This handout covers mathematical notation and identities that may be useful over the course of CS166. Feel free to refer to this handout for reference on a variety of topics. If you have any suggestions on how to improve this handout, please let us know!

Set Theory

The set \(\mathbb{N} \) consists of all natural numbers. That is, \(\mathbb{N} = \{ 0, 1, 2, 3, \ldots \} \).

The set \(\mathbb{Z} \) consists of all integers: \(\mathbb{Z} = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} \).

The set \(\mathbb{R} \) consists of all real numbers.

The set \(\emptyset \) is the empty set consisting of no elements.

If \(x \) belongs to set \(S \), we write \(x \in S \). If \(x \) does not belong to \(S \), we write \(x \notin S \).

The union of two sets \(S_1 \) and \(S_2 \) is denoted \(S_1 \cup S_2 \). Their intersection is denoted \(S_1 \cap S_2 \), difference is denoted \(S_1 - S_2 \) or \(S_1 \setminus S_2 \), and symmetric difference is denoted \(S_1 \Delta S_2 \).

If \(S_1 \) is a subset of \(S_2 \), we write \(S_1 \subseteq S_2 \). If \(S_1 \) is a strict subset of \(S_2 \), we denote this by \(S_1 \subset S_2 \).

The power set of a set \(S \) (denoted \(\mathcal{P}(S) \)) is the set of all subsets of \(S \).

The Cartesian product of two sets \(S_1 \) and \(S_2 \) is the set \(S_1 \times S_2 = \{ (a, b) \mid a \in S_1 \text{ and } b \in S_2 \} \).

First-Order Logic

The negations of the basic propositional connectives are as follows:

\[
\neg(\neg p) \equiv p \\
\neg(p \land q) \equiv \neg p \lor \neg q \\
\neg(p \lor q) \equiv \neg p \land \neg q \\
\neg(p \to q) \equiv p \land \neg q \\
\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\]

The negations of the \(\exists \) and \(\forall \) quantifiers are as follows:

\[
\neg \forall x. \phi \equiv \exists x. \neg \phi \\
\neg \exists x. \phi \equiv \forall x. \neg \phi
\]

The statement “iff” abbreviates “if and only if.”
Summations

The sum of the first n natural numbers $(0 + 1 + 2 + \ldots + n - 1)$ is given by

$$\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}$$

The sum of the first n terms of the arithmetic series $a, a + b, a + 2b, \ldots, a + (n-1)b$ is

$$\sum_{i=0}^{n-1} (a + ib) = a \sum_{i=0}^{n-1} 1 + b \sum_{i=0}^{n-1} i = an + b \frac{n(n-1)}{2}$$

The sum of the first n terms of the geometric series $1, r, r^2, r^3, \ldots, r^{n-1}$ is given by

$$\sum_{i=0}^{n-1} r^i = \frac{r^n - 1}{r - 1}$$

As a useful special case, when $r = 2$, we have

$$\sum_{i=0}^{n-1} 2^i = 2^n - 1$$

In the case that $|r| < 1$, the sum of all infinite terms of the geometric series is given by

$$\sum_{i=0}^\infty r^i = \frac{1}{1-r}$$

The following summation often arises in the analysis of algorithms: when $|r| < 1$, we have

$$\sum_{i=0}^\infty i r^i = \frac{r}{(1-r)^2}$$

Inequalities

The following identities are useful for manipulating inequalities:

If $A \leq B$ and $B \leq C$, then $A \leq C$

If $A \leq B$ and $C \geq 0$, then $CA \leq CB$

If $A \leq B$ and $C \leq 0$, then $CA \geq CB$

If $A \leq B$ and $C \leq D$, then $A + C \leq B + D$

If $A, B \in \mathbb{Z}$, then $A \leq B$ iff $A < B + 1$

If f is any monotonically increasing function and $A \leq B$, then $f(A) \leq f(B)$

If f is any monotonically decreasing function and $A \leq B$, then $f(A) \geq f(B)$

The following inequalities are often useful in algorithmic analysis:

$$e^x \geq 1 + x$$

$$\sqrt[n]{x_1 x_2 \ldots x_n} \leq \frac{x_1 + x_2 + \ldots + x_n}{n}$$
Floors and Ceilings

The floor function \(\lfloor x \rfloor \) denotes the largest integer less than or equal to \(x \). The ceiling function \(\lceil x \rceil \) denotes the smallest integer greater than or equal to \(x \). These functions obey the rules

\[
\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1 \quad \text{and} \quad \lfloor x \rfloor \in \mathbb{Z}
\]

\[
\lceil x \rceil - 1 < x \leq \lceil x \rceil \quad \text{and} \quad \lceil x \rceil \in \mathbb{Z}
\]

Additionally, \(\lfloor x + n \rfloor = \lfloor x \rfloor + n \) and \(\lceil x + n \rceil = \lceil x \rceil + n \) for any \(n \in \mathbb{Z} \).

