Welcome to CS166!

• Four handouts available up front.
 • Also available online!

• Today:
 • Why study data structures?
 • The range minimum query problem.
Why Study Data Structures?
Why Study Data Structures?

- **Explore where theory meets practice.**
 - Some of the data structures we'll cover are used extensively in practice. Many were invented about twenty miles from here!

- **Challenge your intuition for the limits of efficiency.**
 - You'd be amazed how many times we'll take a problem you're sure you know how to solve and then see how to solve it faster.

- **See the beauty of theoretical computer science.**
 - We'll cover some amazingly clever theoretical techniques in the course of this class. You'll love them.

- **Equip yourself to solve complex problems.**
 - Powerful data structures make excellent building blocks for solving seemingly difficult problems.
Course Staff

Keith Schwarz (htiek@cs.stanford.edu)

Benjamin Plaut
Mitchell Douglass
Rafa Musa
Sam Redmond

Course Staff Mailing List:
cs166-spr1718-staff@lists.stanford.edu
The Course Website

http://cs166.stanford.edu
Recommended Reading

- You'll want the third edition for this course.
- Available in the bookstore; several copies on hold at the Engineering Library.
Prerequisites

- **CS161** (Design and Analysis of Algorithms)
 - We'll assume familiarity with asymptotic notation, correctness proofs, algorithmic strategies (e.g. divide-and-conquer, dynamic programming), classical algorithms, recurrence relations, universal hashing, etc.

- **CS107** (Computer Organization and Systems)
 - We'll assume comfort working from the command-line, designing and testing nontrivial programs, and manipulating bitwise representations of data. You should have some knowledge of the memory hierarchy. You should also know how to code in both high-level and low-level languages.
Grading Policies

1/3 Assignments
1/3 Midterm
1/3 Final Project

Midterm: **Tuesday, May 29**
7PM - 10PM
Location TBA
Problem Sets

- The first problem set of the quarter, Problem Set 0, goes out today. It’s due next Tuesday at 2:30PM.

- This problem set is designed as a refresher on the techniques and concepts that we’ll be using over the course of this class.

- You’re welcome to work in pairs or individually. See the “Problem Set Policies” handout for more details.
Let’s Get Started!
Range Minimum Queries
The RMQ Problem

- The *Range Minimum Query problem* (RMQ for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?
The RMQ Problem

- The *Range Minimum Query problem* (RMQ for short) is the following:

 Given an array \(A \) and two indices \(i \leq j \), what is the smallest element out of \(A[i], A[i + 1], ..., A[j - 1], A[j] \)?
The RMQ Problem

- The *Range Minimum Query problem* (RMQ for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?
The RMQ Problem

- The **Range Minimum Query problem** (*RMQ* for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], ..., A[j - 1], A[j]$?
The RMQ Problem

- The **Range Minimum Query problem** (RMQ for short) is the following:

 Given an array \(A \) and two indices \(i \leq j \), what is the smallest element out of \(A[i], A[i + 1], \ldots, A[j - 1], A[j] \)?
The RMQ Problem

- The **Range Minimum Query problem** (RMQ for short) is the following:

The RMQ Problem

- The **Range Minimum Query problem** (RMQ for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?
The RMQ Problem

- The *Range Minimum Query problem* (RMQ for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], ..., A[j - 1], A[j]$?
The RMQ Problem

• The **Range Minimum Query problem** (RMQ for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i+1], ..., A[j-1], A[j]$?
The RMQ Problem

- The **Range Minimum Query problem** (RMQ for short) is the following:

 Given an array \(A \) and two indices \(i \leq j \), what is the smallest element out of \(A[i], A[i + 1], \ldots, A[j - 1], A[j] \)?
The RMQ Problem

- The **Range Minimum Query problem** (*RMQ* for short) is the following:

 Given an array *A* and two indices *i* ≤ *j*, what is the smallest element out of *A*[i], *A*[i + 1], ..., *A*[j − 1], *A*[j]?

- Notation: We'll denote a range minimum query in array *A* between indices *i* and *j* as **RMQ*_*A*(i, j).

- For simplicity, let's assume 0-indexing.
A Trivial Solution

- There's a simple $O(n)$-time algorithm for evaluating $\text{RMQ}_A(i, j)$: just iterate across the elements between i and j, inclusive, and take the minimum!
- So... why is this problem at all algorithmically interesting?
- Suppose that the array A is fixed in advance and you're told that we're going to make a number of different queries on it.
- Can we do better than the naïve algorithm?
An Observation

• In an array of length n, there are only $\Theta(n^2)$ possible queries.

• Why?

1 subarray of length 5
2 subarrays of length 4
3 subarrays of length 3
4 subarrays of length 2
5 subarrays of length 1
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
A Different Approach

• There are only $\Theta(n^2)$ possible RMQs in an array of length n.

• If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
Building the Table

- One simple approach: for each entry in the table, iterate over the range in question and find the minimum value.

- How efficient is this?
 - Number of entries: $\Theta(n^2)$.
 - Time to evaluate each entry: $O(n)$.
 - Time required: $O(n^3)$.

- The runtime is $O(n^3)$ using this approach. Is it also $\Theta(n^3)$?
Each entry in yellow requires at least $n/2 = \Theta(n)$ work to evaluate.

There are roughly $n^2/4 = \Theta(n^2)$ entries here.

Total work required: $\Omega(n^3)$
Each entry in yellow requires at least \(n / 2 = \Theta(n) \) work to evaluate.

