Welcome to CS166!
Why study data structures?
Why Study Data Structures?

- **Expand your library of problem-solving tools.**
 - We’ll cover a wide range of tools for a bunch of interesting problems. These come in handy, both IRL and in Theoryland.

- **Learn new problem-solving techniques.**
 - We’ll see some truly beautiful problem-solving strategies that work beyond just a single example.

- **Challenge your intuition for the limits of efficiency.**
 - You'd be amazed how many times we'll take a problem you're sure you know how to solve and then see how to solve it faster.

- **See the beauty of theoretical computer science.**
 - We'll cover some amazingly clever theoretical techniques in the course of this class. You'll love them.
Where is CS166 situated in Stanford’s CS sequence?
CS103

\[a_0 = 1 \quad a_{n+1} = 2a_n + n \]

Theorem: \(a_n = 2^{n+1} - n - 1 \).

Proof: By induction. As a base case, when \(n = 0 \), we have

\[2^{n+1} - n - 1 = 2^1 - 0 - 1 = 1 = a_0. \]

For the inductive step, assume that \(a_k = 2^{k+1} - k - 1 \). Then

\[a_{k+1} = 2a_k + k = 2^{k+2} - 2k - 2 + k = 2^{(k+1)+1} - (k+1) - 1, \]

as required. ■

CS109

\[
E\left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i]
\]

\[
Pr[X \geq c] \leq \frac{E[X]}{c}
\]

CS161

\[
T(n) = aT(n / b) + O(n^d)
\]

\[
n^2 \log n^2 = O(n^3)
n^2 \log n^2 = \Omega(n^2)
n^2 \log n^2 = \Theta(n^2 \log n)
\]
Who are we?
Course Staff

Keith Schwarz (htiek@cs.stanford.edu)
Francisco Pernice
Jose Calinawan Francisco

Ping us over EdStem with questions!
The Course Website

https://cs166.stanford.edu
Course Requirements

• We plan on having four *problem sets*.
 • Problem sets may be completed individually or in a pair.
 • They’re a mix of written problems and C++ coding exercises.
 • You’ll submit one copy of the problem set regardless of how many people worked on it.
 • Need to find a partner? Use EdStem, stop by office hours, or send us an email.

• We plan of having five *individual assessments*.
 • Similar to problem sets, except that they must be completed individually.
 • Course staff can answer clarifying questions, but otherwise it’s up to you to work out how to solve them.

• We plan to have a final *research project*.
 • We’ll hammer out details in the next couple of weeks. Expect to work in a group, do a deep dive into a topic, and get lots of support from us.
Individual Assessment 0

- Individual Assessment 0 goes out today. It’s due next Tuesday at 3:15PM Pacific time.
- This is mostly designed as a refresher of topics from the prerequisite courses CS103, CS107, CS109, and CS161.
- If you’re mostly comfortable with these problems and are just “working through some rust,” then you’re probably in the right place!
Let’s Get Started!
Range Minimum Queries
The RMQ Problem

- The **Range Minimum Query problem** (**RMQ** for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?
The RMQ Problem

• The *Range Minimum Query problem* (RMQ for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?

| 31 | 41 | 59 | 26 | 53 | 58 | 97 | 93 |
The RMQ Problem

• The *Range Minimum Query problem* (RMQ for short) is the following:

 Given an array \(A \) and two indices \(i \leq j \), what is the smallest element out of \(A[i], A[i + 1], \ldots, A[j - 1], A[j] \)?

| 31 | 41 | 59 | 26 | 53 | 58 | 97 | 93 |
The RMQ Problem

- The **Range Minimum Query problem** (RMQ for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?
The RMQ Problem

• The *Range Minimum Query problem* (*RMQ* for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?
The RMQ Problem

- The **Range Minimum Query problem** (**RMQ** for short) is the following:

The RMQ Problem

- The **Range Minimum Query problem** (**RMQ** for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?
The RMQ Problem

- The **Range Minimum Query problem** (RMQ for short) is the following:

 Given an array \(A \) and two indices \(i \leq j \), what is the smallest element out of \(A[i], A[i + 1], ..., A[j - 1], A[j] \)?
The RMQ Problem

- The **Range Minimum Query problem** (**RMQ** for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?
The RMQ Problem

- The *Range Minimum Query problem* (RMQ for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i+1], \ldots, A[j-1], A[j]$?
The RMQ Problem

• The *Range Minimum Query problem* (RMQ for short) is the following:

 Given an array \(A \) and two indices \(i \leq j \), what is the smallest element out of \(A[i], A[i + 1], ..., A[j - 1], A[j] \)?

• Notation: We'll denote a range minimum query in array \(A \) between indices \(i \) and \(j \) as \(\text{RMQ}_A(i, j) \).

• For simplicity, let's assume 0-indexing.
A Trivial Solution

- There's a simple $O(n)$-time algorithm for evaluating $\text{RMQ}_A(i, j)$: just iterate across the elements between i and j, inclusive, and take the minimum!
- So... why is this problem at all algorithmically interesting?
- Suppose that the array A is fixed in advance and you're told that we're going to make multiple queries on it.
- Can we do better than the naïve algorithm?
An Observation

- In an array of length n, there are only $\Theta(n^2)$ distinct possible queries.
- Why?

1 subarray of length 5
2 subarrays of length 4
3 subarrays of length 3
4 subarrays of length 2
5 subarrays of length 1
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
Building the Table

- One simple approach: for each entry in the table, iterate over the range in question and find the minimum value.
- How efficient is this?
 - Number of entries: $\Theta(n^2)$.
 - Time to evaluate each entry: $O(n)$.
 - Time required: $O(n^3)$.
- The runtime is $O(n^3)$ using this approach. Is it also $\Theta(n^3)$?
Each entry in yellow requires at least $n/2 = \Theta(n)$ work to evaluate.
Each entry in yellow requires at least $n/2 = \Theta(n)$ work to evaluate.