Asymptotic Notation

Let \(f, g : \mathbb{N} \to \mathbb{N} \). Then

\[
f(n) = O(g(n)) \quad \text{if} \quad \exists n_0 \in \mathbb{N}. \exists c \in \mathbb{R}. \forall n \in \mathbb{N}. (n \geq n_0 \to f(n) \leq cg(n))
\]

\[
f(n) = \Omega(g(n)) \quad \text{if} \quad \exists n_0 \in \mathbb{N}. \exists c > 0 \in \mathbb{R}. \forall n \in \mathbb{N}. (n \geq n_0 \to f(n) \geq cg(n))
\]

\[
f(n) = \Theta(g(n)) \quad \text{if} \quad f(n) = O(g(n)) \land f(n) = \Omega(g(n))
\]

When multiple variables are involved in an expression, big-O notation generalizes as follows: we say that \(f(x_1, \ldots, x_n) = O(g(x_1, \ldots, x_n)) \) if there are constants \(N \) and \(c \) such that for any \(x_1 \geq N, x_2 \geq N, \ldots, x_n \geq N \), we have \(f(x_1, \ldots, x_n) \leq c \cdot g(x_1, \ldots, x_n) \).

The following rules apply for \(O \) notation:

If \(f(n) = O(g(n)) \) and \(g(n) = O(h(n)) \), then \(f(n) = O(h(n)) \) (also \(\Omega, \Theta, o, \omega \))

If \(f_1(n) = O(g(n)) \) and \(f_2(n) = O(g(n)) \), then \(f_1(n) + f_2(n) = O(g(n)) \) (also \(\Omega, \Theta, o, \omega \))

If \(f_1(n) = O(g_1(n)) \) and \(f_2(n) = O(g_2(n)) \), then \(f_1(n)f_2(n) = O(g_1(n)g_2(n)) \) (also \(\Omega, \Theta, o, \omega \))

We can use \(o \) and \(\omega \) notations to denote strict bounds on growth rates:

\[
f(n) = o(g(n)) \quad \text{if} \quad \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \quad \quad f(n) = \omega(g(n)) \quad \text{if} \quad \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty
\]

Polynomials, exponents, and logarithms are related as follows:

\[
\log_b n = \Theta(\log_a n) \quad \text{for any fixed constants} \quad a, b > 1
\]

Any polynomial of degree \(k \) with positive leading coefficient is \(\Theta(n^k) \)

\[
\log_b n = o(n^k) \quad \text{for any} \quad k > 0
\]

\[
n^b = o(b^n) \quad \text{for any} \quad b > 1
\]

\[
b^c = o(c^n) \quad \text{for any} \quad 1 < b < c
\]

In a graph, \(n \) denotes the number of nodes (\(|V|\)) and \(m \) denotes the number of edges (\(|E|\)). In any graph, \(m = O(n^2) \). In a dense graph, \(m = \Theta(n^2) \); a sparse graph is one where \(m = o(n^2) \).
The Master Theorem
If \(a, b, \) and \(d \) are constants, then the recurrence relation
\[
T(n) = aT(n / b) + O(n^d)
\]
solves as follows:
\[
T(n) = \begin{cases}
O(n^d) & \text{if } \log_b a < d \\
O(n^d \log n) & \text{if } \log_b a = d \\
O(n^{\log_b a}) & \text{if } \log_b a > d
\end{cases}
\]

Logarithms and Exponents
Logarithms and exponents are inverses of one another: \(b^{\log_b x} = \log_b b^x = x \)
The **change-of-base formula** for logarithms states that
\[
\log_b a = \frac{\log_c a}{\log_c b}
\]
Sums and differences of logarithms translate into logarithms of products and quotients:
\[
\log_b xy = \log_b x + \log_b y \quad \log_b \left(\frac{x}{y} \right) = \log_b x - \log_b y
\]
The **power rule** for logarithms states
\[
\log_b x^y = y \log_b x
\]
In some cases, exponents may be interchanged:
\[
(a^b)^c = a^{bc} = (a^c)^b
\]
We can change the base of an exponent using the fact that logarithms and exponents are inverses:
\[
a^c = b^{c \log_b a}
\]
Probability