There are roughly \(n^2 / 8 = \Theta(n^2) \) entries here.

Total work required: \(\Omega(n^3) \)
Each entry in yellow requires at least \(n / 2 = \Theta(n) \) work to evaluate.

There are roughly \(n^2 / 8 = \Theta(n^2) \) entries here.

Total work required: \(\Theta(n^3) \)
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>18</td>
<td>33</td>
<td>98</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim**: We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim**: We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim**: We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>16</td>
<td>★</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

• Naïvely precomputing the table is inefficient.
• Can we do better?
• **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>98</td>
</tr>
</tbody>
</table>
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.

![Dynamic Programming Table](image-url)
Some Notation

• We'll say that an RMQ data structure has time complexity \(\langle p(n), q(n) \rangle \) if
 • preprocessing takes time at most \(p(n) \) and
 • queries take time at most \(q(n) \).

• We now have two RMQ data structures:
 • \(\langle O(1), O(n) \rangle \) with no preprocessing.
 • \(\langle O(n^2), O(1) \rangle \) with full preprocessing.

• These are two extremes on a curve of tradeoffs: no preprocessing versus full preprocessing.

• **Question**: Is there a “golden mean” between these extremes?
Another Approach: *Block Decomposition*
A Block-Based Approach

• Split the input into $O(n / b)$ blocks of some “block size” b.
A Block-Based Approach

• Split the input into $O(n / b)$ blocks of some "block size" b.
A Block-Based Approach

• Split the input into $O(n / b)$ blocks of some “block size” b.
• Here, $b = 3$.

| 31 | 41 | 59 | 26 | 53 | 58 | 97 | 93 | 23 | 84 | 62 | 64 | 33 | 83 | 27 |
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 3$.
- Compute the minimum value in each block.
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 3$.
- Compute the minimum value in each block.
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 3$.
- Compute the minimum value in each block.

<table>
<thead>
<tr>
<th>31</th>
<th>41</th>
<th>59</th>
<th>26</th>
<th>53</th>
<th>58</th>
<th>97</th>
<th>93</th>
<th>23</th>
<th>62</th>
<th>84</th>
<th>62</th>
<th>64</th>
<th>33</th>
<th>83</th>
<th>27</th>
</tr>
</thead>
</table>
A Block-Based Approach

• Split the input into $O(n / b)$ blocks of some “block size” b.
 • Here, $b = 3$.
• Compute the minimum value in each block.
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
- Here, $b = 3$.
- Compute the minimum value in each block.

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>41</th>
<th>59</th>
<th>26</th>
<th>53</th>
<th>58</th>
<th>97</th>
<th>93</th>
<th>23</th>
<th>84</th>
<th>62</th>
<th>64</th>
<th>33</th>
<th>83</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
<td>62</td>
<td>64</td>
<td>33</td>
<td>83</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 3$.
- Compute the minimum value in each block.

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>41</th>
<th>59</th>
<th>26</th>
<th>53</th>
<th>58</th>
<th>97</th>
<th>93</th>
<th>23</th>
<th>84</th>
<th>62</th>
<th>64</th>
<th>33</th>
<th>83</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
<td>62</td>
<td>64</td>
<td>33</td>
<td>83</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some "block size" b.
 - Here, $b = 3$.
- Compute the minimum value in each block.
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some "block size" b.
 - Here, $b = 3$.
- Compute the minimum value in each block.
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 3$.
- Compute the minimum value in each block.
A Block-Based Approach

• Split the input into $O(n / b)$ blocks of some “block size” b.
 • Here, $b = 3$.
• Compute the minimum value in each block.

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>41</th>
<th>59</th>
<th>26</th>
<th>53</th>
<th>58</th>
<th>97</th>
<th>93</th>
<th>23</th>
<th>84</th>
<th>62</th>
<th>64</th>
<th>33</th>
<th>83</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
<td>62</td>
<td>64</td>
<td>33</td>
<td>83</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 3$.
- Compute the minimum value in each block.

<table>
<thead>
<tr>
<th>31</th>
<th>41</th>
<th>59</th>
<th>26</th>
<th>53</th>
<th>58</th>
<th>97</th>
<th>93</th>
<th>23</th>
<th>84</th>
<th>62</th>
<th>64</th>
<th>33</th>
<th>83</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
<td>62</td>
<td>64</td>
<td>33</td>
<td>83</td>
<td>27</td>
</tr>
</tbody>
</table>
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some "block size" b.
 - Here, $b = 3$.
- Compute the minimum value in each block.

<table>
<thead>
<tr>
<th>31</th>
<th>41</th>
<th>59</th>
<th>26</th>
<th>53</th>
<th>58</th>
<th>23</th>
<th>62</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
</tr>
<tr>
<td>84</td>
<td>62</td>
<td>64</td>
<td>33</td>
<td>83</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analyzing the Approach

- Let's analyze this approach in terms of n and b.
- Preprocessing time:
 - $O(b)$ work on $O(n / b)$ blocks to find minima.
 - Total work: $O(n)$.
- Time to evaluate $\text{RMQ}_A(i, j)$:
 - $O(1)$ work to find block indices (divide by block size).
 - $O(b)$ work to scan inside i and j's blocks.
 - $O(n / b)$ work looking at block minima between i and j.
 - Total work: $O(b + n / b)$.
Intuiting $O(b + n / b)$

- As b increases:
 - The b term rises (more elements to scan within each block).
 - The n / b term drops (fewer blocks to look at).
- As b decreases:
 - The b term drops (fewer elements to scan within a block).
 - The n / b term rises (more blocks to look at).
- Is there an optimal choice of b given these constraints?
Optimizing b

- What choice of b minimizes $b + n / b$?