There are roughly $n^2/8 = \Theta(n^2)$ entries here.
Each entry in yellow requires at least $n / 2 = \Theta(n)$ work to evaluate.

There are roughly $n^2 / 8 = \Theta(n^2)$ entries here.

Total work required: $\Theta(n^3)$
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim**: We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim**: We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

• Naïvely precomputing the table is inefficient.
• Can we do better?
• **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim**: We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

• Naïvely precomputing the table is inefficient.
• Can we do better?
• **Claim**: We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim**: We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

• Naïvely precomputing the table is inefficient.
• Can we do better?
• **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.

```
  0 1 2 3
0 16 16
1 18 18
2 33
3 98
```
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time \(\Theta(n^2) \) using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

• Naïvely precomputing the table is inefficient.
• Can we do better?
• **Claim:** We can precompute all subarrays in time $O(n^2)$ using dynamic programming.
A Different Approach

• Naïvely precomputing the table is inefficient.
• Can we do better?
• **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.

```
0 16 16 16
1 18 18 ⋄
2 33 33
3 98
```
A Different Approach

• Naïvely precomputing the table is inefficient.
• Can we do better?
• **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
Some Notation

- We'll say that an RMQ data structure has time complexity \(\langle p(n), q(n) \rangle\) if
 - preprocessing takes time at most \(p(n)\) and
 - queries take time at most \(q(n)\).
- We now have two RMQ data structures:
 - \(\langle O(1), O(n) \rangle\) with no preprocessing.
 - \(\langle O(n^2), O(1) \rangle\) with full preprocessing.
- These are two extremes on a curve of tradeoffs: no preprocessing versus full preprocessing.
- **Question:** Is there a “golden mean” between these extremes?
Another Approach: *Block Decomposition*
A Block-Based Approach

• Split the input into $O(n / b)$ blocks of some “block size” b.

31 41 59 26 53 58 97 93 23 84 62 43 33 83 27 95 2 88 41 97
A Block-Based Approach

• Split the input into $O(n / b)$ blocks of some “block size” b.
A Block-Based Approach

- Split the input into $O(n/b)$ blocks of some “block size” b.
 - Here, $b = 4$.
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 4$.
- Compute the minimum value in each block.
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 4$.
- Compute the minimum value in each block.

<table>
<thead>
<tr>
<th>26</th>
<th>53</th>
<th>23</th>
<th>27</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
</tr>
<tr>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
</tr>
<tr>
<td>62</td>
<td>43</td>
<td>33</td>
<td>83</td>
<td>27</td>
</tr>
<tr>
<td>95</td>
<td>2</td>
<td>88</td>
<td>41</td>
<td>97</td>
</tr>
</tbody>
</table>
A Block-Based Approach

- Split the input into $O(n/b)$ blocks of some “block size” b.
 - Here, $b = 4$.
- Compute the minimum value in each block.

```
   26  53  23  27  2
  31  41  59  26  53  58  97  93  23  84  62  43  33  83  27  95  2  88  41  97
```
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 4$.
- Compute the minimum value in each block.
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 4$.
- Compute the minimum value in each block.
A Block-Based Approach

- Split the input into $O(n/b)$ blocks of some “block size” b.
 - Here, $b = 4$.
- Compute the minimum value in each block.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>53</td>
<td>23</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
</tr>
<tr>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
</tr>
<tr>
<td>62</td>
<td>43</td>
<td>33</td>
<td>83</td>
<td>27</td>
</tr>
<tr>
<td>95</td>
<td>2</td>
<td>88</td>
<td>41</td>
<td>97</td>
</tr>
</tbody>
</table>
A Block-Based Approach

- Split the input into $O(n/b)$ blocks of some “block size” b.
 - Here, $b = 4$.
- Compute the minimum value in each block.

<table>
<thead>
<tr>
<th>26</th>
<th>53</th>
<th>23</th>
<th>27</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
</tr>
<tr>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
</tr>
<tr>
<td>62</td>
<td>43</td>
<td>33</td>
<td>83</td>
<td>27</td>
</tr>
<tr>
<td>95</td>
<td>2</td>
<td>88</td>
<td>41</td>
<td>97</td>
</tr>
</tbody>
</table>
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some "block size" b.
 - Here, $b = 4$.
- Compute the minimum value in each block.
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 4$.
- Compute the minimum value in each block.
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 4$.
- Compute the minimum value in each block.

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>53</td>
<td>23</td>
<td>27</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
<td>62</td>
</tr>
</tbody>
</table>
A Block-Based Approach

• Split the input into $O(n / b)$ blocks of some “block size” b.
 • Here, $b = 4$.
• Compute the minimum value in each block.
A Block-Based Approach

• Split the input into $O(n / b)$ blocks of some “block size” b.
 • Here, $b = 4$.

• Compute the minimum value in each block.
Analyzing the Approach

• Let's analyze this approach in terms of \(n \) and \(b \).

• Preprocessing time:
 • \(O(b) \) work on \(O(n / b) \) blocks to find minima.
 • Total work: \(O(n) \).

• Time to evaluate \(\text{RMQ}_A(i, j) \):
 • \(O(1) \) work to find block indices (divide by block size).
 • \(O(b) \) work to scan inside \(i \) and \(j \)'s blocks.
 • \(O(n / b) \) work looking at block minima between \(i \) and \(j \).
 • Total work: \(O(b + n / b) \).
Intuiting $O(b + n/b)$

- As b increases:
 - The b term rises (more elements to scan within each block).
 - The n/b term drops (fewer blocks to look at).
- As b decreases:
 - The b term drops (fewer elements to scan within a block).
 - The n/b term rises (more blocks to look at).
- Is there an optimal choice of b given these constraints?
Optimizing b

- What choice of b minimizes $b + n / b$?

Formulate a hypothesis, but *don’t post anything in chat just yet*.
Optimizing b

- What choice of b minimizes $b + n / b$?

