Lecture 12

More Bellman-Ford, Floyd-Warshall, and Dynamic Programming!
Announcements

• HW5 due Friday

• Midterms have been graded!
 • Available on Gradescope.
 • Mean/Median: 66 (it was a hard test!)
 • Max: 97
 • Std. Dev: 14

• Please look at the solutions and come to office hours if you have questions about your midterm!
Recall

- A weighted directed graph:

- Weights on edges represent costs.

- The cost of a path is the sum of the weights along that path.

- A shortest path from s to t is a directed path from s to t with the smallest cost.

- The single-source shortest path problem is to find the shortest path from s to v for all v in the graph.

This is a path from s to t of cost 22.

This is a path from s to t of cost 10. It is the shortest path from s to t.
Last time

• Dijkstra’s algorithm!
• Bellman-Ford algorithm!
 • Both solve single-source shortest path in weighted graphs.

We didn’t quite finish with the Bellman-Ford algorithm so let’s do that now.
Bellman-Ford vs. Dijkstra

Bellman-Ford(G,s):

- \(d[v] = \infty \) for all \(v \in V \)
- \(d[s] = 0 \)
- For \(i=0,...,n-2 \):
 - For \(u \in V \):
 - For \(v \) in \(u \).outNeighbors:
 - \(d[v] \leftarrow \min(d[v], d[u] + w(u,v)) \)

Dijkstra(G,s):

- While there are not-sure nodes:
 - Pick the not-sure node \(u \) with the smallest estimate \(d[u] \).
 - For \(v \) in \(u \).outNeighbors:
 - \(d[v] \leftarrow \min(d[v], d[u] + w(u,v)) \)
 - Mark \(u \) as sure.
For pedagogical reasons which we will see later today...

- We are actually going to change this to be dumber.
- Keep n arrays: $d^{(0)}$, $d^{(1)}$, ..., $d^{(n-1)}$

Bellman-Ford*(G,s):

- $d^{(0)}[v] = \infty$ for all v in V
- $d^{(0)}[s] = 0$
- For $i=0,...,n-2$:
 - For u in V:
 - For v in u.outNeighbors:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , d^{(i)}[u] + w(u,v))$
 - Then $dist(s,v) = d^{(n-1)}[v]$
Another way of writing this

• We are actually going to change this to be dumber.
• Keep n arrays: \(d^{(0)} \), \(d^{(1)} \), …, \(d^{(n-1)} \)

Bellman-Ford*(G,s):

• \(d^{(0)}[v] = \infty \) for all \(v \) in \(V \)
• \(d^{(0)}[s] = 0 \)
• For \(i=0,\ldots,n-2 \):
 • For \(v \) in \(V \):
 • \(d^{(i+1)}[v] \leftarrow \min(\ d^{(i)}[v] \ , \ \min_{u \ in \ v.inNbrs} \{d^{(i)}[u] + w(u,v)\} \) \)
• Then \(\text{dist}(s,v) = d^{(n-1)}[v] \)
Bellman-Ford

How far is a node from Gates?

\[
\begin{array}{cccccc}
\text{Gates} & \text{Packard} & \text{CS161} & \text{Union} & \text{Dish} \\
\hline
d^{(0)} & 0 & \infty & \infty & \infty & \infty \\
d^{(1)} & & & & & \\
d^{(2)} & & & & & \\
d^{(3)} & & & & & \\
d^{(4)} & & & & & \\
\end{array}
\]

- For \(i=0,\ldots,n-2 \):
 - For \(v \) in \(V \):
 - \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_u \{ d^{(i)}[u] + w(u,v) \}) \)
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Algorithm

- For $i=0,...,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , \min_u \{d^{(i)}[u] + w(u,v)\})$
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For $i=0,\ldots,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , \min_u \{d^{(i)}[u] + w(u,v)\})$
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For $i=0,...,n-2$:
 • For v in V:
 • $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , \min_u \{ d^{(i)}[u] + w(u,v) \})$
Bellman-Ford

How far is a node from Gates?

<table>
<thead>
<tr>
<th></th>
<th>Gates</th>
<th>Packard</th>
<th>CS161</th>
<th>Union</th>
<th>Dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d^{(0)}$</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$d^{(1)}$</td>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>25</td>
</tr>
<tr>
<td>$d^{(2)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(3)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>$d^{(4)}$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>

For $i=0,...,n-2$:
 For v in V:
 $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_u \{ d^{(i)}[u] + w(u,v) \})$
Interpretation of $d^{(i)}$

$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.
Why does Bellman-Ford work?