- Start by taking the derivative:

- Setting the derivative to zero:

- Asymptotically optimal runtime is when $b = n^{1/2}$.

- In that case, the runtime is $O(b + n / b) = O(n^{1/2} + n / n^{1/2}) = O(n^{1/2})$.
Optimizing b

- What choice of b minimizes $b + \frac{n}{b}$?
- Start by taking the derivative:
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:

$$
\frac{d}{db} (b + n/b) = 1 - \frac{n}{b^2}
$$
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[
 \frac{d}{db} (b + n/b) = 1 - \frac{n}{b^2}
 \]
- Setting the derivative to zero:
Optimizing b

• What choice of b minimizes $b + n / b$?

• Start by taking the derivative:

$$
\frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2}
$$

• Setting the derivative to zero:

$$
1 - \frac{n}{b^2} = 0
$$
Optimizing b

• What choice of b minimizes $b + n / b$?

• Start by taking the derivative:

$$\frac{d}{db} (b + n/b) = 1 - \frac{n}{b^2}$$

• Setting the derivative to zero:

$$1 - \frac{n}{b^2} = 0$$
$$1 = \frac{n}{b^2}$$
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[
 \frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2}
 \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0
 \]
 \[
 1 = \frac{n}{b^2}
 \]
 \[
 b^2 = n
 \]
Optimizing b

- What choice of b minimizes $b + n/b$?
- Start by taking the derivative:
 \[
 \frac{d}{db} (b + n/b) = 1 - \frac{n}{b^2}
 \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0
 \]
 \[
 1 = \frac{n}{b^2}
 \]
 \[
 b^2 = n
 \]
 \[
 b = \sqrt{n}
 \]
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[
 \frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2}
 \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0 \\
 1 = \frac{n}{b^2} \\
 b^2 = n \\
 b = \sqrt{n}
 \]
- Asymptotically optimal runtime is when $b = n^{1/2}$.
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[
 \frac{d}{db} (b + n/b) = 1 - \frac{n}{b^2}
 \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0 \\
 1 = \frac{n}{b^2} \\
 b^2 = n \\
 b = \sqrt{n}
 \]
- Asymptotically optimal runtime is when $b = n^{1/2}$.
- In that case, the runtime is
 \[
 O(b + n / b)
 \]
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[\frac{d}{db}(b + n/b) = 1 - \frac{n}{b^2} \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0 \\
 1 = \frac{n}{b^2} \\
 b^2 = n \\
 b = \sqrt{n}
 \]
- Asymptotically optimal runtime is when $b = n^{1/2}$.
- In that case, the runtime is
 \[O(b + n / b) = O(n^{1/2} + n / n^{1/2}) \]
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[
 \frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2}
 \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0 \\
 1 = \frac{n}{b^2} \\
 b^2 = n \\
 b = \sqrt{n}
 \]
- Asymptotically optimal runtime is when $b = n^{1/2}$.
- In that case, the runtime is
 \[
 O(b + n / b) = O(n^{1/2} + n / n^{1/2}) = O(n^{1/2} + n^{1/2})
 \]
Optimizing b

- What choice of b minimizes $b + n / b$?

- Start by taking the derivative:

 $$\frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2}$$

- Setting the derivative to zero:

 $$1 - \frac{n}{b^2} = 0$$

 $$1 = \frac{n}{b^2}$$

 $$b^2 = n$$

 $$b = \sqrt{n}$$

- Asymptotically optimal runtime is when $b = n^{1/2}$.

- In that case, the runtime is

 $$O(b + n / b) = O(n^{1/2} + n / n^{1/2}) = O(n^{1/2} + n^{1/2}) = O(n^{1/2})$$
Summary of Approaches

- Three solutions so far:
 - Full preprocessing: \(O(n^2), O(1)\).
 - Block partition: \(O(n), O(n^{1/2})\).
 - No preprocessing: \(O(1), O(n)\).
- Modest preprocessing yields modest performance increases.
- **Question**: Can we do better?
A Second Approach: *Sparse Tables*
An Intuition

- The \(O(n^2), O(1)\) solution gives fast queries because every range we might look up has already been precomputed.

- This solution is slow overall because we have to compute the minimum of every possible range.

- **Question:** Can we still get constant-time queries without preprocessing all possible ranges?
An Observation
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6 7

31 41 59 26 53 58 97 93

- There is a red line indicating a pattern or connection between the numbers.
- The number 97 is highlighted with a star, suggesting it is significant or notable within the context.
An Observation
An Observation
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>

[Table of numbers]
An Observation
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An Observation
An Observation
An Observation
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>

The diagram shows a sequence of numbers from 0 to 7, with certain numbers highlighted in blue. The highlighted numbers form a pattern that resembles a triangle with a star at the bottom right.
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation
An Observation
An Observation
An Observation
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
The Intuition

- It's still possible to answer any query in time $O(1)$ without precomputing RMQ over all ranges.
- If we precompute the answers over too many ranges, the preprocessing time will be too large.
- If we precompute the answers over too few ranges, the query time won't be $O(1)$.