Now, **private chat me your best guess.**

Not sure? Just answer “??”
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:

$$\frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2}$$
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[
 \frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2}
 \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0
 \]
 \[
 b^2 = n
 \]
 \[
 b = \sqrt{n}
 \]
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[\frac{d}{db}(b + n/b) = 1 - \frac{n}{b^2} \]
- Setting the derivative to zero:
 \[1 - \frac{n}{b^2} = 0 \]
Optimizing \(b \)

- What choice of \(b \) minimizes \(b + n / b \)?
- Start by taking the derivative:
 \[
 \frac{d}{db} (b + n/b) = 1 - \frac{n}{b^2}
 \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0
 \]
 \[
 1 = \frac{n}{b^2}
 \]
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[
 \frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2}
 \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0
 \]
 \[
 \frac{1}{b^2} = \frac{n}{b^2}
 \]
 \[
 b^2 = n
 \]
Optimizing b

- What choice of b minimizes $b + n/b$?
- Start by taking the derivative:
 \[
 \frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2}
 \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0
 \]
 \[
 1 = \frac{n}{b^2}
 \]
 \[
 b^2 = n
 \]
 \[
 b = \sqrt{n}
 \]
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[\frac{d}{db}(b + n/b) = 1 - \frac{n}{b^2} \]
- Setting the derivative to zero:
 \[
 \begin{align*}
 1 - \frac{n}{b^2} &= 0 \\
 1 &= n/b^2 \\
 b^2 &= n \\
 b &= \sqrt{n}
 \end{align*}
 \]
- Asymptotically optimal runtime is when $b = n^{1/2}$.
Optimizing b

- What choice of b minimizes $b + n / b$?

- Start by taking the derivative:
 \[
 \frac{d}{db} (b + n / b) = 1 - \frac{n}{b^2}
 \]

- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0
 \]
 \[
 1 = \frac{n}{b^2}
 \]
 \[
 b^2 = n
 \]
 \[
 b = \sqrt{n}
 \]

- Asymptotically optimal runtime is when $b = n^{1/2}$.

- In that case, the runtime is
 \[
 O(b + n / b)
 \]
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 $$\frac{d}{db} (b+n/b) = 1 - \frac{n}{b^2}$$
- Setting the derivative to zero:
 $$1 - \frac{n}{b^2} = 0$$
 $$1 = \frac{n}{b^2}$$
 $$b^2 = n$$
 $$b = \sqrt{n}$$
- Asymptotically optimal runtime is when $b = n^{1/2}$.
- In that case, the runtime is
 $$O(b + n / b) = O(n^{1/2} + n / n^{1/2})$$
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[
 \frac{d}{db}(b + n/b) = 1 - \frac{n}{b^2}
 \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0 \\
 1 = \frac{n}{b^2} \\
 b^2 = n \\
 b = \sqrt{n}
 \]
- Asymptotically optimal runtime is when $b = n^{1/2}$.
- In that case, the runtime is
 \[
 O(b + n / b) = O(n^{1/2} + n / n^{1/2}) = O(n^{1/2} + n^{1/2})
 \]
Optimizing b

- What choice of b minimizes $b + n / b$?

- Start by taking the derivative:
 \[
 \frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2}
 \]

- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0 \\
 1 = \frac{n}{b^2} \\
 b^2 = n \\
 b = \sqrt{n}
 \]

- Asymptotically optimal runtime is when $b = n^{1/2}$.

- In that case, the runtime is
 \[
 O(b + n / b) = O(n^{1/2} + n / n^{1/2}) = O(n^{1/2} + n^{1/2}) = O(n^{1/2})
 \]
Summary of Approaches

- Three solutions so far:
 - Full preprocessing: \(O(n^2), O(1) \).
 - Block partition: \(O(n), O(n^{1/2}) \).
 - No preprocessing: \(O(1), O(n) \).
- Modest preprocessing yields modest performance increases.
- **Question**: Can we do better?
A Second Approach: *Sparse Tables*
An Intuition

- The \(\langle O(n^2), O(1) \rangle \) solution gives fast queries because every range we might look up has already been precomputed.
- This solution is slow overall because we have to compute the minimum of every possible range.
- **Question:** Can we still get constant-time queries without preprocessing all possible ranges?
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>53</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>58</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>97</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>93</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6 7
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>41</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>59</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>58</td>
<td>97</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
<td>93</td>
</tr>
</tbody>
</table>

Blue squares indicate numbers shaded horizontally in the diagram.
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The pattern of numbers follows a specific rule, and the highlighted block (★) represents an interesting observation. The highlighted numbers are:

- Column 1: 31, 41, 59, 26
- Row 7: 93
An Observation
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>

- The table consists of numbers from 0 to 7 in rows and columns.
- The numbers in the table are: 31, 41, 59, 26, 53, 58, 97, 93.
- The pattern in the table suggests a diagonal sequence of increasing numbers.
- The numbers in the shaded cells indicate a specific observation pattern.
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>
An Observation

