Announcements

• HW4 due Wednesday.
• There will not be new HW posted on Wednesday, because it’ll be time to study for the...
Midterm!

- Take-home
- Timed: 3 hours
- You may use one double-sided “cheat sheet” that you have prepared yourself.
- Otherwise closed notes, closed internet, closed discussion, etc.
- Basic structure:
 - Some multiple choice
 - Some short answer
 - Some proofs
 - Some algorithm design
 - One challenge problem

- A practice exam with this structure will be posted soon.
- Keep an eye out for a Piazza post with more details about the logistics.
 - There was already a Piazza post with some of the basic logistics.
How to study for the midterm?

• Go over lecture + homework + section material
• DO PRACTICE PROBLEMS.
 • Algorithms Illuminated, CLRS have great problems in them!
 • We will post a practice exam soon.
• Review Session!
 • No regular section this week.
 • Instead, there will be a (recorded!) review session on Thursday 3pm-ish. (Exact time/room TBD)
• Thursday HW party is a Midterm Review Party!
 • Monday 2/10 HW party next week is canceled
• Go to office hours!
 • Office Hour Schedule will be the same through Sunday
 • No OH Monday 2/10 or Tuesday 2/11 next week.
Today: hashing

n=9 buckets

[Diagram of a hash table with 9 buckets, each containing a value or NIL, indicating successful hashing of keys 9, 13, 22, 43 into the table with no collisions.]
• **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 • like self-balancing binary trees
 • The difference is we can get better performance in expectation by using randomness.

• **Hash families** are the magic behind hash tables.

• **Universal hash families** are even more magical.
Goal

• We want to store nodes with keys in a data structure that supports fast INSERT/DELETE/SEARCH.

- INSERT 5
- DELETE 4
- SEARCH 52

node with key “2”

HERE IT IS

data structure
Last time

• Self balancing trees:
 • $O(\log(n))$ deterministic INSERT/DELETE/SEARCH

#prettysweet

Today:

• Hash tables:
 • $O(1)$ expected time INSERT/DELETE/SEARCH
 • Worse worst-case performance, but often great in practice.

#evensweeterinpractice

eg, Python’s dict, Java’s HashSet/HashMap, C++’s unordered_map

Hash tables are used for databases, caching, object representation, ...
One way to get O(1) time

- Say all keys are in the set \{1,2,3,4,5,6,7,8,9\}.

- **INSERT:**
 - 9
 - 6
 - 3
 - 5

- **DELETE:**
 - 6

- **SEARCH:**
 - 3
 - 2

This is called “direct addressing.”

2 isn’t in the data structure.

3 is here.
That should look familiar

• Kind of like COUNTINGSORT from Lecture 6.
• Same problem: if the keys may come from a “universe” $U = \{1, 2, \ldots, 10000000000\}$, it takes a lot of space.
Solution?

Put things in buckets based on one digit

INSERT:

```
21  345  13  101  50  234  1
```

```
0  1  2  3  4  5  6  7  8  9
```

It’s in this bucket somewhere... go through until we find it.

Now **SEARCH** 21
Problem:

INSERT:

22 34 102 12 102 52 232 2

Now SEARCH 22 this hasn’t made our lives easier...
Hash tables

• That was an example of a hash table.
 • not a very good one, though.

• We will be more clever (and less deterministic) about our bucketing.

• This will result in fast (expected time) `INSERT/DELETE/SEARCH`.
But first! Terminology.

- U is a *universe* of size M.
 - M is really big.
- But only a few (at most n) elements of M are ever going to show up.
 - M is waaaayyyyyyyyy bigger than n.
- But we don’t know which ones will show up in advance.

Example: U is the set of all strings of at most 280 ascii characters. \((128^{280} \text{ of them})\).

The only ones which I care about are those which appear as trending hashtags on twitter. #hashinghashtags

There are way fewer than \(128^{280}\) of these.
Hash Functions

• A hash function $h : U \rightarrow \{1, \ldots, n\}$ is a function that maps elements of U to buckets 1, ..., n.