Goal: Precompute RMQ over a set of ranges such that

- There are $o(n^2)$ total ranges, but
- there are enough ranges to support $O(1)$ query times.
Some Observations
The Approach

- For each index \(i \), compute RMQ for ranges starting at \(i \) of size 1, 2, 4, 8, 16, \(\ldots, 2^k \) as long as they fit in the array.
 - Gives both large and small ranges starting at any point in the array.
 - Only \(O(\log n) \) ranges computed for each array element.
 - Total number of ranges: \(O(n \log n) \).

- **Claim:** Any range in the array can be formed as the union of two of these ranges.
Creating Ranges
Creating Ranges

18
Creating Ranges

18

16

16
Creating Ranges
Creating Ranges

7
Creating Ranges
Doing a Query

• To answer $\text{RMQ}_A(i, j)$:

 • Find the largest k such that $2^k \leq j - i + 1$.

 – With the right preprocessing, this can be done in time $O(1)$; you'll figure out how in Problem Set One.

 • The range $[i, j]$ can be formed as the overlap of the ranges $[i, i + 2^k - 1]$ and $[j - 2^k + 1, j]$.

 • Each range can be looked up in time $O(1)$.

 • Total time: $O(1)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Precomputed range indicated by ★.

```
  0  1  2  3
  4  5  6  7
  2^0 2^1 2^2 2^3
```

```
  0  1  2  3
  4  5  6  7
  2^0 2^1 2^2 2^3
```
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

\[
\begin{array}{ccccccccc}
31 & 41 & 59 & 26 & 53 & 58 & 97 & 93 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$\begin{array}{cccc}
2^0 & 2^1 & 2^2 & 2^3 \\
0 & 31 & & & \\
1 & 41 & & & \\
2 & 59 & & & \\
3 & 26 & & & \\
4 & 53 & & & \\
5 & 58 & & & \\
6 & 97 & & & \\
7 & 93 & & & \\
\end{array}$$
Precomputing the Ranges

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

![Diagram showing precomputing ranges](image)
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 0, 1, 2, 3, 4, 5, 6, 7
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

<table>
<thead>
<tr>
<th></th>
<th>2^0</th>
<th>2^1</th>
<th>2^2</th>
<th>2^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>2^0</th>
<th>2^1</th>
<th>2^2</th>
<th>2^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>31</td>
<td>⋆</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>⋆</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

![Diagram of ranges and dynamic programming table]
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute all of them in time $O(n \log n)$.

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^0</th>
<th>2^1</th>
<th>2^2</th>
<th>2^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2^0</th>
<th>2^1</th>
<th>2^2</th>
<th>2^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>31</td>
<td>★</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Sparse Tables

• This data structure is called a *sparse table*.

• It gives an $\langle O(n \log n), O(1) \rangle$ solution to RMQ.

• This is asymptotically better than precomputing all possible ranges!
The Story So Far

• We now have the following solutions for RMQ:
 • Precompute all: \(\langle O(n^2), \ O(1) \rangle \).
 • Sparse table: \(\langle O(n \log n), \ O(1) \rangle \).
 • Blocking: \(\langle O(n), \ O(n^{1/2}) \rangle \).
 • Precompute none: \(\langle O(1), \ O(n) \rangle \).

• *Can we do better?*
A Third Approach: *Hybrid Strategies*
Blocking Revisited

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>41</th>
<th>59</th>
<th>26</th>
<th>53</th>
<th>58</th>
<th>97</th>
<th>93</th>
<th>23</th>
<th>62</th>
<th>64</th>
<th>33</th>
<th>83</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
<td>62</td>
<td>64</td>
<td>33</td>
<td>83</td>
<td>27</td>
</tr>
</tbody>
</table>
Blocking Revisited
Blocking Revisited

<table>
<thead>
<tr>
<th>31</th>
<th>41</th>
<th>59</th>
<th>26</th>
<th>53</th>
<th>58</th>
<th>97</th>
<th>93</th>
<th>23</th>
<th>84</th>
<th>62</th>
<th>64</th>
<th>33</th>
<th>83</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
<td>62</td>
<td>64</td>
<td>33</td>
<td>83</td>
<td>27</td>
</tr>
</tbody>
</table>

![Diagram showing blocking revisited]
Blocking Revisited
This is just RMQ on the block minima!
Blocking Revisited
Blocking Revisited

This is just RMQ inside the blocks!
The Setup

Here's a new possible route for solving RMQ:

- Split the input into blocks of some block size b.
- For each of the $O(n / b)$ blocks, compute the minimum.
- **Construct an RMQ structure on the block minima.**
- **Construct RMQ structures on each block.**
- Combine the local RMQ answers to solve RMQ globally.

This technique of splitting a problem into a bunch of smaller pieces unified by a larger piece is common in data structure design.
Combinations and Permutations

- The decomposition we just saw isn't a single data structure; it's a framework for data structures.

- We get to choose
 - the block size,
 - which RMQ structure to use on top, and
 - which RMQ structure to use for the blocks.

- Summary and block RMQ structures don't have to be the same type of RMQ data structure – we can combine different structures together to get different results.
The Framework

- Suppose we use a \(p_1(n), q_1(n) \)-time RMQ solution for the block minima and a \(p_2(n), q_2(n) \)-time RMQ solution within each block.

- Let the block size be \(b \).