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>✪</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
0 1 2 3 4 5 6 7
31 41 59 26 53 58 97 93
```

Red lines indicate the following:
- Horizontal: 0, 3, 6
- Vertical: 0, 2, 4, 6

The grid represents a pattern observed in the sequence.
An Observation
An Observation
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>

- Red lines indicate selected elements.
- Blue elements are repeated.
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Blue and yellow boxes represent numbers.
An Observation
An Observation
An Observation

0 31
1 41
2 59
3 26
4 53
5 58
6 97
7 93
An Observation

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
</tr>
</tbody>
</table>

31 41 59 26 53 58 97 93

0 1 2 3 4 5 6 7

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Intuition

- It's still possible to answer any query in time $O(1)$ without precomputing RMQ over all ranges.
- If we precompute the answers over too many ranges, the preprocessing time will be too large.
- If we precompute the answers over too few ranges, the query time won't be $O(1)$.
- **Goal:** Precompute RMQ over a set of ranges such that
 - There are $o(n^2)$ total ranges, but
 - there are enough ranges to support $O(1)$ query times.
Some Observations
The Approach

- For each index i, compute RMQ for ranges starting at i of size 1, 2, 4, 8, 16, ..., 2^k as long as they fit in the array.
 - Gives both large and small ranges starting at any point in the array.
 - Only $O(\log n)$ ranges computed for each array element.
 - Total number of ranges: $O(n \log n)$.
- **Claim:** Any range in the array can be formed as the union of two of these ranges.
Creating Ranges
Creating Ranges

18
Creating Ranges

18

16

16
Creating Ranges
Creating Ranges

7
Creating Ranges
Doing a Query

• To answer \(\text{RMQ}_A(i, j) \):

 • Find the largest \(k \) such that \(2^k \leq j - i + 1 \).

 - With the right preprocessing, this can be done in time \(O(1) \); you'll figure out how in an upcoming assignment.

 • The range \([i, j]\) can be formed as the overlap of the ranges \([i, i + 2^k - 1]\) and \([j - 2^k + 1, j]\).

 • Each range can be looked up in time \(O(1) \).

 • Total time: \(O(1) \).
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

```plaintext

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2^0</td>
<td>2^1</td>
<td>2^2</td>
<td>2^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```plaintext
2^0 | 2^1 | 2^2 | 2^3
---|-----|-----|-----
 0 | 31  |    |    |
 1 | 41  |    |    |
 2 | 59  |    |    |
 3 | 26  |    |    |
 4 | 53  |    |    |
 5 | 58  |    |    |
 6 | 97  |    |    |
 7 | 93  |    |    |
```
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

<table>
<thead>
<tr>
<th></th>
<th>2^0</th>
<th>2^1</th>
<th>2^2</th>
<th>2^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

<table>
<thead>
<tr>
<th></th>
<th>2^0</th>
<th>2^1</th>
<th>2^2</th>
<th>2^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
31 41 59 26 53 58 97 93
```

0 1 2 3 4 5 6 7
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.

- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

• There are $O(n \log n)$ ranges to precompute.

• Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

\[
\begin{array}{cccc}
2^0 & 2^1 & 2^2 & 2^3 \\
\hline
0 & 31 & 31 & 0 \\
1 & 41 & 41 & 0 \\
2 & 59 & 0 & 0 \\
3 & 26 & 0 & 0 \\
4 & 53 & 0 & 0 \\
5 & 58 & 0 & 0 \\
6 & 97 & 0 & 0 \\
7 & 93 & 0 & 0 \\
\end{array}
\]
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

```
   0  1  2  3  4  5  6  7
 0  31 41 59 26 53 58 97 93
 1  31 31
 2  41 41
 3  59 26
 4  26 26
 5  53 53
 6  58 58
 7  97 93
   2^0 2^1 2^2 2^3
```
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

\[
\begin{array}{cccc}
2^0 & 2^1 & 2^2 & 2^3 \\
0 & 31 & 31 & \star \\
1 & 41 & 41 & \\
2 & 59 & 26 & \\
3 & 26 & 26 & \\
4 & 53 & 53 & \\
5 & 58 & 58 & \\
6 & 97 & 93 & \\
7 & 93 & \\
\end{array}
\]
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.

- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

![Diagram](image-url)
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

```
<table>
<thead>
<tr>
<th></th>
<th>2^0</th>
<th>2^1</th>
<th>2^2</th>
<th>2^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Precomputing the Ranges

- There are \(O(n \log n) \) ranges to precompute.
- Using dynamic programming, we can compute all of them in time \(O(n \log n) \).
Sparse Tables

• This data structure is called a *sparse table*.

• It gives an $\langle O(n \log n), O(1) \rangle$ solution to RMQ.

• This is asymptotically better than precomputing all possible ranges!
The Story So Far

• We now have the following solutions for RMQ:
 • Precompute all: \(\langle O(n^2), \ O(1) \rangle \).
 • Sparse table: \(\langle O(n \log n), \ O(1) \rangle \).
 • Blocking: \(\langle O(n), \ O(n^{1/2}) \rangle \).
 • Precompute none: \(\langle O(1), \ O(n) \rangle \).

• Can we do better?
A Third Approach: *Hybrid Strategies*
Blocking Revisited

<table>
<thead>
<tr>
<th>31</th>
<th>41</th>
<th>59</th>
<th>26</th>
<th>53</th>
<th>58</th>
<th>97</th>
<th>93</th>
<th>23</th>
<th>84</th>
<th>62</th>
<th>64</th>
<th>33</th>
<th>83</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
<td>62</td>
<td>64</td>
<td>33</td>
<td>83</td>
<td>27</td>
</tr>
</tbody>
</table>
Blocking Revisited
Blocking Revisited
Blocking Revisited

This is just RMQ on the block minima!
Blocking Revisited
This is just RMQ inside the blocks!
The Framework

- Split the input into blocks of size b.
- Form an array of the block minima.
- Construct a “summary” RMQ structure over the block minima.
- Construct “block” RMQ structures for each block.
- Aggregate the results together.
The Framework

- Split the input into blocks of size \(b \).
- Form an array of the block minima.
- Construct a “summary” RMQ structure over the block minima.
- Construct “block” RMQ structures for each block.
- Aggregate the results together.
The Framework

- Split the input into blocks of size b.
- Form an array of the block minima.
- Construct a “summary” RMQ structure over the block minima.
- Construct “block” RMQ structures for each block.
- Aggregate the results together.
The Framework

- Split the input into blocks of size b.
- Form an array of the block minima.
- Construct a “summary” RMQ structure over the block minima.
- Construct “block” RMQ structures for each block.
- Aggregate the results together.
The Framework

- Split the input into blocks of size b.
- Form an array of the block minima.
- Construct a “summary” RMQ structure over the block minima.
- Construct “block” RMQ structures for each block.
- Aggregate the results together.
Analyzing Efficiency

- Suppose we use a \((p_1(n), q_1(n)) \)-time RMQ for the summary RMQ and a \((p_2(n), q_2(n)) \)-time RMQ for each block, with block size \(b \).

- What is the preprocessing time for this hybrid structure?
 - \(O(n) \) time to compute the minima of each block.
 - \(O(p_1(n / b)) \) time to construct RMQ on the minima.
 - \(O((n / b) p_2(b)) \) time to construct the block RMQs.
 - Total construction time is \(O(n + p_1(n / b) + (n / b) p_2(b)) \).

Block size: \(b \).
Blocks: \(O(n / b) \).
Analyzing Efficiency

- Suppose we use a \(p_1(n), q_1(n)\)-time RMQ for the summary RMQ and a \(p_2(n), q_2(n)\)-time RMQ for each block, with block size \(b\).

- What is the query time for this hybrid structure?
 - \(O(q_1(n / b))\) time to query the summary RMQ.
 - \(O(q_2(b))\) time to query the block RMQs.
 - Total query time: \(O(q_1(n / b) + q_2(b))\).
Analyzing Efficiency

- Suppose we use a \((p_1(n), q_1(n))\)-time RMQ for the summary RMQ and a \((p_2(n), q_2(n))\)-time RMQ for each block, with block size \(b\).
- Hybrid preprocessing time:
 \[
 O(n + p_1(n / b) + (n / b)p_2(b))
 \]
- Hybrid query time:
 \[
 O(q_1(n / b) + q_2(b))
 \]
A Sanity Check

- The $\langle O(n), O(n^{1/2}) \rangle$ block-based structure from earlier uses this framework with the $\langle O(1), O(n) \rangle$ no-preprocessing RMQ structure and $b = n^{1/2}$.

Don’t do anything fancy per block. Just do linear scans over each of them.
A Sanity Check

- The $\langle O(n), O(n^{1/2}) \rangle$ block-based structure from earlier uses this framework with the $\langle O(1), O(n) \rangle$ no-preprocessing RMQ structure and $b = n^{1/2}$.

For Reference

\[
\begin{align*}
p_1(n) &= O(1) \\
q_1(n) &= O(n) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= n^{1/2}
\end{align*}
\]
A Sanity Check

- The \(O(n), O(n^{1/2})\) block-based structure from earlier uses this framework with the \(O(1), O(n)\) no-preprocessing RMQ structure and \(b = n^{1/2}\).

- According to our formulas, the preprocessing time should be

\[
O(n + p_1(n / b) + (n / b) p_2(b))
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(1) \\
q_1(n) &= O(n) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n)
\end{align*}
\]

\(b = n^{1/2}\)
A Sanity Check

- The \(O(n, O(n^{1/2}))\) block-based structure from earlier uses this framework with the \(O(1), O(n)\) no-preprocessing RMQ structure and \(b = n^{1/2}\).

- According to our formulas, the preprocessing time should be

\[
O(n + p_1(n / b) + (n / b) p_2(b)) = O(n + 1 + n / b)
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(1) \\
q_1(n) &= O(n) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= n^{1/2}
\end{align*}
\]
A Sanity Check