For this lecture, I’m assuming that the number of things is the same as the number of buckets, both are n. This doesn’t have to be the case, although we do want:

#buckets = $O(\#things which show up)$

Example:

$h(x) =$ least significant digit of x.

$h(13) = 3$

$h(22) = 2$

All of the keys in the universe live in this blob.

Universe U
Hash Tables (with chaining)

- Array of n buckets.
- Each bucket stores a linked list.
 - We can insert into a linked list in time $O(1)$
 - To find something in the linked list takes time $O(\text{length(list)})$.
- A hash function $h: U \rightarrow \{1, ..., n\}$.
 - For example, $h(x) =$ least significant digit of x.

INSERT:

13 22 43 9

SEARCH 43:
Scan through all the elements in bucket $h(43) = 3$.

DELETE 43:
Search for 43 and remove it.
Aside: Hash tables with open addressing

• The previous slide is about hash tables with chaining.
• There’s also something called “open addressing”
• You don’t need to know about it for this class.

\begin{center}
\begin{tikzpicture}
\node[draw] (1) at (0,0) {1};
\node[draw] (2) at (0,-1) {2};
\node[draw] (3) at (0,-2) {3};
\node[draw] (9) at (0,-4) {9};
\node[draw] (13) at (1,-2) {13};
\node[draw] (43) at (2,-2) {43};
\draw (1) -- (2);
\draw (2) -- (3);
\draw (3) -- (9);
\draw (9) -- (13);
\draw (13) -- (43);
\node at (0,-3) {This is a “chain”};
\node at (0,-5) {n=9 buckets};
\end{tikzpicture}
\end{center}

\begin{center}
\begin{tikzpicture}
\node[draw] (1) at (0,0) {1};
\node[draw] (2) at (0,-1) {2};
\node[draw] (3) at (0,-2) {3};
\node[draw] (9) at (0,-4) {9};
\node[draw] (13) at (1,-2) {13};
\node[draw] (43) at (2,-2) {43};
\draw (1) -- (2);
\draw (2) -- (3);
\draw (3) -- (9);
\draw (9) -- (13);
\draw (13) -- (43);
\node at (0,-3) {bounce!};
\node at (0,-5) {n=9 buckets};
\end{tikzpicture}
\end{center}
Hash Tables (with chaining)

- Array of n buckets.
- Each bucket stores a linked list.
 - We can insert into a linked list in time O(1)
 - To find something in the linked list takes time O(length(list)).
- A hash function $h: U \rightarrow \{1, \ldots, n\}$.
 - For example, $h(x) =$ least significant digit of x.

INSERT:

13 22 43 9

SEARCH 43:
Scan through all the elements in bucket $h(43) = 3$.

DELETE 43:
Search for 43 and remove it.

For demonstration purposes only! This is a terrible hash function! Don’t use this!
What we want from a hash table

1. We want there to be not many buckets (say, n).
 - This means we don’t use too much space

2. We want the items to be pretty spread-out in the buckets.
 - This means it will be fast to SEARCH/INSERT/DELETE

VS.

n=9 buckets

n=9 buckets
Worst-case analysis

• Goal: Design a function \(h: U \rightarrow \{1, \ldots, n\} \) so that:
 • No matter what \(n \) items of \(U \) a bad guy chooses, the buckets will be balanced.
 • Here, balanced means \(O(1) \) entries per bucket.

• If we had this, then we’d achieve our dream of \(O(1) \)
 INSERT/DELETE/SEARCH

Can you come up with such a function?

Think-Pair-Share Terrapins
2 min. think. 1 min. pair+share
This is impossible!

No deterministic hash function can defeat worst-case input!
We really can’t beat the bad guy here.

- The universe U has M items
- They get hashed into n buckets
- At least one bucket has at least M/n items hashed to it.
- M is waayyyy bigger than n, so M/n is bigger than n.
- **Bad guy chooses n of the items that landed in this very full bucket.**
Solution: Randomness
The game

1. An adversary chooses any n items $u_1, u_2, \ldots, u_n \in U$, and any sequence of INSERT/DELETE/SEARCH operations on those items.