- In the hybrid structure, the preprocessing time is

\[
O(n + p_1(n / b) + (n / b) p_2(b))
\]
The Framework

- Suppose we use a \(p_1(n), q_1(n)\)-time RMQ solution for the block minima and a \(p_2(n), q_2(n)\)-time RMQ solution within each block.
- Let the block size be \(b\).
- In the hybrid structure, the preprocessing time is \(O(n + p_1(n / b) + (n / b) p_2(b))\)

\[
O(n) \text{ time to get the minimum value of each block.}
\]
\[
p_1(n / b) \text{ time to build an RMQ structure on the block minima.}
\]
\[
p_2(b) \text{ time to build an RMQ structure for a single block, times O(n / b) total blocks.}
\]
The Framework

- Suppose we use a \((p_1(n), q_1(n)) \)-time RMQ solution for the block minima and a \((p_2(n), q_2(n)) \)-time RMQ solution within each block.
- Let the block size be \(b \).
- In the hybrid structure, the preprocessing time is
 \[
 O(n + p_1(n / b) + (n / b) \cdot p_2(b))
 \]
- The query time is
 \[
 O(q_1(n / b) + q_2(b))
 \]
A Sanity Check

- The \(\langle O(n), O(n^{1/2}) \rangle \) block-based structure from earlier uses this framework with the \(\langle O(1), O(n) \rangle \) no-preprocessing RMQ structure and \(b = n^{1/2} \).
A Sanity Check

• The \((O(n), O(n^{1/2}))\) block-based structure from earlier uses this framework with the \((O(1), O(n))\) no-preprocessing RMQ structure and \(b = n^{1/2}\).

For Reference

\[
\begin{align*}
p_1(n) &= O(1) \\
q_1(n) &= O(n) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= n^{1/2}
\end{align*}
\]
A Sanity Check

- The \(\langle O(n), O(n^{1/2}) \rangle \) block-based structure from earlier uses this framework with the \(\langle O(1), O(n) \rangle \) no-preprocessing RMQ structure and \(b = n^{1/2} \).
- According to our formulas, the preprocessing time should be

\[
O(n + p_1(n / b) + (n / b) p_2(b))
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(1) \\
q_1(n) &= O(n) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= n^{1/2}
\end{align*}
\]
A Sanity Check

• The \(\langle O(n), O(n^{1/2})\rangle\) block-based structure from earlier uses this framework with the \(\langle O(1), O(n)\rangle\) no-preprocessing RMQ structure and \(b = n^{1/2}\).

• According to our formulas, the preprocessing time should be

\[
O(n + p_1(n / b) + (n / b) p_2(b))
= O(n + 1 + n / b)
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(1) \\
q_1(n) &= O(n) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= n^{1/2}
\end{align*}
\]
A Sanity Check

• The \(O(n), O(n^{1/2})\) block-based structure from earlier uses this framework with the \(O(1), O(n)\) no-preprocessing RMQ structure and \(b = n^{1/2}\).

• According to our formulas, the preprocessing time should be

\[
O(n + p_1(n/b) + (n/b) p_2(b)) = O(n + 1 + n/b) = O(n)
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(1) \\
q_1(n) &= O(n) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= n^{1/2}
\end{align*}
\]
A Sanity Check

- The $\langle O(n), O(n^{1/2}) \rangle$ block-based structure from earlier uses this framework with the $\langle O(1), O(n) \rangle$ no-preprocessing RMQ structure and $b = n^{1/2}$.

- According to our formulas, the preprocessing time should be

$$O(n + p_1(n / b) + (n / b) p_2(b))$$
$$= O(n + 1 + n / b)$$
$$= O(n)$$

- The query time should be

$$O(q_1(n / b) + q_2(b))$$

For Reference

- $p_1(n) = O(1)$
- $q_1(n) = O(n)$
- $p_2(n) = O(1)$
- $q_2(n) = O(n)$
- $b = n^{1/2}$
A Sanity Check

- The \(O(n), O(n^{1/2})\) block-based structure from earlier uses this framework with the \(O(1), O(n)\) no-preprocessing RMQ structure and \(b = n^{1/2}\).

- According to our formulas, the preprocessing time should be

\[
O(n + p_1(n / b) + (n / b) p_2(b))
= O(n + 1 + n / b)
= O(n)
\]

- The query time should be

\[
O(q_1(n / b) + q_2(b))
= O(n / b + b)
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(1) \\
q_1(n) &= O(n) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= n^{1/2}
\end{align*}
\]
A Sanity Check

- The \((O(n), O(n^{1/2})) \) block-based structure from earlier uses this framework with the \((O(1), O(n)) \) no-preprocessing RMQ structure and \(b = n^{1/2} \).

- According to our formulas, the preprocessing time should be
 \[
 O(n + p_1(n / b) + (n / b) p_2(b))
 = O(n + 1 + n / b)
 = O(n)
 \]

- The query time should be
 \[
 O(q_1(n / b) + q_2(b))
 = O(n / b + b)
 = O(n^{1/2})
 \]

For Reference

- \(p_1(n) = O(1) \)
- \(q_1(n) = O(n) \)
- \(p_2(n) = O(1) \)
- \(q_2(n) = O(n) \)
- \(b = n^{1/2} \)
A Sanity Check

• The \(\langle O(n), O(n^{1/2}) \rangle \) block-based structure from earlier uses this framework with the \(\langle O(1), O(n) \rangle \) no-preprocessing RMQ structure and \(b = n^{1/2} \).

• According to our formulas, the preprocessing time should be

\[
O(n + p_1(n/b) + (n/b) p_2(b))
= O(n + 1 + n/b)
= O(n)
\]

• The query time should be

\[
O(q_1(n/b) + q_2(b))
= O(n/b + b)
= O(n^{1/2})
\]

• Looks good so far!