• Inductive hypothesis:
 • $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

• Conclusion:
Aside: simple paths

Assume there is no negative cycle.

• Then not only are there shortest paths, but actually there’s always a simple shortest path.

• A simple path in a graph with \(n \) vertices has at most \(n-1 \) edges in it.
Why does it work?

• **Inductive hypothesis:**
 • $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v *with at most i edges*.

• **Conclusion(s):**
 • $d^{(n-1)}[v]$ is equal to the cost of the shortest path between s and v *with at most $n-1$ edges*.
 • **If there are no negative cycles**, $d^{(n-1)}[v]$ is equal to the cost of the shortest path.

Notice that negative edge *weights* are fine. Just not negative cycles.
Note on implementation

- Don’t actually keep all n arrays around.
- Just keep two at a time: “last round” and “this round”
This seems much slower than Dijkstra

• And it is:

 Running time $O(mn)$

• However, it’s also more flexible in a few ways.
 • Can handle negative edges
 • If we keep on doing these iterations, then changes in the network will propagate through.

• For $i=0,\ldots,n-2$:
 • For v in V:
 • $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], \min_{u \in v.nbrs} \{d^{(i)}[u] + w(u,v)\})$
 • Then $dist(s, v) = d^{(n-1)}[v]$
Negative cycles

This is not looking good!

For $i=0,...,n-2$:
 - For v in V:
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , \min_{u \in v.\text{nbrs}}\{d^{(i)}[u] + w(u,v)\})$
Negative edge weights

For i=0,...,n-2:
 For v in V:
 d^{i+1}[v] = \min(d^{i}[v], \min_{u \in v.nbrs} \{d^{i}[u] + w(u,v)\})
Negative cycles in Bellman-Ford

• If there are no negative cycles:
 • Everything works as it should, and stabilizes.

• If there are negative cycles:
 • Not everything works as it should...
 • Note: it couldn’t possibly work, since shortest paths aren’t well-defined if there are negative cycles.
 • The d[v] values will keep changing.

• Solution:
 • Go one round more and see if things change.
Bellman-Ford algorithm

Bellman-Ford*(G,s):

- \(d^{(0)}[v] = \infty\) for all \(v\) in \(V\)
- \(d^{(0)}[s] = 0\)
- \textbf{For} \(i=0,...,n-1:\)
 - \textbf{For} \(v\) in \(V:\)
 - \(d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v] , \min_{u \text{ in } v.\text{inNeighbors}} \{d^{(i)}[u] + w(u,v)\})\)
- If \(d^{(n-1)} \neq d^{(n)}:\)
 - \textbf{Return} NEGATIVE CYCLE 😞
- Otherwise, \(\text{dist}(s,v) = d^{(n-1)}[v]\)

Running time: \(O(mn)\)
Bellman-Ford is also used in practice.

- eg, Routing Information Protocol (RIP) uses something like Bellman-Ford.
 - Older protocol, not used as much anymore.

- Each router keeps a **table** of distances to every other router.

- Periodically we do a Bellman-Ford update.
 - Aka, for an edge (u,v):
 - $d^{(i+1)}[v] \leftarrow \min(d^{(i)}[v], d^{(i)}[u] + w(u,v))$

- This means that if there are changes in the network, this will propagate. (maybe slowly...)

<table>
<thead>
<tr>
<th>Destination</th>
<th>Cost to get there</th>
<th>Send to whom?</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.0</td>
<td>34</td>
<td>172.16.1.1</td>
</tr>
<tr>
<td>10.20.40.1</td>
<td>10</td>
<td>192.168.1.2</td>
</tr>
<tr>
<td>10.155.120.1</td>
<td>9</td>
<td>10.13.50.0</td>
</tr>
</tbody>
</table>
Recap: shortest paths

• BFS:
 • (+) $O(n+m)$
 • (-) only unweighted graphs

• Dijkstra’s algorithm:
 • (+) weighted graphs
 • (+) $O(n\log(n) + m)$ if you implement it right.
 • (-) no negative edge weights
 • (-) very “centralized” (need to keep track of all the vertices to know which to update).

• The Bellman-Ford algorithm:
 • (+) weighted graphs, even with negative weights
 • (+) can be done in a distributed fashion, every vertex using only information from its neighbors.
 • (-) $O(nm)$
Important thing about B-F for the rest of this lecture

\[d^{(i)}[v] \text{ is equal to the cost of the shortest path between } s \text{ and } v \text{ with at most } i \text{ edges.} \]
Bellman-Ford is an example of...

Dynamic Programming!

