Asymptotic Analysis

For each of the following functions, prove whether \(f = O(g) \), \(f = \Omega(g) \), or both \(f = \Theta(g) \). (For example, by specifying some explicit constants \(n_0, c > 0 \) (or \(n_0, c_1, c_2 \) in the case that \(f = \Theta(g) \)) such that the definition of Big-Oh, Big-Omega, or Big-Theta is satisfied.)

\[
\begin{align*}
\text{(a)} & \quad f(n) = n \log(n^3) \\
\text{(b)} & \quad f(n) = 2^{2n} \\
\text{(c)} & \quad f(n) = \sum_{i=1}^{n} \log i
\end{align*}
\]

\[
\begin{align*}
g(n) & = n \log n \\
g(n) & = 3^n \\
g(n) & = n \log n
\end{align*}
\]

(a) \(f(n) \in \Theta(g(n)) \). Since \(f(n) = n \log(n^3) = 3n \log n \), choosing \(c_1 = 2 \) and \(c_2 = 4 \) bounds the function for all \(n \geq 1 \).

(b) \(f(n) \in \Omega(g(n)) \). To see why, \(f(n) = 2^{2n} = 4^n \). Choosing \(c = 1 \) lower bounds the function for all \(n \) that satisfy \((4/3)^n \geq 1 \) or \(n \geq 1 \).

(c) \(f(n) \in \Theta(g(n)) \). Inspect the terms of the summation:

\[
\sum_{i=1}^{n} \log i = \log 1 + \log 2 + \ldots + \log(n/2) + \ldots + \log n
\]

To see that the summation is upper bounded by \(n \log n \), notice the expansion consists of \(n \) terms of at most \(\log n \), so \(\sum_{i=1}^{n} \log i \leq c_2 n \log n \) for \(c_2 = 1 \) and \(n \geq 2 \).

To see that the summation is lower bounded by \(n \log n \), notice the expansion also consists of \(n/2 \) terms of at least \(\log(n/2) \):

\[
\sum_{i=1}^{n} \log i \geq (n/2) \log(n/2) = (n/2)(\log n - \log 2) \geq c_1 n \log n
\]

Rearranging terms of the second inequality shows that \((n/2)(\log n - \log 2) \geq c_1 n \log n\) holds as long as \((1/2 - c_1) \log n \geq (1/2 \log 2)\); let’s choose \(c_1 = 1/3 \) and \(n \geq 8 \).

Recurrence Relations

Recall the Master theorem from lecture:

Theorem 0.1. Given a recurrence \(T(n) = aT(n/b) + O(n^d) \) with \(a \geq 1 \), and \(b > 1 \), and \(T(1) = \Theta(1) \), then

\[
T(n) = \begin{cases}
O(n^d \log n) & \text{if } a = b^d \\
O(n^d) & \text{if } a < b^d \\
O(n^{\log_b a}) & \text{if } a > b^d
\end{cases}
\]
What is the Big-Oh runtime for algorithms with the following recurrence relations?

(a) \(T(n) = 3T(\frac{n}{3}) + \Theta(n^2) \)

(b) \(T(n) = 4T(\frac{n}{2}) + \Theta(n) \)

(c) \(T(n) = 2T(\sqrt{n}) + O(\log n) \)

(a) Using the Master Theorem, \(a = 3 \), \(b = 2 \), and \(d = 2 \). Since \(a = 3 < b^d = 4 \), we fall into the second case. So, the runtime is \(O(n^d) = O(n^2) \).

(b) Using the Master Theorem, \(a = 4 \), \(b = 2 \), and \(d = 1 \). Since \(a = 4 > b^d = 2 \), we fall into the third case. So, the runtime is \(O(n^{\log_b a}) = O(n^{\log_2 4}) = O(n^2) \).

(c) This problem also does not fit directly into the formula Master Theorem. However, we can massage this equation into a form that the theorem can work with. Define \(k = \log n \), meaning that \(n = 2^k \), and \(\sqrt{n} = 2^{k/2} \). In terms of \(k \), the recurrence formula is now:

\[
T(2^k) = 2T(2^{k/2}) + O(k)
\]

Next, define a function \(S(k) = T(2^k) \). Now, rewrite the recurrence as:

\[
S(k) = 2S(\frac{k}{2}) + O(k)
\]

This expression matches the recurrence relation we’ve seen with MergeSort, so

\[
S(k) = O(k^d \log k) = O(k \log k)
\]

To get the bound in terms of \(n \), we replace \(k \) with \(\log n \), to get the bound:

\[
T(n) = O(\log n \log(\log n))
\]

Divide and Conquer: Majority Element

Suppose we are given an array, \(A \), of length \(n \), with the promise that there exists some number, \(x \), that occurs at least \(n/2 + 1 \) times in the array. Additionally, we are only allowed to check whether two elements are equal (no comparisons).

(a) Complete the following pseudo-code for a divide-and-conquer algorithm that returns the majority element of \(A \). Feel free to assume that the \(n \) is a power of 2.

MajorityElement(Input: array \(A \) of length \(n \))
If \(n = 1 \), return \(A[1] \)
Else
 Let \(m1 = \text{MajorityElement}(A[1:n/2]) \)
 Let \(m2 = \text{MajorityElement}(A[n/2+1:n]) \)

 Let \(count = 0 \)
 Foreach \(x \) in \(A \)
 If \(m1 = x \)
 \(count ++ \)
 If \(count > n / 2 \)
 Return \(m1 \)
 Else Return \(m2 \)
(b) Give a brief but formal proof of the correctness of your algorithm. Again, feel free to assume $n = 2^s$ for some integer s. [Hint: induction on s!!]

We proceed by induction on s, where $n = 2^s$. The base case, where $s = 0$, is trivially satisfied by the algorithm. Assuming the algorithm is correct for inputs of length $n/2 = 2^{s-1}$, consider an input of length $n = 2^s$. The majority element of the entire array must be the majority element of at least one of $A[1 : n/2]$ or $A[n/2 + 1 : n]$ since otherwise it would occur at most $n/2$ times. Hence, by our inductive hypothesis, either m_1 or m_2 (or both) must be the majority element. The remainder of the code checks if m_1 is the majority element, and if it is not, then m_2 must be the majority element, and the code outputs m_2. This establishes the correctness for arrays of size $n = 2^s$, and by induction, the algorithm is correct for any input size that is a power of 2.

(c) Express the runtime of your algorithm via a recurrence relation, and solve the relation to give the asymptotic (Big-Oh) runtime of your algorithm.

$T(n) = 2T(n/2) + \Theta(n)$. Using Master theorem, this is $\Theta(n \log n)$.
