Poll results

As of 1am this morning...

0 (0% of users)
3 (25% of users)
0 (0% of users)
3 (25% of users)
3 (25% of users)
5 (42% of users)
6 (50% of users)
1 (8% of users)
4 (33% of users)
5 (42% of users)
0 (0% of users)
7 (58% of users)
5 (42% of users)
6 (50% of users)
6 (50% of users)
I have a bunch of practice problems.

Y’all vote on topics and we’ll do them.

I can also answer particular questions about the material.

Topics I have problems for:

- Grab-bag (multiple choice, etc)
- Hashing
- Red-Black Trees
- Ford-Fulkerson
- Dynamic Programming
- Greedy algorithms
- Divide and conquer
- Randomized algs
Multiple choice warmup!

For each of the following quantities, identify all of the options that correctly describe the quantity.

(a) The function \(f(n) \), where \(f(n) = n \log(n) \).

(b) \(T(n) \) given by \(T(n) = T(n/4) + \Theta(n^2) \) with \(T(n) = 1 \) for all \(n \leq 8 \).

(c) \(T(n) \) which is the running time of the following algorithm:

\[
mysteryAlg(n): \\
 \text{if } n < 3: \\
 \quad \text{return } 1 \\
 \text{return } mysteryAlg(n/2) + mysteryAlg((n/2) + 1)
\]

where above all division is integer division (so \(a/b \) means \(\lfloor a/b \rfloor \)).

\((A)\ O(n^2) \quad (B)\ \Theta(n^2) \quad (C)\ \Omega(n) \quad (D)\ O(n) \quad (E)\ O(\log^2(n))\).
Let $G = (V, E)$ be an undirected weighted graph, and let T be a minimum spanning tree in G. Decide whether the following statements must be true or may be false, and prove it!

(a) For any pair of distinct vertices $s, t \in V$, there is a unique path from s to t in T.

True \hspace{2cm} False

(b) For any pair of distinct vertices $s, t \in V$, the cost of a path between s and t in T is minimal among all paths from s to t in G.

True \hspace{2cm} False
Hashing warm-up

Let \mathcal{U} be a universe of size m, where m is a prime, and consider the following two hash families which hash \mathcal{U} into n buckets, where n is much smaller than m.

- First, consider \mathcal{H}_1, which is the set of all functions from \mathcal{U} to $\{1, \ldots, n\}$:
 \[\mathcal{H}_1 = \{ h \mid h : \mathcal{U} \to \{1, \ldots, n\} \} \]

- Second, let $p = m$ (so p is prime since we assumed m to be prime), and choose \mathcal{H}_2 to be
 \[\mathcal{H}_2 = \{ h_{a,b} \mid a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\} \} \]
 where $h_{a,b}(x) = (ax + b \mod p) \mod n$.

You want to implement a hash table using one of these two families. Why would you choose \mathcal{H}_2 over \mathcal{H}_1? Choose the best answer.

(A) \mathcal{H}_1 isn't a universal hash family.
(B) Storing an element of \mathcal{H}_1 takes a lot of space.
(C) Storing all of \mathcal{H}_1 takes a lot of space.
When might you prefer breadth-first search to Dijkstra’s algorithm?

When might you prefer Floyd-Warshall to Bellman-Ford?

When might you prefer Bellman-Ford to Dijkstra’s algorithm?
Randomized algorithms

Suppose that \(b_1, \ldots, b_n \) are \(n \) distinct integers in a **uniformly random order**. Consider the following algorithm:

\[
\text{findMax}(b_1, \ldots, b_n):
\]
\[
\text{currentMax} = -\text{Infinity}
\]
\[
\text{for } i = 1, \ldots, n:
\]
\[
\quad \text{if } b_i > \text{currentMax}:
\]
\[
\quad \quad \text{currentMax} = b_i
\]
\[
\text{return currentMax}
\]

What is the expected number of times that \(\text{currentMax} \) is updated? (Asymptotic notation is fine).
Min-cut/Max-flow

Consider the following flow on a graph. The notation \(x/y \) means that an edge has flow \(x \) out of capacity \(y \).

\[
\begin{array}{c}
s \rightarrow a \leftarrow t \\
\downarrow \quad \quad \downarrow \\
0/4 \quad 1/1 \\
\downarrow \quad \downarrow \\
1/1 \\
\downarrow \\
b \\
\end{array}
\]

- Draw the residual graph for this flow.
- Find an augmenting path in the residual graph and use it to increase the flow.
- Find a minimum cut and prove (not by exhaustion) that it is a minimum cut.
Dynamic Programming!