For Reference

\[
p_1(n) = O(1) \\
q_1(n) = O(n) \\
p_2(n) = O(1) \\
q_2(n) = O(n)
\]

\[
b = n^{1/2}
\]
An Observation

- A sparse table takes time $O(n \log n)$ to construct on an array of n elements.
- With block size b, there are $O(n / b)$ total blocks.
- Time to construct a sparse table over the block minima: $O((n / b) \log (n / b))$.
- Since $\log (n / b) = O(\log n)$, the time to build the sparse table is at most $O((n / b) \log n)$.
- **Cute trick:** If $b = \Theta(\log n)$, the time to construct a sparse table over the minima is
 $$O((n / b) \log n) = O((n / \log n) \log n) = O(n)$$
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the top-level structure.
- Use the “no preprocessing” structure for each block.

Preprocessing time:

$$= O(n + p_1(n/b) + (n/b)p_2(b))$$

$$= O(n + n + n/\log n)$$

$$= O(n)$$

Query time:

$$= O(q_1(n/b) + q_2(b))$$

$$= O(1 + \log n)$$

$$= O(\log n)$$

We now have an $\langle O(n), O(\log n) \rangle$ solution!
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the top-level structure.
- Use the “no preprocessing” structure for each block.

For Reference

\[p_1(n) = O(n \log n) \]
\[q_1(n) = O(1) \]
\[p_2(n) = O(1) \]
\[q_2(n) = O(n) \]
\[b = \log n \]
One Possible Hybrid

- Set the block size to \(\log n \).
- Use a sparse table for the top-level structure.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n/b) + (n/b) p_2(b))
 \]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= \log n
\end{align*}
\]
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the top-level structure.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n / b) + (n / b) p_2(b)) \\
 = O(n + n + n / \log n)
 \]

For Reference

- $p_1(n) = O(n \log n)$
- $q_1(n) = O(1)$
- $p_2(n) = O(1)$
- $q_2(n) = O(n)$
- $b = \log n$
One Possible Hybrid

- Set the block size to log \(n \).
- Use a sparse table for the top-level structure.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n / b) + (n / b) p_2(b))
 = O(n + n + n / \log n)
 = O(n)
 \]

For Reference

\(p_1(n) = O(n \log n) \)
\(q_1(n) = O(1) \)
\(p_2(n) = O(1) \)
\(q_2(n) = O(n) \)
\(b = \log n \)
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the top-level structure.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n/b) + (n/b) \cdot p_2(b)) \\
 = O(n + n + n/\log n) \\
 = O(n)
 \]
- Query time:
 \[
 O(q_1(n/b) + q_2(b))
 \]

For Reference

\[
\begin{align*}
 p_1(n) &= O(n \log n) \\
 q_1(n) &= O(1) \\
 p_2(n) &= O(1) \\
 q_2(n) &= O(n) \\
 b &= \log n
\end{align*}
\]
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the top-level structure.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:

 $$O(n + p_1(n / b) + (n / b) p_2(b))$$

 $$= O(n + n + n / \log n)$$

 $$= O(n)$$

- Query time:

 $$O(q_1(n / b) + q_2(b))$$

 $$= O(1 + \log n)$$

For Reference

- $p_1(n) = O(n \log n)$
- $q_1(n) = O(1)$
- $p_2(n) = O(1)$
- $q_2(n) = O(n)$
- $b = \log n$
One Possible Hybrid

- Set the block size to \(\log n\).
- Use a sparse table for the top-level structure.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n/b) + (n/b) p_2(b)) = O(n + n + n/\log n) = O(n)
 \]
- Query time:
 \[
 O(q_1(n/b) + q_2(b)) = O(1 + \log n) = O(\log n)
 \]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= \log n
\end{align*}
\]
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the top-level structure.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n/b) + (n/b) p_2(b))
 = O(n + n + n/\log n)
 = O(n)
 \]
- Query time:
 \[
 O(q_1(n/b) + q_2(b))
 = O(1 + \log n)
 = O(\log n)
 \]
- An $\langle O(n), O(\log n) \rangle$ solution!

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= \log n
\end{align*}
\]
Another Hybrid

• Let's suppose we use the \(\langle O(n \log n), O(1) \rangle \) sparse table for both the top and bottom RMQ structures with a block size of \(\log n \).
Another Hybrid

Let's suppose we use the $\langle O(n \log n), O(1) \rangle$ sparse table for both the top and bottom RMQ structures with a block size of $\log n$.

For Reference

\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n \log n) \\
q_2(n) &= O(1) \\
b &= \log n
\end{align*}
Another Hybrid

- Let's suppose we use the \(O(n \log n), O(1)\) sparse table for both the top and bottom RMQ structures with a block size of \(\log n\).

- The preprocessing time is

\[
O(n + p_1(n / b) + (n / b) p_2(b))
\]

For Reference

- \(p_1(n) = O(n \log n)\)
- \(q_1(n) = O(1)\)
- \(p_2(n) = O(n \log n)\)
- \(q_2(n) = O(1)\)
- \(b = \log n\)
Another Hybrid

• Let's suppose we use the \(\langle O(n \log n), O(1) \rangle \) sparse table for both the top and bottom RMQ structures with a block size of \(\log n \).

• The preprocessing time is

\[
O(n + p_1(n / b) + (n / b) \cdot p_2(b)) = O(n + n + (n / \log n) \cdot b \cdot \log b)
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n \log n) \\
q_2(n) &= O(1) \\
b &= \log n
\end{align*}
\]
Another Hybrid

- Let's suppose we use the \(O(n \log n), O(1) \) sparse table for both the top and bottom RMQ structures with a block size of \(\log n \).

