6</td>
<td>-7</td>
</tr>
</tbody>
</table>

But *we can tell* that it’s not looking good:

| \(d^{(5)}\) | -4 | -9 | -4 | 3 | -7 |

But we can tell that it’s not looking good:

- For \(i=0,\ldots,n-2\):
- For \(v\) in \(V\):
 - \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \in v.nbrs}\{d^{(i)}[u] + w(u,v)\}) \)

Some stuff changed!
Negative cycles in Bellman-Ford

• If there are no negative cycles:
 • Everything works as it should, and stabilizes in n-1 rounds.

• If there are negative cycles:
 • Not everything works as it should...
 • The d[v] values will keep changing.

• Solution:
 • Go one round more and see if things change.
Bellman-Ford algorithm

Bellman-Ford(G,s):

- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- For $i=0,...,n-1$
 - For v in V
 - $d^{(i+1)}[v] \leftarrow \min (d^{(i)}[v], \min_{u \in v.inNeighbors} \{d^{(i)}[u] + w(u,v)\})$
- If $d^{(n-1)} \neq d^{(n)}$
 - Return NEGATIVE CYCLE 😞
- Otherwise, $dist(s,v) = d^{(n-1)}[v]$

Running time: $O(mn)$
Important thing about B-F for the rest of this lecture

d^{(i)}[v] is equal to the cost of the shortest path between s and v with at most i edges.

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d^{(0)})</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(d^{(1)})</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>25</td>
</tr>
<tr>
<td>(d^{(2)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(3)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>(d^{(4)})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>
Bellman-Ford is an example of...

Dynamic Programming!

Today:

• Example of Dynamic programming:
 • Fibonacci numbers.
 • (And Bellman-Ford)

• What is dynamic programming, exactly?
 • And why is it called “dynamic programming”?

• Another example: Floyd-Warshall algorithm
 • An “all-pairs” shortest path algorithm
Pre-Lecture exercise:
How not to compute Fibonacci Numbers

• Definition:
 • $F(n) = F(n-1) + F(n-2)$, with $F(1) = F(2) = 1$.
 • The first several are:
 • 1
 • 1
 • 2
 • 3
 • 5
 • 8
 • 13, 21, 34, 55, 89, 144, ...

• Question:
 • Given n, what is $F(n)$?
Candidate algorithm

```python
    def Fibonacci(n):
        if n == 0, return 0
        if n == 1, return 1
        return Fibonacci(n-1) + Fibonacci(n-2)
```

Running time?

• \(T(n) = T(n-1) + T(n-2) + O(1) \)
• \(T(n) \geq T(n-1) + T(n-2) \) for \(n \geq 2 \)
• So \(T(n) \) grows at least as fast as the Fibonacci numbers themselves...
• You showed in HW1 that this is EXPONENTIALLY QUICKLY!

See IPython notebook for lecture 12
What’s going on?
Consider Fib(8)

That’s a lot of repeated computation!
def fasterFibonacci(n):
 • F = [0, 1, None, None, ..., None]
 • \ F has length n + 1
 • for i = 2, ..., n:
 • F[i] = F[i-1] + F[i-2]
 • return F[n]

Much better running time!
This was an example of...

Dynamic programming!
What is *dynamic programming*?

- It is an algorithm design paradigm
 - like divide-and-conquer is an algorithm design paradigm.
- Usually it is for solving **optimization problems**
 - eg, *shortest* path
 - (Fibonacci numbers aren’t an optimization problem, but they are a good example of DP anyway...)
Elements of dynamic programming

1. Optimal sub-structure:

- Big problems break up into sub-problems.
 - Fibonacci: $F(i)$ for $i \leq n$
 - Bellman-Ford: Shortest paths with at most i edges for $i \leq n$
- The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 - Fibonacci:
 \[F(i+1) = F(i) + F(i-1) \]
 - Bellman-Ford:
 \[d^{(i+1)}[v] \leftarrow \min \{ d^{(i)}[v], \ \min_u \{ d^{(i)}[u] + \text{weight}(u,v) \} \} \]
Elements of dynamic programming

2. Overlapping sub-problems:

• The sub-problems overlap.
 • Fibonacci:
 • Both $F[i+1]$ and $F[i+2]$ directly use $F[i]$.
 • And lots of different $F[i+x]$ indirectly use $F[i]$.
 • Bellman-Ford:
 • Many different entries of $d^{(i+1)}$ will directly use $d^{(i)}[v]$.
 • And lots of different entries of $d^{(i+x)}$ will indirectly use $d^{(i)}[v]$.

• This means that we can save time by solving a sub-problem just once and storing the answer.
Elements of dynamic programming

• Optimal substructure.
 • Optimal solutions to sub-problems can be used to find the optimal solution of the original problem.