• The \(\langle O(n), O(n^{1/2}) \rangle \) block-based structure from earlier uses this framework with the \(\langle O(1), O(n) \rangle \) no-preprocessing RMQ structure and \(b = n^{1/2} \).

• According to our formulas, the preprocessing time should be

\[
O(n + p_1(n / b) + (n / b) p_2(b)) \\
= O(n + 1 + n / b) \\
= O(n)
\]

For Reference

\[
p_1(n) = O(1) \\
q_1(n) = O(n) \\
p_2(n) = O(1) \\
q_2(n) = O(n) \\
b = n^{1/2}
\]
A Sanity Check

- The \(\langle O(n), O(n^{1/2}) \rangle \) block-based structure from earlier uses this framework with the \(\langle O(1), O(n) \rangle \) no-preprocessing RMQ structure and \(b = n^{1/2} \).
- According to our formulas, the preprocessing time should be
 \[
 O(n + p_1(n / b) + (n / b) \ p_2(b)) \\
 = O(n + 1 + n / b) \\
 = O(n)
 \]
- The query time should be
 \[
 O(q_1(n / b) + q_2(b))
 \]

For Reference

\[
\begin{align*}
 p_1(n) &= O(1) \\
 q_1(n) &= O(n) \\
 p_2(n) &= O(1) \\
 q_2(n) &= O(n) \\
 b &= n^{1/2}
\end{align*}
\]
A Sanity Check

- The \(\langle O(n), O(n^{1/2}) \rangle \) block-based structure from earlier uses this framework with the \(\langle O(1), O(n) \rangle \) no-preprocessing RMQ structure and \(b = n^{1/2} \).

- According to our formulas, the preprocessing time should be

\[
O(n + p_1(n / b) + (n / b) p_2(b)) \\
= O(n + 1 + n / b) \\
= O(n)
\]

- The query time should be

\[
O(q_1(n / b) + q_2(b)) \\
= O(n / b + b)
\]

For Reference

\[
p_1(n) = O(1) \\
q_1(n) = O(n) \\
p_2(n) = O(1) \\
q_2(n) = O(n) \\
b = n^{1/2}
\]
A Sanity Check

• The \(\langle O(n), O(n^{1/2}) \rangle \) block-based structure from earlier uses this framework with the \(\langle O(1), O(n) \rangle \) no-preprocessing RMQ structure and \(b = n^{1/2} \).

• According to our formulas, the preprocessing time should be

\[
O(n + p_1(n / b) + (n / b) p_2(b)) \\
= O(n + 1 + n / b) \\
= O(n)
\]

• The query time should be

\[
O(q_1(n / b) + q_2(b)) \\
= O(n / b + b) \\
= O(n^{1/2})
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(1) \\
q_1(n) &= O(n) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n)
\end{align*}
\]

\(b = n^{1/2} \)
A Sanity Check

- The \(\langle O(n), O(n^{1/2}) \rangle \) block-based structure from earlier uses this framework with the \(\langle O(1), O(n) \rangle \) no-preprocessing RMQ structure and \(b = n^{1/2} \).

- According to our formulas, the preprocessing time should be

\[
O(n + p_1(n / b) + (n / b) \ p_2(b)) \\
= O(n + 1 + n / b) \\
= O(n)
\]

- The query time should be

\[
O(q_1(n / b) + q_2(b)) \\
= O(n / b + b) \\
= O(n^{1/2})
\]

- Looks good so far!

For Reference

\[
\begin{align*}
p_1(n) &= O(1) \\
q_1(n) &= O(n) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= n^{1/2}
\end{align*}
\]
An Observation

- We can use any data structures we’d like for the summary and block RMQs.
- Suppose we use an \(\langle O(n \log n), O(1) \rangle \) sparse table for the summary RMQ.
- If the block size is \(b \), the time to construct a sparse table over the \((n / b) \) blocks is \(O((n / b) \log (n / b)) \).
- \textbf{Cute trick:} If \(b = \Theta(\log n) \), the time to construct a sparse table over the minima is
 \[
 O((n / \log n) \log (n / \log n))
 \]
 \[
 = O((n / \log n) \log n) \quad (O \text{ is an upper bound})
 \]
 \[
 = O(n). \quad (\text{logs cancel out})
 \]
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the summary RMQ.
- Use the “no preprocessing” structure for each block.

<table>
<thead>
<tr>
<th>Summary RMQ (Sparse table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 26 23 62 27</td>
</tr>
</tbody>
</table>

| 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 |
One Possible Hybrid

- Set the block size to log \(n \).
- Use a sparse table for the summary RMQ.
- Use the “no preprocessing” structure for each block.
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the summary RMQ.
- Use the “no preprocessing” structure for each block.

Summary RMQ *(Sparse table)*

Table lookups

Handled via linear scan

Handled via linear scan
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the summary RMQ.
- Use the “no preprocessing” structure for each block.

For Reference

- $p_1(n) = O(n \log n)$
- $q_1(n) = O(1)$
- $p_2(n) = O(1)$
- $q_2(n) = O(n)$
- $b = \log n$
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the summary RMQ.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n / b) + (n / b) \cdot p_2(b))
 \]
 \[
 \sim O(n)
 \]

For Reference

- $p_1(n) = O(n \log n)$
- $q_1(n) = O(1)$
- $p_2(n) = O(1)$
- $q_2(n) = O(n)$
- $b = \log n$
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the summary RMQ.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 $$O(n + p_1(n / b) + (n / b) p_2(b))$$
 $$= O(n + n + n / b)$$

For Reference

- $p_1(n) = O(n \log n)$
- $q_1(n) = O(1)$
- $p_2(n) = O(1)$
- $q_2(n) = O(n)$
- $b = \log n$
One Possible Hybrid

• Set the block size to $\log n$.
• Use a sparse table for the summary RMQ.
• Use the “no preprocessing” structure for each block.
• Preprocessing time:

\[
O(n + p_1(n / b) + (n / b) p_2(b)) = O(n + n + n / b) = O(n)
\]

For Reference

\[
p_1(n) = O(n \log n) \\
q_1(n) = O(1) \\
p_2(n) = O(1) \\
q_2(n) = O(n) \\
b = \log n
\]
One Possible Hybrid

- Set the block size to \(\log n \).
- Use a sparse table for the summary RMQ.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n/b) + (n/b) p_2(b))
 = O(n + n + n/b)
 = O(n)
 \]
