Lecture 5
Randomized algorithms and QuickSort
Announcements

• HW2 is posted! Due Friday.

• Please send any OAE letters to Jessica Su (stysu@stanford.edu) by Friday.
Last time

• We saw a divide-and-conquer algorithm to solve the Select problem in time $O(n)$ in the worst-case.

• It all came down to picking the pivot...

We choose a pivot **randomly** and then a bad guy gets to decide what the array was.

We choose a pivot **cleverly** and then a bad guy gets to decide what the array was.

The bad guy gets to decide what the array was and *then* we choose a pivot **randomly**.
Randomized algorithms

- We make some random choices during the algorithm.
- We hope the algorithm works.
- We hope the algorithm is fast.

Select with a random pivot is a randomized algorithm.

- It always works.
- It is usually fast.
- It might be slow.
Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
 - BogoSort
 - QuickSort

- **BogoSort** is a pedagogical tool.
- **QuickSort** is important to know. (in contrast with BogoSort...)
How do we measure the runtime of a randomized algorithm?

Scenario 1
1. Bad guy picks the input.
2. You run your randomized algorithm.

Scenario 2
1. Bad guy picks the input.
2. Bad guy chooses the randomness (fixes the dice)

- In **Scenario 1**, the running time is a random variable.
 - It makes sense to talk about expected running time.
- In **Scenario 2**, the running time is **not random**.
 - We call this the worst-case running time of the randomized algorithm.
Today

• How do we analyze randomized algorithms?
• A few randomized algorithms for sorting.
 • BogoSort
 • QuickSort

• BogoSort is a pedagogical tool.
• QuickSort is important to know. (in contrast with BogoSort...)
BogoSort(A):
- **While** true:
 - Randomly permute A.
 - Check if A is sorted.
 - **If** A is sorted, **return** A.

What is the expected running time?
- You analyzed this in your pre-lecture exercise *[also on board now]*

What is the worst-case running time?
- *[on board]*

Suppose that you can draw a random integer in \(\{1, \ldots, n\}\) in time \(O(1)\). How would you randomly permute an array in-place in time \(O(n)\)?

Example

Ollie the over-achieving ostrich
Today

• How do we analyze randomized algorithms?
• A few randomized algorithms for sorting.
 • BogoSort
 • QuickSort

• BogoSort is a pedagogical tool.
• QuickSort is important to know. (in contrast with BogoSort...)
a better randomized algorithm: **QuickSort**

- Runs in expected time $O(n \log(n))$.
- Worst-case runtime $O(n^2)$.
- In practice often more desirable.
 - (More later)
Quicksort

We want to sort this array.

First, pick a “pivot.”
Do it at random.

Next, partition the array into “bigger than 5” or “less than 5”

This PARTITION step takes time $O(n)$. (Notice that we don’t sort each half).
[same as in SELECT]

Arrange them like so:

$L = \text{array with things smaller than } A[pivot]$
$R = \text{array with things larger than } A[pivot]$

Recurse on L and R:

1 2 3 4 5 6 7
PseudoPseudoCode for what we just saw

- **QuickSort**(`A`):
 - **If** `len(A) <= 1`:
 - **return**
 - Pick some `x = A[i]` at random. Call this the **pivot**.
 - **PARTITION** the rest of `A` into:
 - `L` (less than `x`)
 - `R` (greater than `x`)
 - Replace `A` with `[L, x, R]` (that is, rearrange `A` in this order)
 - **QuickSort**(`L`)
 - **QuickSort**(`R`)

Assume that all els of `A` are distinct. How would you change this if that’s not the case?

How would you do all this in-place? Without hurting the running time?
Running time?

- $T(n) = T(|L|) + T(|R|) + O(n)$

- In an ideal world...if the pivot splits the array exactly in half...

 $$T(n) = 2 \cdot T \left(\frac{n}{2} \right) + O(n)$$

- We’ve seen that a bunch:

 $T(n) = O(n \log(n))$.
A tempting argument

- \(E[|L|] = E[|R|] = \frac{n-1}{2} \).
 - The expected number of items on each side of the pivot is half of the things.
- If that occurs,
 - the running time is \(T(n) = O(n \log(n)) \).
- Therefore,
 - the expected running time is \(O(n \log(n)) \).