- The preprocessing time is

\[
O(n + p_1(n / b) + (n / b) p_2(b))
= O(n + n + (n / \log n) b \log b)
= O(n + (n / \log n) \log n \log \log n)
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n \log n) \\
q_2(n) &= O(1) \\
b &= \log n
\end{align*}
\]
Another Hybrid

- Let's suppose we use the \(\langle O(n \log n), O(1) \rangle \) sparse table for both the top and bottom RMQ structures with a block size of \(\log n \).

- The preprocessing time is

\[
O(n + p_1(n / b) + (n / b) \ p_2(b)) \\
= O(n + n + (n / \log n) \ b \log b) \\
= O(n + (n / \log n) \log n \log \log n) \\
= \mathcal{O}(n \log \log n)
\]

For Reference

\[
\begin{align*}
p_1(n) &= \mathcal{O}(n \log n) \\
q_1(n) &= \mathcal{O}(1) \\
p_2(n) &= \mathcal{O}(n \log n) \\
q_2(n) &= \mathcal{O}(1) \\
b &= \log n
\end{align*}
\]
Another Hybrid

- Let's suppose we use the \(\langle O(n \log n), O(1) \rangle \) sparse table for both the top and bottom RMQ structures with a block size of \(\log n \).

- The preprocessing time is

\[
O(n + p_1(n / b) + (n / b) p_2(b))
= O(n + n + (n / \log n) b \log b)
= O(n + (n / \log n) \log n \log \log n)
= O(n \log \log n)
\]

- The query time is

\[
O(q_1(n / b) + q_2(b))
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n \log n) \\
q_2(n) &= O(1) \\
b &= \log n
\end{align*}
\]
Another Hybrid

- Let's suppose we use the \(\langle O(n \log n), O(1) \rangle \) sparse table for both the top and bottom RMQ structures with a block size of \(\log n \).

- The preprocessing time is

 \[
 O(n + p_1(n/b) + (n/b) p_2(b)) \\
 = O(n + n + (n/\log n)b \log b) \\
 = O(n + (n/\log n) \log n \log \log n) \\
 = O(n \log \log n)
 \]

- The query time is

 \[
 O(q_1(n/b) + q_2(b)) \\
 = O(1)
 \]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n \log n) \\
q_2(n) &= O(1) \\
b &= \log n
\end{align*}
\]
Another Hybrid

- Let's suppose we use the $\langle O(n \log n), O(1) \rangle$ sparse table for both the top and bottom RMQ structures with a block size of $\log n$.

- The preprocessing time is

 $$O(n + p_1(n / b) + (n / b) p_2(b))$$
 $$= O(n + n + (n / \log n) b \log b)$$
 $$= O(n + (n / \log n) \log n \log \log n)$$

 $$= O(n \log \log n)$$

- The query time is

 $$O(q_1(n / b) + q_2(b))$$
 $$= O(1)$$

- We have an $\langle O(n \log \log n), O(1) \rangle$ solution to RMQ!

For Reference

- $p_1(n) = O(n \log n)$
- $q_1(n) = O(1)$
- $p_2(n) = O(n \log n)$
- $q_2(n) = O(1)$
- $b = \log n$
One Last Hybrid

• Suppose we use a sparse table for the top structure and the \(O(n), O(\log n)\) solution for the bottom structure. Let's choose \(b = \log n\).
One Last Hybrid

Suppose we use a sparse table for the top structure and the $\langle O(n), O(\log n) \rangle$ solution for the bottom structure. Let's choose $b = \log n$.

For Reference

$p_1(n) = O(n \log n)$
$q_1(n) = O(1)$

$p_2(n) = O(n)$
$q_2(n) = O(\log n)$

$b = \log n$
One Last Hybrid

- Suppose we use a sparse table for the top structure and the \(O(n), O(\log n)\) solution for the bottom structure. Let's choose \(b = \log n\).
- The preprocessing time is
 \[
 O(n + p_1(n / b) + (n / b) p_2(b))
 \]

For Reference

- \(p_1(n) = O(n \log n)\)
- \(q_1(n) = O(1)\)
- \(p_2(n) = O(n)\)
- \(q_2(n) = O(\log n)\)
- \(b = \log n\)
One Last Hybrid

• Suppose we use a sparse table for the top structure and the \(\langle O(n), O(\log n) \rangle \) solution for the bottom structure. Let's choose \(b = \log n \).

• The preprocessing time is

\[
O(n + p_1(n/b) + (n/b) \cdot p_2(b)) \\
= O(n + n + (n/\log n) \cdot b)
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n) \\
q_2(n) &= O(\log n) \\
b &= \log n
\end{align*}
\]
One Last Hybrid

- Suppose we use a sparse table for the top structure and the $\langle O(n), O(\log n) \rangle$ solution for the bottom structure. Let's choose $b = \log n$.

- The preprocessing time is

 $O(n + p_1(n / b) + (n / b) p_2(b))$

 $= O(n + n + (n / \log n) b)$

 $= O(n + n + (n / \log n) \log n)$

 For Reference

 $p_1(n) = O(n \log n)$
 $q_1(n) = O(1)$
 $p_2(n) = O(n)$
 $q_2(n) = O(\log n)$
 $b = \log n$
Suppose we use a sparse table for the top structure and the $\langle O(n), O(\log n) \rangle$ solution for the bottom structure. Let's choose $b = \log n$.