2. You, the algorithm, chooses a random hash function $h: U \rightarrow \{1, \ldots, n\}$.

3. HASH IT OUT

 - INSERT 13, INSERT 22, INSERT 43, INSERT 92, INSERT 7, SEARCH 43, DELETE 92, SEARCH 7, INSERT 92

 - u_k, u_i, u_j
Example of a random hash function

• Say that $h: U \to \{1, \ldots, n\}$ is a uniformly random function.

 • That means that $h(1)$ is a uniformly random number between 1 and n.

 • $h(2)$ is also a uniformly random number between 1 and n, independent of $h(1)$.

 • $h(3)$ is also a uniformly random number between 1 and n, independent of $h(1)$, $h(2)$.

 • ...

 • $h(M)$ is also a uniformly random number between 1 and n, independent of $h(1)$, $h(2)$, ..., $h(M-1)$.
Randomness helps

Intuitively: The bad guy can’t foil a hash function that he doesn’t yet know.

Why not? What if there’s some strategy that foils a random function with high probability?

We’ll need to do some analysis...
What do we want?

It’s **bad** if lots of items land in u_i’s bucket. So we want **not that**.
More precisely

- We want:
 - For all ways a bad guy could choose u_1, u_2, \ldots, u_n, to put into the hash table, and for all $i \in \{1, \ldots, n\}$, $E[\text{number of items in } u_i\text{'s bucket}] \leq 2$.

- If that were the case:
 - For each INSERT/DELETE/SEARCH operation involving u_i, $E[\text{time of operation}] = O(1)$

We could replace “2” here with any constant; it would still be good. But “2” will be convenient.

This is what we wanted at the beginning of lecture!
So we want:

- For all $i=1, \ldots, n$, $E[\text{number of items in } u_i\text{'s bucket}] \leq 2$.
Aside

• For all $i=1,\ldots,n$,

$$E[\text{number of items in bucket } i] \leq 2.$$

vs

• For all $i=1,\ldots,n$:

$$E[\text{number of items in bucket } i] \leq 2$$

Suppose that:

then $E[\text{number of items in bucket } i] = 1$ for all i.

But $E[\text{number of items in 43's bucket}] = n$
This distinction came up on your pre-lecture exercise!

• Solution to pre-lecture exercise (skipped in class):
 • $E[\text{number of items in bucket 1}] = \frac{n}{6}$
 • $E[\text{number of items that land in the same bucket as item 1}] = n$
So we want:

• For all $i=1, \ldots, n$,

\[E[\text{number of items in } u_i\text{'s bucket }] \leq 2. \]
Expected number of items in u_i’s bucket?

- $E[\cdot] = \sum_{j=1}^{n} P\{ h(u_i) = h(u_j) \}$
- $= 1 + \sum_{j \neq i} P\{ h(u_i) = h(u_j) \}$
- $= 1 + \sum_{j \neq i} \frac{1}{n}$ (You will verify this on HW.)
- $= 1 + \frac{n-1}{n} \leq 2$. That’s what we wanted!

h is uniformly random
A uniformly random hash function leads to balanced buckets

• We just showed:
 • For all ways a bad guy could choose \(u_1, u_2, \ldots, u_n \) to put into the hash table, and for all \(i \in \{1, \ldots, n\} \),
 \[
 \mathbb{E}[\text{number of items in } u_i \text{'s bucket }] \leq 2.
 \]

• Which implies:
 • No matter what sequence of operations and items the bad guy chooses,
 \[
 \mathbb{E}[\text{time of INSERT/DELETE/SEARCH }] = O(1)
 \]

• So our solution is:

Pick a uniformly random hash function?
What’s wrong with this plan?

• Hint: How would you implement (and store) and uniformly random function $h: U \rightarrow \{1, \ldots, n\}$?