This is not okay!!!
that’s not how expectations work.
[Discussion on board]
Instead

• We’ll have to think a little harder about how the algorithm works.

Goal for the rest of the class

• Get the same conclusion, correctly!
Example of recursive calls

Pick 5 as a pivot

Partition on either side of 5

Recurse on [3142] and pick 3 as a pivot.

Partition around 3.

Recurse on [12] and pick 2 as a pivot.

partition around 2.

Recurse on [1] (done).

Partition on either side of 6

Recurse on [7], it has size 1 so we’re done.
How long does this take to run?

- We will count the number of \textit{comparisons} that the algorithm does.
 - This turns out to give us a good idea of the runtime. (Not obvious).
- How many times are any two items compared?

\begin{itemize}
 \item \begin{itemize}
 \item 7 6 3 5 1 2 4
 \item 3 1 4 2 5 7 6
 \end{itemize}
\end{itemize}

In the example before, everything was compared to 5 once in the first step....and never again.

\begin{itemize}
 \item \begin{itemize}
 \item 3 1 2 4 5 7 6
 \item 1 2 3 4 5 6 7
 \end{itemize}
\end{itemize}

But not everything was compared to 3.
5 was, and so were 1,2 and 4. But not 6 or 7.
Each pair of items is compared either 0 or 1 times. Which is it?

Let’s assume that the numbers in the array are actually the numbers 1,…,n

Of course this doesn’t have to be the case! It’s a good exercise to convince yourself that the analysis will still go through without this assumption. (Or see CLRS)

- Whether or not a,b are compared is a random variable, that depends on the choice of pivots. Let’s say
 \[X_{a,b} = \begin{cases}
 1 & \text{if } a \text{ and } b \text{ are ever compared} \\
 0 & \text{if } a \text{ and } b \text{ are never compared}
 \end{cases} \]

- In the previous example \(X_{1,5} = 1 \), because item 1 and item 5 were compared.
- But \(X_{3,6} = 0 \), because item 3 and item 6 were NOT compared.
- Both of these depended on our random choice of pivot!
Counting comparisons

• The number of comparisons total during the algorithm is

\[\sum_{a=1}^{n} \sum_{b=a+1}^{n} X_{a,b} \]

• The expected number of comparisons is

\[E \left[\sum_{a=1}^{n} \sum_{b=a+1}^{n} X_{a,b} \right] = \sum_{a=1}^{n} \sum_{b=a+1}^{n} E[X_{a,b}] \]

using linearity of expectations.
Counting comparisons

- So we just need to figure out $E[X_{a,b}]$
- $E[X_{a,b}] = P(X_{a,b} = 1) \cdot 1 + P(X_{a,b} = 0) \cdot 0 = P(X_{a,b} = 1)$
 - (using definition of expectation)
- So we need to figure out

$P(X_{a,b} = 1) = \text{the probability that } a \text{ and } b \text{ are ever compared.}$

Say that $a = 2$ and $b = 6$. What is the probability that 2 and 6 are ever compared?

This is exactly the probability that either 2 or 6 is first picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be separated and never see each other again.
Counting comparisons

\[P(X_{a,b} = 1) \]

= probability \(a, b \) are ever compared

= probability that one of \(a, b \) are picked first out of all of the \(b - a + 1 \) numbers between them.

\[= \frac{2}{b - a + 1} \]

2 choices out of \(b-a+1 \)...
All together now...

Expected number of comparisons

- \(E\left[\sum_{a=1}^{n} \sum_{b=a+1}^{n} X_{a,b} \right] \)

\[= \sum_{a=1}^{n} \sum_{b=a+1}^{n} E\left[X_{a,b} \right] \]

- linearity of expectation

\[= \sum_{a=1}^{n} \sum_{b=a+1}^{n} P(X_{a,b} = 1) \]

- definition of expectation

\[= \sum_{a=1}^{n} \sum_{b=a+1}^{n} \frac{2}{b - a + 1} \]

- the reasoning we just did

- This is a big nasty sum, but we can do it.
- We get that this is less than \(2n \ln(n) \).
Are we done?