If E_1 and E_2 are mutually exclusive events, then

$$P(E_1) + P(E_2) = P(E_1 \cup E_2)$$

For any events E_1, E_2, E_3, ..., including overlapping events, the union bound states that

$$P\left(\bigcup_{i=1}^{\infty} E_i \right) \leq \sum_{i=1}^{\infty} P(E_i)$$

The probability of E given F is denoted $P(E \mid F)$ and is given by

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

The chain rule for conditional probability is

$$P(E_n \cap E_{n-1} \cap \ldots \cap E_1) = P(E_n \mid E_{n-1} \cap \ldots \cap E_1) \cdot P(E_{n-1} \mid E_{n-2} \cap \ldots \cap E_1) \cdot \ldots \cdot P(E_1)$$

Two events E_1 and E_2 are called independent if

$$P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$$

For any event E, the complement of that event (denoted \bar{E}) represents the event that E does not occur. E and \bar{E} are mutually exclusive, and

$$P(E) + P(\bar{E}) = 1$$

Expected Value

The expected value of a discrete random variable X is defined as

$$E[X] = \sum_{i=0}^{\infty} (i \cdot P(X = i))$$

The expected value operator is linear: for any $a, b \in \mathbb{R}$ and any random variable X:

$$E[aX + b] = aE[X] + b$$

More generally, if $X_1, X_2, X_3, \ldots X_n$ are any random variables, then

$$E\left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i]$$

If X and Y are independent random variables, then

$$E[XY] = E[X]E[Y]$$
Variance and Covariance

The **variance** of a random variable X is defined as

$$\text{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Equivalently:

$$\text{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Given two random variables X and Y, the **covariance** of X and Y is defined as

$$\text{Cov}[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Equivalently:

$$\text{Cov}[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Accordingly:

$$\text{Var}[X] = \text{Cov}[X, X]$$

Variance is not a linear operator:

$$\text{Var}[aX + bY] = a^2\text{Var}[X] + 2ab\text{Cov}[X, Y] + b^2\text{Var}[Y]$$

The variance of a summation of random variables, including dependent variables, can be simplified using the following rule:

$$\text{Var}\left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} \text{Var}[X_i] + \sum_{i \neq j} \text{Cov}[X_i, X_j]$$

If X and Y are independent random variables, then $\text{Cov}[X, Y] = 0$. However, if $\text{Cov}[X, Y] = 0$, it is not necessarily the case that X and Y are independent.

Concentration Inequalities

Markov's inequality says that for any nonnegative random variable X with finite expected value and any $c > 0$, we have both

$$P(X \geq c\mathbb{E}[X]) \leq \frac{1}{c} \quad \text{and} \quad P(X \geq c) \leq \frac{\mathbb{E}[X]}{c}.$$

Chebyshev's inequality states that for any random variable X with finite expected value that

$$P\left(|X - \mathbb{E}[X]| \geq c\sqrt{\text{Var}[X]} \right) \leq \frac{1}{c^2} \quad \text{and} \quad P\left(|X - \mathbb{E}[X]| \geq c \right) \leq \frac{\text{Var}[X]}{c^2}.$$

The **Chernoff bound** says that if $X \sim \text{Binom}(n, p)$ for $p < 1/2$, that

$$P\left(X \geq \frac{n}{2} \right) \leq e^{-n(1/2 - p)^2}$$

In the case where p is a fixed constant, notice that the right-hand side is $e^{O(1) \cdot n}$.
Useful Probability Equalities and Inequalities

An *indicator random variable* is a random variable X where

$$X = \begin{cases}
1 & \text{if event } F \text{ occurs} \\
0 & \text{otherwise}
\end{cases}$$

For any indicator variable, $E[X] = P(F)$. Indicator variables are Bernoulli random variables, so if X is an indicator variable, then $\text{Var}[X] = P(F)(1 - P(F))$.

If X_1, X_2, \ldots, X_n are random variables, then

$$P\left(\max\{X_1, X_2, \ldots, X_n\} \leq k\right) = P\left(X_1 \leq k \cap X_2 \leq k \cap \ldots \cap X_n \leq k\right)$$

$$P\left(\min\{X_1, X_2, \ldots, X_n\} \geq k\right) = P\left(X_1 \geq k \cap X_2 \geq k \cap \ldots \cap X_n \geq k\right)$$

On expectation, repeatedly flipping a biased coin that comes up heads with probability p requires $\frac{1}{p}$ trials before the coin will come up heads.

Harmonic Numbers

The *nth harmonic number*, denoted H_n, is given by

$$H_n = \sum_{i=1}^{n} \frac{1}{i}$$

The harmonic numbers are close in value to $\ln n$: for any $n \geq 1$, we have

$$\ln (n + 1) \leq H_n \leq \ln n + 1,$$

so $H_n = \Theta(\log n)$