• If h is a uniformly random function:
 • That means that $h(1)$ is a uniformly random number between 1 and n.
 • $h(2)$ is also a uniformly random number between 1 and n, independent of $h(1)$.
 • $h(3)$ is also a uniformly random number between 1 and n, independent of $h(1)$, $h(2)$.
 • ...
 • $h(n)$ is also a uniformly random number between 1 and n, independent of $h(1)$, $h(2)$, ..., $h(n-1)$.

Think-Pair-Share Terrapins
1 minute think
1 minute pair and share
A uniformly random hash function is not a good idea.

- In order to store/evaluate a uniformly random hash function, we’d use a lookup table:

<table>
<thead>
<tr>
<th>x</th>
<th>h(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAAA</td>
<td>1</td>
</tr>
<tr>
<td>AAAAAAB</td>
<td>5</td>
</tr>
<tr>
<td>AAAAAAC</td>
<td>3</td>
</tr>
<tr>
<td>AAAAAAD</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>ZZZZZZ</td>
<td>7</td>
</tr>
<tr>
<td>ZZZZZZZZ</td>
<td>3</td>
</tr>
</tbody>
</table>

- Each value of $h(x)$ takes $\log(n)$ bits to store.
- Storing M such values requires $M \log(n)$ bits.
- In contrast, direct addressing (initializing a bucket for every item in the universe) requires only M bits.
Another way to say this

- There are lots of hash functions.
- There are n^M of them.
- Writing down a random one of them takes $\log(n^M)$ bits, which is $M \log(n)$.
Solution

• Pick from a smaller set of functions.

A cleverly chosen subset of functions. We call such a subset a hash family.

We need only $\log|H|$ bits to store an element of H. All of the hash functions $h: U \rightarrow \{1,...,n\}$
Outline

• **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 • like self-balancing binary trees
 • The difference is we can get better performance in expectation by using randomness.

• **Hash families** are the magic behind hash tables.

• **Universal hash families** are even more magic.
Hash families

• A hash family is a collection of hash functions.

"All of the hash functions" is an example of a hash family.
Example: a smaller hash family

- $H = \{ \text{function which returns the least sig. digit,} \newline \text{function which returns the most sig. digit} \}$
- Pick h in H at random.
- Store just one bit to remember which we picked.

This is still a terrible idea!
Don’t use this example!
For pedagogical purposes only!

All of the hash functions $h:U \rightarrow \{1,\ldots,n\}$
The game

1. An adversary (who knows H) chooses any \(n \) items \(u_1, u_2, \ldots, u_n \in U \), and any sequence of INSERT/DELETE/SEARCH operations on those items.

2. You, the algorithm, chooses a random hash function \(h: U \rightarrow \{0, \ldots, 9\} \). Choose it randomly from \(H \).

3. HASH IT OUT

\[h_0 = \text{Most_significant_digit} \]
\[h_1 = \text{Least_significant_digit} \]
\[H = \{ h_0, h_1 \} \]

I picked \(h_1 \)

\[\text{INSERT} 19, \text{INSERT} 22, \text{INSERT} 42, \]
\[\text{INSERT} 92, \text{INSERT} 0, \text{SEARCH} 42, \]
\[\text{DELETE} 92, \text{SEARCH} 0, \text{INSERT} 92 \]

#hashpuns
This is not a very good hash family

- $H = \{ \text{function which returns least sig. digit,} \$

 \text{function which returns most sig. digit} \}$

- On the previous slide, the adversary could have been a lot more adversarial...
The game

1. An adversary (who knows H) chooses any n items $u_1, u_2, \ldots, u_n \in U$, and any sequence of INSERT/DELETE/SEARCH operations on those items.

$$h_0 = \text{Most_significant_digit}$$
$$h_1 = \text{Least_significant_digit}$$
$$H = \{h_0, h_1\}$$

2. You, the algorithm, chooses a random hash function $h: U \rightarrow \{0, \ldots, 9\}$. Choose it randomly from H.

I picked h_1

3. HASH IT OUT #hashpuns

| 101 | 11 | 121 | 141 | 131 |

0 1 2 9

11 101 141 121 131
Outline

• **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 • like self-balancing binary trees
 • The difference is we can get better performance in expectation by using randomness.