Today:

- Example of Dynamic programming:
 - Fibonacci numbers.
 - (And Bellman-Ford)

- What is dynamic programming, exactly?
 - And why is it called “dynamic programming”?

- Another example: Floyd-Warshall algorithm
 - An “all-pairs” shortest path algorithm
Pre-Lecture exercise: How not to compute Fibonacci Numbers

• Definition:
 • \(F(n) = F(n-1) + F(n-2) \), with \(F(0) = F(1) = 1 \).
 • The first several are:
 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,…

• Question:
 • Given \(n \), what is \(F(n) \)?
Candidate algorithm

```
• **def** Fibonacci(n):
  • **if** n == 0 or n == 1:
    • **return** 1
  • **return** Fibonacci(n-1) + Fibonacci(n-2)
```

(Seems to work, according to the IPython notebook...)

Running time?

• \[T(n) = T(n-1) + T(n-2) + O(1) \]
• \[T(n) \geq T(n-1) + T(n-2) \text{ for } n \geq 2 \]
• So \(T(n) \) grows at least as fast as the Fibonacci numbers themselves...
• Fun fact, that’s like \(\phi^n \) where \(\phi = \frac{1+\sqrt{5}}{2} \) is the golden ratio.
• aka, **EXPONENTIALLY QUICKLY 😞**
What’s going on?
Consider Fib(8)

That’s a lot of repeated computation!
Maybe this would be better:

```python
def fasterFibonacci(n):
    F = [1, 1, None, None, ..., None]
    \ F has length n
    for i = 2, ..., n:
        F[i] = F[i-1] + F[i-2]
    \ return F[n]
```

Much better running time!
This was an example of...

Dynamic Programming!
What is *dynamic programming*?

- It is an algorithm design paradigm
 - like divide-and-conquer is an algorithm design paradigm.
- Usually it is for solving *optimization problems*
 - eg, *shortest* path
 - (Fibonacci numbers aren’t an optimization problem, but they are a good example...)

Elements of dynamic programming

1. **Optimal sub-structure:**

 • Big problems break up into sub-problems.
 • Fibonacci: $F(i)$ for $i \leq n$
 • Bellman-Ford: Shortest paths with at most i edges for $i \leq n$
 • The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
 • Fibonacci:
 \[
 F(i+1) = F(i) + F(i-1)
 \]
 • Bellman-Ford:
 \[
 d^{(i+1)}[v] \leftarrow \min \{ d^{(i)}[v], \ min_u \{ d^{(i)}[u] + \text{weight}(u,v) \} \}
 \]
 Shortest path with at most i edges from s to v
 Shortest path with at most i edges from s to u.
Elements of dynamic programming

2. Overlapping sub-problems:

• The sub-problems overlap a lot.
 • Fibonacci:
 • Lots of different $F[j]$ will use $F[i]$.
 • Bellman-Ford:
 • Lots of different entries of $d^{(i+1)}$ will use $d^{(i)}[v]$.

• This means that we can save time by solving a sub-problem just once and storing the answer.
Elements of dynamic programming

• Optimal substructure.
 • Optimal solutions to sub-problems are sub-solutions to the optimal solution of the original problem.

• Overlapping subproblems.
 • The subproblems show up again and again

• Using these properties, we can design a *dynamic programming* algorithm:
 • Keep a table of solutions to the smaller problems.
 • Use the solutions in the table to solve bigger problems.
 • At the end we can use information we collected along the way to find the solution to the whole thing.
Two ways to think about and/or implement DP algorithms

• Top down

• Bottom up

This picture isn’t hugely relevant but I like it.
Bottom up approach
what we just saw.

• For Fibonacci:
 • Solve the small problems first
 • fill in F[0], F[1]
 • Then bigger problems
 • fill in F[2]
 • ...
• Then bigger problems
 • fill in F[n-1]
• Then finally solve the real problem.
 • fill in F[n]
Bottom up approach
what we just saw.

• For Bellman-Ford:
 • Solve the small problems first
 • fill in $d^{(0)}$
 • Then bigger problems
 • fill in $d^{(1)}$
 • ...

• Then bigger problems
 • fill in $d^{(n-2)}$

• Then finally solve the real problem.
 • fill in $d^{(n-1)}$
Top down approach

• Think of it like a recursive algorithm.

• To solve the big problem:
 • Recurse to solve smaller problems
 • Those recurse to solve smaller problems
 • etc..