The preprocessing time is

$$O(n + p_1(n / b) + (n / b) p_2(b))$$
$$= O(n + n + (n / \log n) b)$$
$$= O(n + n + (n / \log n) \log n)$$
$$= O(n)$$

For Reference

- $p_1(n) = O(n \log n)$
- $q_1(n) = O(1)$
- $p_2(n) = O(n)$
- $q_2(n) = O(\log n)$
- $b = \log n$
One Last Hybrid

• Suppose we use a sparse table for the top structure and the \(\langle O(n), O(\log n) \rangle \) solution for the bottom structure. Let's choose \(b = \log n \).

• The preprocessing time is

\[
O(n + p_1(n / b) + (n / b) p_2(b)) \\
= O(n + n + (n / \log n) b) \\
= O(n + n + (n / \log n) \log n) \\
= \mathcal{O}(n)
\]

• The query time is

\[
O(q_1(n / b) + q_2(b))
\]

For Reference

\[
p_1(n) = \mathcal{O}(n \log n) \\
q_1(n) = \mathcal{O}(1) \\
p_2(n) = \mathcal{O}(n) \\
q_2(n) = \mathcal{O}(\log n) \\
\]

\[
b = \log n
\]
One Last Hybrid

- Suppose we use a sparse table for the top structure and the \(O(n), O(\log n)\) solution for the bottom structure. Let's choose \(b = \log n\).

- The preprocessing time is

 \[
 O(n + p_1(n / b) + (n / b) p_2(b)) = O(n + n + (n / \log n) b) = O(n + n + (n / \log n) \log n) = O(n)
 \]

- The query time is

 \[
 O(q_1(n / b) + q_2(b)) = O(1 + \log \log n)
 \]

For Reference

- \(p_1(n) = O(n \log n)\)
- \(q_1(n) = O(1)\)
- \(p_2(n) = O(n)\)
- \(q_2(n) = O(\log n)\)
- \(b = \log n\)
One Last Hybrid

• Suppose we use a sparse table for the top structure and the \(O(n), O(\log n)\) solution for the bottom structure. Let's choose \(b = \log n\).

• The preprocessing time is

\[
O(n + p_1(n / b) + (n / b) p_2(b)) \\
= O(n + n + (n / \log n) b) \\
= O(n + n + (n / \log n) \log n) \\
= O(n)
\]

• The query time is

\[
O(q_1(n / b) + q_2(b)) \\
= O(1 + \log \log n) \\
= O(\log \log n)
\]

For Reference

\[
p_1(n) = O(n \log n) \\
q_1(n) = O(1) \\
p_2(n) = O(n) \\
q_2(n) = O(\log n) \\
b = \log n
\]
One Last Hybrid

• Suppose we use a sparse table for the top structure and the \langle O(n), O(\log n) \rangle solution for the bottom structure. Let's choose \(b = \log n \).

• The preprocessing time is

\[
\begin{align*}
O(n + p_1(n / b) + (n / b) p_2(b)) \\
= O(n + n + (n / \log n) b) \\
= O(n + n + (n / \log n) \log n) \\
= O(n)
\end{align*}
\]

• The query time is

\[
\begin{align*}
O(q_1(n / b) + q_2(b)) \\
= O(1 + \log \log n) \\
= O(\log \log n)
\end{align*}
\]

• We have an \langle O(n), O(\log \log n) \rangle solution to RMQ!

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n) \\
q_2(n) &= O(\log n) \\
b &= \log n
\end{align*}
\]
Where We Stand

- We've seen a bunch of RMQ structures today:
 - No preprocessing: $\langle O(1), O(n) \rangle$
 - Full preprocessing: $\langle O(n^2), O(1) \rangle$
 - Block partition: $\langle O(n), O(n^{1/2}) \rangle$
 - Sparse table: $\langle O(n \log n), O(1) \rangle$
 - Hybrid 1: $\langle O(n), O(\log n) \rangle$
 - Hybrid 2: $\langle O(n \log \log n), O(1) \rangle$
 - Hybrid 3: $\langle O(n), O(\log \log n) \rangle$
Where We Stand

We've seen a bunch of RMQ structures today:

- No preprocessing: \(O(1), O(n)\)
- **Full preprocessing:** \(O(n^2), O(1)\)
- Block partition: \(O(n), O(n^{1/2})\)
- **Sparse table:** \(O(n \log n), O(1)\)
- Hybrid 1: \(O(n), O(\log n)\)
- **Hybrid 2:** \(O(n \log \log n), O(1)\)
- Hybrid 3: \(O(n), O(\log \log n)\)
Where We Stand

We've seen a bunch of RMQ structures today:

- No preprocessing: $\langle O(1), O(n) \rangle$
- Full preprocessing: $\langle O(n^2), O(1) \rangle$
- **Block partition**: $\langle O(n), O(n^{1/2}) \rangle$
- Sparse table: $\langle O(n \log n), O(1) \rangle$
- **Hybrid 1**: $\langle O(n), O(\log n) \rangle$
- Hybrid 2: $\langle O(n \log \log n), O(1) \rangle$
- **Hybrid 3**: $\langle O(n), O(\log \log n) \rangle$
Is there an \(O(n), O(1) \) solution to RMQ?

Yes!
Next Time

• **Cartesian Trees**
 • A data structure closely related to RMQ.

• **The Method of Four Russians**
 • A technique for shaving off log factors.

• **The Fischer-Heun Structure**
 • A deceptively simple, asymptotically optimal RMQ structure.