• We saw that \(E[\text{number of comparisons}] = O(n \log(n)) \)
• Is that the same as \(E[\text{running time}] \)?

• In this case, yes.

• We need to argue that the running time is dominated by the time to do comparisons.

• (See CLRS for details).

• **QuickSort(A):**
 • If \(\text{len}(A) \leq 1 \):
 • return
 • Pick some \(x = A[i] \) at random. Call this the pivot.
 • **PARTITION** the rest of \(A \) into:
 • \(L \) (less than \(x \)) and
 • \(R \) (greater than \(x \))
 • Replace \(A \) with \([L, x, R]\) (that is, rearrange \(A \) in this order)
 • QuickSort(L)
 • QuickSort(R)
Worst-case running time

- Suppose that an adversary is choosing the “random” pivots for you.
- Then the running time might be $O(n^2)$ [on board]
 - In practice, this doesn’t usually happen.
A note on implementation

- **This pseudocode** is easy to understand and analyze, but is not a good way to implement this algorithm.

 - QuickSort(A):
 - If len(A) <= 1:
 - return
 - Pick some x = A[i] at random. Call this the **pivot**.
 - PARTITION the rest of A into:
 - L (less than x) and
 - R (greater than x)
 - Replace A with [L, x, R] (that is, rearrange A in this order)
 - QuickSort(L)
 - QuickSort(R)

 You don’t need to know how to do this.
 (For this class).
 (But maybe you do in life).

- Instead, we should implement it **in-place**.
 - You may have seen this in 106b.
 - Here are some Hungarian Folk Dancers showing you how it’s done: https://www.youtube.com/watch?v=ywWB4y6J5gz8
 - Also check out IPython notebook for Lecture 5.
QuickSort vs. Mergesort?

- All seem pretty comparable...

See IPython notebook for Lecture 5

This one uses less space!
QuickSort vs MergeSort

<table>
<thead>
<tr>
<th></th>
<th>QuickSort (random pivot)</th>
<th>MergeSort (deterministic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running time</td>
<td>• Worst-case: $O(n^2)$
• Expected: $O(n \log(n))$</td>
<td>Worst-case: $O(n \log(n))$</td>
</tr>
<tr>
<td>Used by</td>
<td>• Java for primitive types
• C qsort
• Unix
• g++</td>
<td>• Java for objects
• Perl</td>
</tr>
<tr>
<td>In-Place?</td>
<td>Yes, pretty easily</td>
<td>Not easily* if you want to maintain both
stability and runtime.
(But pretty easily if you can sacrifice runtime).</td>
</tr>
<tr>
<td></td>
<td>(With $O(\log(n))$ extra memory)</td>
<td></td>
</tr>
<tr>
<td>Stable?</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Other Pros</td>
<td>Good cache locality if implemented for arrays</td>
<td>Merge step is really efficient with linked lists</td>
</tr>
</tbody>
</table>

In fact, I don’t know how to do this if you want $O(n\log(n))$ worst-case runtime and stability.
Recap

• How do we measure the runtime of a randomized algorithm?
 • Expected runtime
 • Worst-case runtime

• **QuickSort** (with a random pivot) is a randomized sorting algorithm.
 • In many situations, QuickSort is nicer than MergeSort.
 • In many situations, MergeSort is nicer than QuickSort.

Code up QuickSort and MergeSort in a few different languages, with a few different implementations of lists A (array vs linked list, etc). What’s faster? (This is an exercise best done in C where you have a bit more control than in Python).
Next time

• Can we sort faster than $\Theta(n\log(n))$??

Before next time

• *Pre-lecture exercise* for Lecture 6.
 • What operations do we need to be able to do to run QuickSort?