• The difference from divide and conquer:
 • Memo-ization
 • Keep track of what small problems you’ve already solved to prevent re-solving the same problem twice.
Example of top-down Fibonacci

- define a global list \(F = [1, 1, \text{None}, \text{None}, ..., \text{None}] \)
- `def` `Fibonacci(n):
 • `if` `F[n] != \text{None}:`
 • `return F[n]`
 • `else:``
 • `F[n] = \text{Fibonacci}(n-1) + \text{Fibonacci}(n-2)`
 • `return F[n]`

Memo-ization: Keeps track (in \(F \)) of the stuff you’ve already done.
Memo-ization Visualization ctd

- define a global list \(F = [1,1,None, None, \ldots, None] \)
- def Fibonacci(n):
 - if \(F[n] \) != None:
 - return \(F[n] \)
 - else:
 - \(F[n] = \) Fibonacci(n-1) + Fibonacci(n-2)
 - return \(F[n] \)

Collapse repeated nodes and don’t do the same work twice!

But otherwise treat it like the same old recursive algorithm.

- define a global list \(F = [1,1,None, None, \ldots, None] \)
- def Fibonacci(n):
 - if \(F[n] \) != None:
 - return \(F[n] \)
 - else:
 - \(F[n] = \) Fibonacci(n-1) + Fibonacci(n-2)
 - return \(F[n] \)
What have we learned?

• **Dynamic programming:**
 • Paradigm in algorithm design.
 • Uses **optimal substructure**
 • Uses **overlapping subproblems**
 • Can be implemented **bottom-up** or **top-down**.
 • It’s a fancy name for a pretty common-sense idea:

 Don’t duplicate work if you don’t have to!
Why “dynamic programming”?

• Programming refers to finding the optimal “program.”
 • as in, a shortest route is a plan aka a program.
• Dynamic refers to the fact that it’s multi-stage.
• But also it’s just a fancy-sounding name.

Manipulating computer code in an action movie?
Why “dynamic programming”?

• Richard Bellman invented the name in the 1950’s.
• At the time, he was working for the RAND Corporation, which was basically working for the Air Force, and government projects needed flashy names to get funded.
• From Bellman’s autobiography:
 • “It’s impossible to use the word, dynamic, in the pejorative sense...I thought dynamic programming was a good name. It was something not even a Congressman could object to.”
Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths (APSP)**
 • That is, I want to know the shortest path from u to v for **ALL pairs** u,v of vertices in the graph.
 • Not just from a special single source s.

<table>
<thead>
<tr>
<th>Source</th>
<th>s</th>
<th>u</th>
<th>v</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>u</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>v</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>t</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>
Floyd-Warshall Algorithm
Another example of DP

• This is an algorithm for **All-Pairs Shortest Paths (APSP)**
 • That is, I want to know the shortest path from \(u \) to \(v \) for **ALL pairs** \(u,v \) of vertices in the graph.
 • Not just from a special single source \(s \).

• Naïve solution (if we want to handle negative edge weights):
 • For all \(s \) in \(G \):
 • Run Bellman-Ford on \(G \) starting at \(s \).
 • Time \(O(n \cdot nm) = O(n^2m) \),
 • may be as bad as \(n^4 \) if \(m=n^2 \)

Can we do better?
Optimal substructure

Sub-problem(k-1): For all pairs, u, v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in \{1, ..., k-1\}.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

Label the vertices 1, 2, ..., n (We omit some edges in the picture below).

Our DP algorithm will fill in the n-by-n arrays $D^{(0)}, D^{(1)}, ..., D^{(n)}$ iteratively and then we’ll be done.

This is the shortest path from u to v through the blue set. It has length $D^{(k-1)}[u,v]$.
Optimal substructure

Sub-problem(k-1):
For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in \{1,...,k-1\}.

Let $D^{(k-1)}[u,v]$ be the solution to Sub-problem(k-1).

Label the vertices 1,2,...,n
(We omit some edges in the picture below).

Let $D^{(k)}[u,v]$ be the shortest path from u to v through the blue set.

Question: How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

Our DP algorithm will fill in the n-by-n arrays $D^{(0)}$, $D^{(1)}$, ..., $D^{(n)}$ iteratively and then we'll be done.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

Case 1: we don’t need vertex k.

$$D^{(k)}[u,v] = D^{(k-1)}[u,v]$$
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

$D^{(k)}[u,v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in \{1, ..., k\}.

Case 2: we need vertex k.
Case 2 continued

- Suppose there are no negative cycles.
 - Then WLOG the shortest path from \(u \) to \(v \) through \(\{1, \ldots, k\} \) is simple.