• **Hash families** are the magic behind hash tables.

• **Universal hash families** are even more magic.
How to pick the hash family?

• Definitely not like in that example.
• Let’s go back to that computation from earlier....
Expected number of items in u_i’s bucket?

- $E[\cdot] = \sum_{j=1}^{n} P\{ h(u_i) = h(u_j) \}$
- $= 1 + \sum_{j \neq i} P\{ h(u_i) = h(u_j) \}$
- $= 1 + \sum_{j \neq i} \frac{1}{n}$
- $= 1 + \frac{n-1}{n} \leq 2.$

All that we needed was that this is $1/n$. COLLISION!
Strategy

• Pick a small hash family H, so that when I choose h randomly from H,

\[
\text{for all } u_i, u_j \in U \text{ with } u_i \neq u_j, \quad P_{h \in H}\{ h(u_i) = h(u_j) \} \leq \frac{1}{n}
\]

• A hash family H that satisfies this is called a **universal hash family**.
So the whole scheme will be

Choose \(h \) randomly from a universal hash family \(H \)

We can store \(h \) using \(\log|H| \) bits.

Probably these buckets will be pretty balanced.
Universal hash family

• H is a *universal hash family* if, when h is chosen uniformly at random from H,

\[P_{h \in H} \left\{ h(u_i) = h(u_j) \right\} \leq \frac{1}{n} \]

for all \(u_i, u_j \in U \) with \(u_i \neq u_j \),
Example

- Pick a small hash family H, so that when I choose h randomly from H,

 $\forall u_i, u_j \in U$ \hspace{1em} with $u_i \neq u_j$,

 $$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

- $H = \text{the set of all functions } h: U \rightarrow \{1, \ldots, n\}$

 - We saw this earlier – it corresponds to picking a uniformly random hash function.

 - Unfortunately this H is really really large.
Non-example

• $h_0 = \text{Most_significant_digit}$
• $h_1 = \text{Least_significant_digit}$
• $H = \{h_0, h_1\}$

Pick a small hash family H, so that when I choose h randomly from H,

\[\text{for all } u_i, u_j \in U \text{ with } u_i \neq u_j, \]
\[P_{h \in H}\{ h(u_i) = h(u_j) \} \leq \frac{1}{n} \]

Prove that this choice of H is NOT a universal hash family!

2 minutes think
1 minute pair and share
Non-example

• $h_0 =$ Most_significant_digit
• $h_1 =$ Least_significant_digit
• $H = \{h_0, h_1\}$

NOT a universal hash family:

$$P_{h \in H}\{h(101) = h(111)\} = 1 > \frac{1}{10}$$
A small universal hash family??

• Here’s one:
 • Pick a prime $p \geq M$.
 • Define
 $$f_{a,b}(x) = ax + b \mod p$$
 $$h_{a,b}(x) = f_{a,b}(x) \mod n$$
 • Define:
 $$H = \{ h_{a,b}(x) : a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\} \}$$

• Claim:
 H is a universal hash family.
Say what?

• Example: \(M = p = 5, \ n = 3 \)

• To draw \(h \) from \(H \):
 • Pick a random \(a \) in \(\{1, \ldots, 4\} \), \(b \) in \(\{0, \ldots, 4\} \)

• As per the definition:
 • \(f_{2,1}(x) = 2x + 1 \mod 5 \)
 • \(h_{2,1}(x) = f_{2,1}(x) \mod 3 \)

\(U = 1, 2, 3, 4, 5 \)
\(a = 2, \ b = 1 \)

This step just scrambles stuff up. No collisions here!

This step is the one where two different elements might collide.
h takes $O(\log M)$ bits to store

• Just need to store two numbers:
 • a is in $\{1, \ldots, p-1\}$
 • b is in $\{0, \ldots, p-1\}$
 • So about $2\log(p)$ bits
 • By our choice of p (close to M), that’s $O(\log(M))$ bits.