• Overlapping subproblems.
 • The subproblems show up again and again

• Using these properties, we can design a *dynamic programming* algorithm:
 • Keep a table of solutions to the smaller problems.
 • Use the solutions in the table to solve bigger problems.
 • At the end we can use information we collected along the way to find the solution to the whole thing.
Two ways to think about and/or implement DP algorithms

• Top down

• Bottom up

This picture isn’t hugely relevant but I like it.
Bottom up approach
what we just saw.

• For Fibonacci:
 • Solve the small problems first
 • fill in F[0], F[1]
 • Then bigger problems
 • fill in F[2]
 • ...
 • Then bigger problems
 • fill in F[n-1]
• Then finally solve the real problem.
 • fill in F[n]
Bottom up approach
what we just saw.

• For Bellman-Ford:
 • Solve the small problems first
 • fill in $d^{(0)}$
 • Then bigger problems
 • fill in $d^{(1)}$
 • ...
 • Then bigger problems
 • fill in $d^{(n-2)}$
 • Then finally solve the real problem.
 • fill in $d^{(n-1)}$
Top down approach

• Think of it like a recursive algorithm.

• To solve the big problem:
 • Recurse to solve smaller problems
 • Those recurse to solve smaller problems
 • etc..

• The difference from divide and conquer:
 • Keep track of what small problems you’ve already solved to prevent re-solving the same problem twice.
 • Aka, “memo-ization”
Example of top-down Fibonacci

• define a global list F = [0,1,None, None, ..., None]

• **def** Fibonacci(n):
 • **if** F[n] != None:
 • **return** F[n]
 • **else**:
 • F[n] = Fibonacci(n-1) + Fibonacci(n-2)
 • **return** F[n]
Memo-ization visualization

Collapse repeated nodes and don’t do the same work twice!
Memo-ization Visualization ctd

- Collapse repeated nodes and don’t do the same work twice!
- But otherwise treat it like the same old recursive algorithm.

- define a global list $F = [0, 1, \text{None}, \text{None}, \ldots, \text{None}]$
- def Fibonacci(n):
 - if $F[n] \neq \text{None}$:
 - return $F[n]$
 - else:
 - $F[n] = \text{Fibonacci}(n-1) + \text{Fibonacci}(n-2)$
 - return $F[n]$
What have we learned?

• **Dynamic programming:**
 • Paradigm in algorithm design.
 • Uses *optimal substructure*
 • Uses *overlapping subproblems*
 • Can be implemented *bottom-up* or *top-down*.
 • It’s a fancy name for a pretty common-sense idea:

 Don’t duplicate work if you don’t have to!
Why “dynamic programming”?

- **Programming** refers to finding the optimal “program.”
 - as in, a shortest route is a *plan* aka a *program*.
- **Dynamic** refers to the fact that it’s multi-stage.
- But also it’s just a fancy-sounding name.

Manipulating computer code in an action movie?
Why “dynamic programming”?

• Richard Bellman invented the name in the 1950’s.

• At the time, he was working for the RAND Corporation, which was basically working for the Air Force, and government projects needed flashy names to get funded.

• From Bellman’s autobiography:
 • “It’s impossible to use the word, dynamic, in the pejorative sense… I thought dynamic programming was a good name. It was something not even a Congressman could object to.”
Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths (APSP)**
 • That is, I want to know the shortest path from u to v for **ALL pairs** u,v of vertices in the graph.
 • Not just from a special single source s.

<table>
<thead>
<tr>
<th>Source</th>
<th>s</th>
<th>u</th>
<th>v</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>t</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>
Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths (APSP)**
 • That is, I want to know the shortest path from \(u \) to \(v \) for **ALL pairs** \(u,v \) of vertices in the graph.
 • Not just from a special single source \(s \).

• **Naïve solution** (if we want to handle negative edge weights):
 • For all \(s \) in \(G \):
 • Run Bellman-Ford on \(G \) starting at \(s \).

• Time \(O(n \cdot nm) = O(n^2m) \),
 • may be as bad as \(n^4 \) if \(m=n^2 \)

Can we do better?
Optimal substructure

Label the vertices 1, 2, ..., n
Label the vertices 1, 2, ..., n
(We omit some edges in the picture below – meant to be a cartoon, not an example).

Optimal substructure

Sub-problem(k-1):
For all pairs, u, v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in \{1, ..., k-1\}.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

This is the shortest path from u to v through the blue set. It has cost $D^{(k-1)}[u,v]$.

Our DP algorithm will fill in the n-by-n arrays $D^{(0)}$, $D^{(1)}$, ..., $D^{(n)}$ iteratively and then we’ll be done.
Optimal substructure

Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

Question: How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

Our DP algorithm will fill in the n-by-n arrays $D^{(0)}, D^{(1)}, ..., D^{(n)}$ iteratively and then we’ll be done.