- If \textbf{that path} passes through \(k \), it must look like this:
 - \textbf{This path} is the shortest path from \(u \) to \(k \) through \(\{1, \ldots, k-1\} \).
 - sub-paths of shortest paths are shortest paths
 - Same for \textbf{this path}.

\[
D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]
\]
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

- $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

 Case 1: Cost of shortest path from u to k and then from k to v through $\{1,\ldots,k-1\}$

 Case 2: Cost of shortest path through $\{1,\ldots,k-1\}$

- Optimal substructure:
 - We can solve the big problem using smaller problems.

- Overlapping sub-problems:
 - $D^{(k-1)}[k,v]$ can be used to help compute $D^{(k)}[u,v]$ for lots of different u’s.
How can we find $D^{(k)}[u,v]$ using $D^{(k-1)}$?

- $D^{(k)}[u,v] = \min\{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$

 - **Case 1:** Cost of shortest path through $\{1,\ldots,k-1\}$
 - **Case 2:** Cost of shortest path from u to k and then from k to v through $\{1,\ldots,k-1\}$

Using our *Dynamic programming* paradigm, this immediately gives us an algorithm!
Floyd-Warshall algorithm

- Initialize n-by-n arrays $D^{(k)}$ for $k = 0,\ldots,n$
 - $D^{(k)}[u,u] = 0$ for all u, for all k
 - $D^{(k)}[u,v] = \infty$ for all $u \neq v$, for all k
 - $D^{(0)}[u,v] = \text{weight}(u,v)$ for all (u,v) in E.
- For $k = 1, \ldots, n$:
 - For pairs u,v in V^2:
 - $D^{(k)}[u,v] = \min \{ D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v] \}$
- Return $D^{(n)}$

The base case checks out: the only path through zero other vertices are edges directly from u to v. This is a bottom-up Dynamic programming algorithm.
We’ve basically just shown

- **Theorem:**

 If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix $D^{(n)}$ so that:

 $$D^{(n)}[u,v] = \text{distance between } u \text{ and } v \text{ in } G.$$

- **Running time:** $O(n^3)$

 - Better than running BF n times!
 - Not really better than running Dijkstra n times.
 - But it’s simpler to implement and handles negative weights.

- **Storage:**

 - Need to store **two** n-by-n arrays, and the original graph.

 As with Bellman-Ford, we don’t really need to store all n of the $D^{(k)}$.

Work out the details of the proof! (Or see Lecture Notes for a few more details).
What if there are negative cycles?

• Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
 • Negative cycle $\iff \exists v \text{ s.t. there is a path from } v \text{ to } v \text{ that goes through all } n \text{ vertices that has cost } < 0$.
 • Negative cycle $\iff \exists v \text{ s.t. } D^{(n)}[v,v] < 0$.

• Algorithm:
 • Run Floyd-Warshall as before.
 • If there is some v so that $D^{(n)}[v,v] < 0$:
 • return negative cycle.
What have we learned?

• The Floyd-Warshall algorithm is another example of dynamic programming.

• It computes All Pairs Shortest Paths in a directed weighted graph in time $O(n^3)$.
Another Example of DP?

- Longest simple path (say all edge weights are 1):

What is the longest simple path from s to t?
This is an optimization problem...

- Can we use Dynamic Programming?
- Optimal Substructure?
 - $\text{Longest path from } s \text{ to } t = \text{longest path from } s \text{ to } a + \text{longest path from } a \text{ to } t$?
This doesn’t give optimal sub-structure
Optimal solutions to subproblems don’t give us an optimal solution to the big problem. (At least if we try to do it this way).

• The subproblems we came up with aren’t independent:
 • Once we’ve chosen the longest path from a to t
 • which uses b,
 • our longest path from s to a shouldn’t be allowed to use b
 • since b was already used.

• Actually, the longest simple path problem is NP-complete.
 • We don’t know of any polynomial-time algorithms for it, DP or otherwise!
Recap

• Two more shortest-path algorithms:
 • Bellman-Ford for single-source shortest path
 • Floyd-Warshall for all-pairs shortest path

• Dynamic programming!
 • This is a fancy name for:
 • Break up an optimization problem into smaller problems
 • The optimal solutions to the sub-problems should be sub-solutions to the original problem.
 • Build the optimal solution iteratively by filling in a table of sub-solutions.
 • Take advantage of overlapping sub-problems!
Next time

• More examples of *dynamic programming*!

We will stop bullets with our action-packed coding skills, and also maybe find longest common subsequences.

Before next time

• Pre-lecture exercise: finding optimal substructure