- Query time:
 \[
 O(q_1(n/b) + q_2(b))
 \approx (1 + b)
 \]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= \log n
\end{align*}
\]
One Possible Hybrid

- Set the block size to \(\log n\).
- Use a sparse table for the summary RMQ.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n / b) + (n / b) \ p_2(b)) \\
 = O(n + n + n / b) \\
 = O(n)
 \]
- Query time:
 \[
 O(q_1(n / b) + q_2(b)) \\
 = O(1 + b)
 \]

For Reference

- \(p_1(n) = O(n \log n)\)
- \(q_1(n) = O(1)\)
- \(p_2(n) = O(1)\)
- \(q_2(n) = O(n)\)
- \(b = \log n\)
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the summary RMQ.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n/b) + (n/b) p_2(b)) \\
 = O(n + n + n/b) \\
 = O(n)
 \]
- Query time:
 \[
 O(q_1(n/b) + q_2(b)) \\
 = O(1 + b) \\
 = O(\log n)
 \]

For Reference

- $p_1(n) = O(n \log n)$
- $q_1(n) = O(1)$
- $p_2(n) = O(1)$
- $q_2(n) = O(n)$
- $b = \log n$
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the summary RMQ.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n / b) + (n / b) p_2(b)) \\
 = O(n + n + n / b) \\
 = O(n)
 \]
- Query time:
 \[
 O(q_1(n / b) + q_2(b)) \\
 = O(1 + b) \\
 = O(\log n)
 \]
- An $\langle O(n), O(\log n) \rangle$ solution!

For Reference

- $p_1(n) = O(n \log n)$
- $q_1(n) = O(1)$
- $p_2(n) = O(1)$
- $q_2(n) = O(n)$
- $b = \log n$
Another Hybrid

- Let's suppose we use the $O(n \log n), O(1)$ sparse table for both the summary and block RMQ structures with a block size of $\log n$.

Sparse Table

Summary RMQ (Sparse table)

<table>
<thead>
<tr>
<th>31</th>
<th>26</th>
<th>23</th>
<th>62</th>
<th>27</th>
</tr>
</thead>
</table>

Sparse Table

Sparse Table

Sparse Table

Sparse Table

Sparse Table

Sparse Table
Another Hybrid

- Let's suppose we use the \(O(n \log n), O(1) \) sparse table for both the summary and block RMQ structures with a block size of \(\log n \).
Another Hybrid

- Let's suppose we use the \(O(n \log n), O(1)\) sparse table for both the summary and block RMQ structures with a block size of \(\log n\).
Another Hybrid

- Let's suppose we use the $\langle O(n \log n), O(1) \rangle$ sparse table for both the summary and block RMQ structures with a block size of $\log n$.

For Reference

- $p_1(n) = O(n \log n)$
- $q_1(n) = O(1)$
- $p_2(n) = O(n \log n)$
- $q_2(n) = O(1)$
- $b = \log n$
Another Hybrid

• Let's suppose we use the \(\langle O(n \log n), O(1) \rangle \) sparse table for both the summary and block RMQ structures with a block size of \(\log n \).

• The preprocessing time is

\[
O(n + p_1(n / b) + (n / b) p_2(b))
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n \log n) \\
q_2(n) &= O(1) \\
b &= \log n
\end{align*}
\]
Another Hybrid

- Let's suppose we use the \(\langle O(n \log n), O(1) \rangle \) sparse table for both the summary and block RMQ structures with a block size of \(\log n \).

- The preprocessing time is

 \[
 O(n + p_1(n/b) + (n/b) p_2(b))
 = O(n + n + (n/b) b \log b)
 \]

For Reference

\[
\begin{align*}
 p_1(n) &= O(n \log n) \\
 q_1(n) &= O(1) \\
 p_2(n) &= O(n \log n) \\
 q_2(n) &= O(1) \\
 b &= \log n
\end{align*}
\]
Another Hybrid

Let's suppose we use the \(\langle O(n \log n), O(1) \rangle \) sparse table for both the summary and block RMQ structures with a block size of \(\log n \).

The preprocessing time is

\[
\begin{align*}
O(n + p_1(n / b) + (n / b) p_2(b)) &= O(n + (n / b) b \log b) \\
&= O(n + n \log b)
\end{align*}
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n \log n) \\
q_2(n) &= O(1) \\
b &= \log n
\end{align*}
\]
Another Hybrid

- Let's suppose we use the \(O(n \log n), O(1)\) sparse table for both the summary and block RMQ structures with a block size of \(\log n\).

- The preprocessing time is

 \[
 O(n + p_1(n / b) + (n / b) p_2(b)) = O(n + n + (n / b) b \log b) = O(n + n \log b) = O(n \log \log n)
 \]

For Reference

- \(p_1(n) = O(n \log n)\)
- \(q_1(n) = O(1)\)
- \(p_2(n) = O(n \log n)\)
- \(q_2(n) = O(1)\)
- \(b = \log n\)
Another Hybrid

- Let's suppose we use the \(\langle O(n \log n), O(1)\rangle\) sparse table for both the summary and block RMQ structures with a block size of \(\log n\).

- The preprocessing time is

 \[
 O(n + p_1(n / b) + (n / b) p_2(b))
 = O(n + n + (n / b) b \log b)
 = O(n + n \log b)
 = \mathbf{O(n \log \log n)}
 \]

- The query time is

 \[
 O(q_1(n / b) + q_2(b))
 \]

For Reference

\[
\begin{align*}
 p_1(n) &= O(n \log n) \\
 q_1(n) &= O(1) \\
 p_2(n) &= O(n \log n) \\
 q_2(n) &= O(1) \\
 b &= \log n
\end{align*}
\]
Another Hybrid

- Let's suppose we use the \(\langle O(n \log n), O(1) \rangle \) sparse table for both the summary and block RMQ structures with a block size of \(\log n \).

- The preprocessing time is

 \[
 O(n + p_1(n / b) + (n / b) p_2(b)) = O(n + n + (n / b) b \log b) = O(n + n \log b) = O(n \log \log n)
 \]

- The query time is

 \[
 O(q_1(n / b) + q_2(b)) = O(1)
 \]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n \log n) \\
q_2(n) &= O(1) \\
b &= \log n
\end{align*}
\]
Another Hybrid

- Let's suppose we use the $\langle O(n \log n), O(1) \rangle$ sparse table for both the summary and block RMQ structures with a block size of $\log n$.

- The preprocessing time is
 \[
 O(n + p_1(n/b) + (n/b) p_2(b)) \\
 = O(n + n + (n/b) b \log b) \\
 = O(n + n \log b) \\
 = O(n \log \log n)
 \]

- The query time is
 \[
 O(q_1(n/b) + q_2(b)) \\
 = O(1)
 \]