- Suppose that roads in a city are laid out in an $n \times n$ grid, but some of the roads are obstructed.
- For example, for $n = 3$, the city may look like this:

where we have only drawn the roads that are not blocked. You want to count the number of ways to get from $(0, 0)$ to $(n - 1, n - 1)$, using paths that only go up and to the right. In the example above, the number of paths is 3.
- Design a DP algorithm to solve this problem.
Divide and Conquer!

- Given an array A of length n, we say that an array B is a *circular shift* of A if there is an integer k between 1 and n (inclusive) so that

where $+$ denotes concatenation.

- For example, if $A = [2, 5, 6, 8, 9]$, then $B = [6, 8, 9, 2, 5]$ is a circular shift of A (with $k = 2$). The sorted array A itself is also a circular shift of A (with $k = 1$).

- Design a $O(\log(n))$-time algorithm that takes as input an array B which is a circular shift of a sorted array which contains distinct positive integers, and returns the value of the largest element in B. For example, give B as above, your algorithm should return 9.
Greedy Algorithms!

There are \(n \) final exams on Dec. 13 at Stanford; exam \(i \) is scheduled to begin at time \(a_i \) and end at time \(b_i \). Two exams which overlap cannot be administered in the same classroom; two exams \(i \) and \(j \) are defined to be overlapping if \([a_i, b_i] \cap [a_j, b_j] \neq \emptyset \) (including if \(b_i = a_j \), so one starts exactly at the time that the other ends). Design an algorithm which solves the following problem.

- **Input**: Arrays \(A \) and \(B \) of length \(n \) so that \(A[i] = a_i \) and \(B[i] = b_i \).
- **Output**: The smallest number of classrooms necessary to schedule all of the exams, and an optimal assignment of exams to classrooms.
- **Running time**: \(O(n \log(n) + nk) \), where \(k \) is the minimum number of classrooms needed.
- **For example**: Suppose there are three exams, with start and finish times as given below:

\[
\begin{array}{c|c|c|c}
 i & 1 & 2 & 3 \\
 a_i & 12pm & 4pm & 2pm \\
 b_i & 3pm & 6pm & 5pm \\
\end{array}
\]

Then the exams can be scheduled in two rooms; Exam 1 and Exam 2 can be scheduled in Room 1 and Exam 3 can be scheduled in Room 2.
Definition: A hash family \(\mathcal{H} \) (mapping \(\mathcal{U} \) into \(n \) buckets) is 2-universal if for all \(x \neq y \in \mathcal{U} \) and for all \(a, b \in \{1, \ldots, n\} \),

\[
P((h(x), h(y)) = (a, b)) = \frac{1}{n^2}.
\]

(a) Show that if \(\mathcal{H} \) is 2-universal, then it is universal.

(b) Show that the converse is not true. That is, there is a universal family that’s not 2-universal.
More universal hash families

Say that \mathcal{H} is a universal hash family, containing functions $h : \mathcal{U} \rightarrow \{1, \ldots, n\}$. Consider the following game.

- You choose $h \in \mathcal{H}$ uniformly at random and keep it secret.
- A bad guy chooses $x \in \mathcal{U}$, and asks you for $h(x)$. (You give it to them).
- The bad guy chooses $y \in \mathcal{U} \setminus \{x\}$, and tries to get $h(y) = h(x)$.
- If $h(x) = h(y)$, the bad guy wins. Otherwise, you win.

One of the following two is true.

1. There is a universal hash family \mathcal{H} so that the bad guy wins with probability 1.
2. For any universal hash family \mathcal{H}, the probability that the bad guy wins is at most $1/n$.

Which is true and why?
Which of the following can be colored as a red-black tree? Either give a coloring or explain why not.