Label the vertices 1,2,...,n (We omit some edges in the picture below – meant to be a cartoon, not an example).

This is the shortest path from u to v through the blue set. It has cost $D^{(k-1)}[u,v]$.

How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in \{1, ..., k\}.

Case 1: we don’t need vertex k.

$D^{(k)}[u,v] = D^{(k-1)}[u,v]$. This path was the shortest before, so it’s still the shortest now.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in \{1, ..., k\}.

Case 2: we need vertex k.

![Graph diagram](image-url)
Case 2 continued

- Suppose there are no negative cycles.
 - Then WLOG the shortest path from u to v through $\{1, \ldots, k\}$ is simple.

- If that path passes through k, it must look like this:
 - This path is the shortest path from u to k through $\{1, \ldots, k-1\}$.
 - sub-paths of shortest paths are shortest paths
 - Similarly for this path.

$$D^{(k)}[u, v] = D^{(k-1)}[u, k] + D^{(k-1)}[k, v]$$
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

Case 1: we don’t need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,v]$$

Case 2: we need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]$$
How can we find \(D^{(k)}[u,v] \) using \(D^{(k-1)} \)?

\[
D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}
\]

Case 1: Cost of shortest path through \(\{1,\ldots,k-1\} \)

Case 2: Cost of shortest path from \(u \) to \(k \) and then from \(k \) to \(v \) through \(\{1,\ldots,k-1\} \)

Optimal substructure:
- We can solve the big problem using solutions to smaller problems.

Overlapping sub-problems:
- \(D^{(k-1)}[k,v] \) can be used to help compute \(D^{(k)}[u,v] \) for lots of different \(u \)’s.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

- $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

 Case 1: Cost of shortest path through \{1,...,k-1\}

 Case 2: Cost of shortest path from u to k and then from k to v through \{1,...,k-1\}

- Using our *Dynamic programming* paradigm, this immediately gives us an algorithm!
Floyd-Warshall algorithm

• Initialize n-by-n arrays $D^{(k)}$ for $k = 0, ..., n$
 - $D^{(k)}[u,u] = 0$ for all u, for all k
 - $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 - $D^{(0)}[u,v] = \text{weight}(u,v)$ for all (u,v) in E.

• For $k = 1, ..., n$:
 - For pairs u,v in V^2:
 - $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

• Return $D^{(n)}$

The base case checks out: the only path through zero other vertices are edges directly from u to v.

This is a bottom-up Dynamic programming algorithm.
We’ve basically just shown

• Theorem:
 If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix $D^{(n)}$ so that:

 \[D^{(n)}[u,v] = \text{distance between } u \text{ and } v \text{ in } G. \]

• Running time: $O(n^3)$
 • Better than running Bellman-Ford n times!

• Storage:
 • Need to store two n-by-n arrays, and the original graph.

 As with Bellman-Ford, we don’t really need to store all n of the $D^{(k)}$.

What if there are negative cycles?

• Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
 • “Negative cycle” means that there’s some v so that there is a path from v to v that has cost < 0.
 • Aka, $D^{(n)}[v,v] < 0$.

• Algorithm:
 • Run Floyd-Warshall as before.
 • If there is some v so that $D^{(n)}[v,v] < 0$:
 • return negative cycle.
What have we learned?

• The Floyd-Warshall algorithm is another example of dynamic programming.
• It computes All Pairs Shortest Paths in a directed weighted graph in time $O(n^3)$.
Can we do better than $O(n^3)$?

Nothing on this slide is required knowledge for this class

• There is an algorithm that runs in time $O(n^3 / \log^{100}(n))$.
 • [Williams, “Faster APSP via Circuit Complexity”, STOC 2014]

• If you can come up with an algorithm for All-Pairs-Shortest-Path that runs in time $O(n^{2.99})$, that would be a really big deal.
 • Let me know if you can!
 • See [Abboud, Vassilevska-Williams, “Popular conjectures imply strong lower bounds for dynamic problems”, FOCS 2014] for some evidence that this is a very difficult problem!
Recap

• Two shortest-path algorithms:
 • Bellman-Ford for single-source shortest path
 • Floyd-Warshall for all-pairs shortest path

• Dynamic programming!
 • This is a fancy name for:
 • Break up an optimization problem into smaller problems
 • The optimal solutions to the sub-problems should be sub-solutions to the original problem.
 • Build the optimal solution iteratively by filling in a table of sub-solutions.
 • Take advantage of overlapping sub-problems!
Next time

• More examples of *dynamic programming*!

We will stop bullets with our action-packed coding skills, and also maybe find longest common subsequences.

• No pre-lecture exercise for next time: go over your exam instead!