- We have an $\langle O(n \log \log n), O(1) \rangle$ solution to RMQ!

For Reference

- $p_1(n) = O(n \log n)$
- $q_1(n) = O(1)$
- $p_2(n) = O(n \log n)$
- $q_2(n) = O(1)$
- $b = \log n$
One Last Hybrid

- Suppose we use a sparse table for the summary RMQ and the $\langle O(n), O(\log n) \rangle$ solution for the block RMQs. Let's choose $b = \log n$.
One Last Hybrid

• Suppose we use a sparse table for the summary RMQ and the \(O(n), O(\log n)\) solution for the block RMQs. Let's choose \(b = \log n\).
One Last Hybrid

• Suppose we use a sparse table for the summary RMQ and the \(\langle O(n), O(\log n) \rangle \) solution for the block RMQs. Let's choose \(b = \log n \).

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n) \\
q_2(n) &= O(\log n) \\
b &= \log n
\end{align*}
\]
One Last Hybrid

- Suppose we use a sparse table for the summary RMQ and the \(O(n), O(\log n) \) solution for the block RMQs. Let's choose \(b = \log n \).
- The preprocessing time is
 \[
 O(n + p_1(n / b) + (n / b) \ p_2(b))
 \]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n) \\
q_2(n) &= O(\log n) \\
b &= \log n
\end{align*}
\]
One Last Hybrid

- Suppose we use a sparse table for the summary RMQ and the $\langle O(n), O(\log n) \rangle$ solution for the block RMQs. Let's choose $b = \log n$.

- The preprocessing time is

$$O(n + p_1(n / b) + (n / b) p_2(b)) = O(n + n + (n / b) b)$$

For Reference

$p_1(n) = O(n \log n)$
$q_1(n) = O(1)$
$p_2(n) = O(n)$
$q_2(n) = O(\log n)$

$b = \log n$
One Last Hybrid

• Suppose we use a sparse table for the summary RMQ and the \(O(n), O(\log n)\) solution for the block RMQs. Let's choose \(b = \log n\).

• The preprocessing time is

\[
O(n + p_1(n / b) + (n / b) p_2(b))
= O(n + n + (n / b) b)
= O(n)
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
P_2(n) &= O(n) \\
q_2(n) &= O(\log n) \\
b &= \log n
\end{align*}
\]
One Last Hybrid

• Suppose we use a sparse table for the summary RMQ and the \(\langle O(n), O(\log n)\rangle\) solution for the block RMQs. Let's choose \(b = \log n\).

• The preprocessing time is

\[
O(n + p_1(n/b) + (n/b) p_2(b)) \\
= O(n + n + (n/b) b) \\
= O(n)
\]

• The query time is

\[
O(q_1(n/b) + q_2(b)) \\
\sim O(\log \log n)
\]

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n) \\
q_2(n) &= O(\log n) \\
b &= \log n
\end{align*}
\]
One Last Hybrid

- Suppose we use a sparse table for the summary RMQ and the \(O(n), O(\log n) \) solution for the block RMQs. Let's choose \(b = \log n \).

- The preprocessing time is
 \[
 O(n + p_1(n / b) + (n / b) p_2(b))
 = O(n + n + (n / b) b)
 = O(n)
 \]

- The query time is
 \[
 O(q_1(n / b) + q_2(b))
 = O(1 + \log b)
 \]

For Reference

- \(p_1(n) = O(n \log n) \)
- \(q_1(n) = O(1) \)
- \(p_2(n) = O(n) \)
- \(q_2(n) = O(\log n) \)
- \(b = \log n \)
One Last Hybrid

- Suppose we use a sparse table for the summary RMQ and the \(O(n), O(\log n) \) solution for the block RMQs. Let's choose \(b = \log n \).

- The preprocessing time is
 \[
 \begin{align*}
 O(n + p_1(n / b) + (n / b) p_2(b)) & = O(n + n + (n / b) b) \\
 & = O(n)
 \end{align*}
 \]

- The query time is
 \[
 \begin{align*}
 O(q_1(n / b) + q_2(b)) & = O(1 + \log b) \\
 & = O(\log \log n)
 \end{align*}
 \]

For Reference
\[
\begin{align*}
p_1(n) & = O(n \log n) \\
q_1(n) & = O(1) \\
p_2(n) & = O(n) \\
q_2(n) & = O(\log n) \\
b & = \log n
\end{align*}
\]
One Last Hybrid

• Suppose we use a sparse table for the summary RMQ and the $\langle O(n), O(\log n) \rangle$ solution for the block RMQs. Let's choose $b = \log n$.

• The preprocessing time is

\[
O(n + p_1(n / b) + (n / b) p_2(b)) \\
= O(n + n + (n / b) b) \\
= O(n)
\]

• The query time is

\[
O(q_1(n / b) + q_2(b)) \\
= O(1 + \log b) \\
= O(\log \log n)
\]

• We have an $\langle O(n), O(\log \log n) \rangle$ solution to RMQ!

For Reference

\[
p_1(n) = O(n \log n) \\
q_1(n) = O(1) \\
p_2(n) = O(n) \\
q_2(n) = O(\log n) \\
b = \log n
\]
Where We Stand

- We've seen a bunch of RMQ structures today:
 - No preprocessing: \(O(1), O(n)\)
 - Full preprocessing: \(O(n^2), O(1)\)
 - Block partition: \(O(n), O(n^{1/2})\)
 - Sparse table: \(O(n \log n), O(1)\)
 - Hybrid 1: \(O(n), O(\log n)\)
 - Hybrid 2: \(O(n \log \log n), O(1)\)
 - Hybrid 3: \(O(n), O(\log \log n)\)
Where We Stand

We've seen a bunch of RMQ structures today:

- No preprocessing: $\langle O(1), O(n) \rangle$
- **Full preprocessing**: $\langle O(n^2), O(1) \rangle$
- Block partition: $\langle O(n), O(n^{1/2}) \rangle$
- **Sparse table**: $\langle O(n \log n), O(1) \rangle$
- Hybrid 1: $\langle O(n), O(\log n) \rangle$
- **Hybrid 2**: $\langle O(n \log \log n), O(1) \rangle$
- Hybrid 3: $\langle O(n), O(\log \log n) \rangle$
Where We Stand

We've seen a bunch of RMQ structures today:

- No preprocessing: $\langle O(1), O(n) \rangle$
- Full preprocessing: $\langle O(n^2), O(1) \rangle$
- **Block partition:** $\langle O(n), O(n^{1/2}) \rangle$
- Sparse table: $\langle O(n \log n), O(1) \rangle$
- **Hybrid 1:** $\langle O(n), O(\log n) \rangle$
- Hybrid 2: $\langle O(n \log \log n), O(1) \rangle$
- **Hybrid 3:** $\langle O(n), O(\log \log n) \rangle$
Is there an $\langle O(n), O(1) \rangle$ solution to RMQ?

Yes!
Next Time

- **Cartesian Trees**
 - A data structure closely related to RMQ.
- **The Method of Four Russians**
 - A technique for shaving off log factors.
- **The Fischer-Heun Structure**
 - A clever, asymptotically optimal RMQ structure.