• Compare: direct addressing was M bits!
 • Twitter example: $\log(M) = 140 \log(128) = 980$ vs $M = 128^{280}$
Another way to see that

\[h \text{ takes } O(\log M) \text{ bits to store} \]

• We have \(p-1 \) choices for \(a \), and \(p \) choices for \(b \).
 • So \(|H| = p(p-1) = O(M^2) \)
• Space needed to store an element \(h \) in \(H \):
 • \(\log(M^2) = O(\log M) \).
Why does this work?

• This is actually a little complicated.
 • See CLRS (Thm 11.5) if you are curious.
 • You are NOT RESPONSIBLE for the proof in this class.
 • But you should know that a universal hash family of size $O(M^2)$ exists.

Try to prove that this is a universal hash family!
But let’s check that it **does** work

- Check out the IPython notebook for lecture 8

![Graph showing empirical probability of collision](image)

M=200, n=10

Number of pairs of \((x,y)\).

Out of \(\binom{200}{2} = 19900\) pairs

Empirical probability of collision out of 100 trials
So the whole scheme will be

Choose a and b at random and form the function $h_{a,b}$

We can store h in space $O(\log(M))$ since we just need to store a and b.

Probably these buckets will be pretty balanced.
Outline

• **Hash tables** are another sort of data structure that allows fast **INSERT/DELETE/SEARCH**.
 • like self-balancing binary trees
 • The difference is we can get better performance in expectation by using randomness.

• **Hash families** are the magic behind hash tables.

• **Universal hash families** are even more magic.
Want $O(1)$ \textbf{INSERT/DELETE/SEARCH}.

- We are interesting in putting nodes with keys into a data structure that supports fast \textbf{INSERT/DELETE/SEARCH}.

\begin{itemize}
 \item INSERT 5
 \item DELETE 4
 \item SEARCH 52
\end{itemize}

HERE IT IS data structure
We studied this game

1. An adversary chooses any n items $u_1, u_2, \ldots, u_n \in U$, and any sequence of L INSERT/DELETE/SEARCH operations on those items.

2. You, the algorithm, chooses a random hash function $h: U \to \{1, \ldots, n\}$.

3. HASH IT OUT

| 13 | 22 | 43 | 92 | 7 |

- INSERT 13, INSERT 22, INSERT 43, INSERT 92, INSERT 7, SEARCH 43, DELETE 92, SEARCH 7, INSERT 92
Uniformly random h was good

- If we choose h uniformly at random,
 for all $u_i, u_j \in U$ with $u_i \neq u_j$,
 \[
 P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}
 \]

- That was enough to ensure that all INSERT/DELETE/SEARCH operations took $O(1)$ time in expectation, even on adversarial inputs.
Uniformly random h was bad

• If we actually want to implement this, we have to store the hash function h.

• That takes a lot of space!
 • We may as well have just initialized a bucket for every single item in U.

• Instead, we chose a function randomly from a smaller set.
Universal Hash Families

H is a universal hash family if:

- If we choose \(h \) uniformly at random in \(H \), for all \(u_i, u_j \in U \) with \(u_i \neq u_j \),

\[
P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}
\]

- This was all we needed to make sure that the buckets were balanced in expectation!

- We gave an example of a really small universal hash family, of size \(O(M^2) \)

- That means we need only \(O(\log M) \) bits to store it.
Conclusion:

- We can build a hash table that supports **INSERT/DELETE/SEARCH** in $O(1)$ expected time.
- Requires $O(n \log(M))$ bits of space.
 - $O(n)$ buckets
 - $O(n)$ items with $\log(M)$ bits per item
 - $O(\log(M))$ to store the hash function

Hashing a universe of size M into n buckets, where at most n of the items in M ever show up.
That’s it for data structures (for now)

Achievement unlocked

Data Structure: RBTrees and Hash Tables

Now we can use these going forward!
Next Time

• Graph algorithms!

Before Next Time

• Pre-lecture exercise for Lecture 9
 • Intro to graphs