Welcome to CS166!

- Six handouts!
 - Four are available up front.
 - All are available online!
- Today:
 - Why study data structures?
 - The range minimum query problem.
Why Study Data Structures?
Why Study Data Structures?

• **Explore where theory meets practice.**
 • Some of the data structures we'll cover are used extensively in practice. Many were invented within a twenty-mile radius of us!
• **Challenge your intuition for the limits of efficiency.**
 • You'd be amazed how many times we'll take a problem you're sure you know how to solve and then see how to solve it faster.
• **See the beauty of theoretical computer science.**
 • We'll cover some amazingly clever theoretical techniques in the course of this class. You'll love them.
• **Equip yourself to solve complex problems.**
 • Powerful data structures make excellent building blocks for solving seemingly difficult problems.
Course Staff

Keith Schwarz (htiek@cs.stanford.edu)
Anton de Leon
Michael Zhu
Ryan Smith

Course Staff Mailing List:
cs166-spr1819-staff@lists.stanford.edu
The Course Website

http://cs166.stanford.edu
Recommended Reading

- You'll want the third edition for this course.
- Available in the bookstore; several copies on hold at the Engineering Library.
Prerequisites

- **CS161** (Design and Analysis of Algorithms)
 - We'll assume familiarity with asymptotic notation, correctness proofs, algorithmic strategies (e.g. divide-and-conquer, dynamic programming), classical algorithms, recurrence relations, universal hashing, etc.

- **CS107** (Computer Organization and Systems)
 - We'll assume comfort working from the command-line, designing and testing nontrivial programs, and manipulating bitwise representations of data. You should have some knowledge of the memory hierarchy. You should also know how to code in both high-level and low-level languages.
Problem Sets

- The first problem set of the quarter, Problem Set 0, goes out today. It’s due next Tuesday at 2:30PM.

- This problem set is designed as a refresher on the techniques and concepts that we’ll be using over the course of this class.

- You’re welcome to work in pairs or individually. See the “Problem Set Policies” handout for more details.
Grading Policies

- 1/3 Assignments
- 1/3 Midterm
- 1/3 Final Project

Take-Home Midterm
Goes out Tuesday, May 28th
Comes due Thursday, May 30th
Let’s Get Started!
Range Minimum Queries
The RMQ Problem

- The **Range Minimum Query problem** (RMQ for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?
The RMQ Problem

- The *Range Minimum Query problem* (RMQ for short) is the following:
 Given an array \(A \) and two indices \(i \leq j \), what is the smallest element out of \(A[i], A[i+1], ..., A[j-1], A[j] \)?
- Notation: We'll denote a range minimum query in array \(A \) between indices \(i \) and \(j \) as \(\text{RMQ}_A(i, j) \).
- For simplicity, let's assume 0-indexing.
A Trivial Solution

- There's a simple $O(n)$-time algorithm for evaluating $\text{RMQ}_A(i, j)$: just iterate across the elements between i and j, inclusive, and take the minimum!

- So... why is this problem at all algorithmically interesting?

- Suppose that the array A is fixed in advance and you're told that we're going to make a number of different queries on it.

- Can we do better than the naïve algorithm?
An Observation

- In an array of length n, there are only $\Theta(n^2)$ possible queries.
- Why?

1 subarray of length 5
2 subarrays of length 4
3 subarrays of length 3
4 subarrays of length 2
5 subarrays of length 1
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.
- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
Building the Table

• One simple approach: for each entry in the table, iterate over the range in question and find the minimum value.

• How efficient is this?
 • Number of entries: $\Theta(n^2)$.
 • Time to evaluate each entry: $O(n)$.
 • Time required: $O(n^3)$.

• The runtime is $O(n^3)$ using this approach. Is it also $\Theta(n^3)$?
Each entry in yellow requires at least \(n / 2 = \Theta(n) \) work to evaluate. There are roughly \(n^2 / 8 = \Theta(n^2) \) entries here.

Total work required: \(\Theta(n^3) \)
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

• Naïvely precomputing the table is inefficient.
• Can we do better?
• **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
Some Notation

• We'll say that an RMQ data structure has time complexity \(\langle p(n), q(n) \rangle \) if
 • preprocessing takes time at most \(p(n) \) and
 • queries take time at most \(q(n) \).

• We now have two RMQ data structures:
 • \(\langle O(1), O(n) \rangle \) with no preprocessing.
 • \(\langle O(n^2), O(1) \rangle \) with full preprocessing.

• These are two extremes on a curve of tradeoffs: no preprocessing versus full preprocessing.

• **Question:** Is there a “golden mean” between these extremes?
Another Approach: *Block Decomposition*
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some "block size" b.
 - Here, $b = 3$.
- Compute the minimum value in each block.

<table>
<thead>
<tr>
<th>31</th>
<th>41</th>
<th>59</th>
<th>26</th>
<th>53</th>
<th>58</th>
<th>97</th>
<th>93</th>
<th>23</th>
<th>62</th>
<th>64</th>
<th>33</th>
<th>83</th>
<th>27</th>
</tr>
</thead>
</table>
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 3$.
- Compute the minimum value in each block.
Analyzing the Approach

- Let's analyze this approach in terms of n and b.
- Preprocessing time:
 - $O(b)$ work on $O(n / b)$ blocks to find minima.
 - Total work: $O(n)$.
- Time to evaluate $\text{RMQ}_A(i, j)$:
 - $O(1)$ work to find block indices (divide by block size).
 - $O(b)$ work to scan inside i and j's blocks.
 - $O(n / b)$ work looking at block minima between i and j.
 - Total work: $O(b + n / b)$.
Intuiting $O(b + n/b)$

- As b increases:
 - The b term rises (more elements to scan within each block).
 - The n/b term drops (fewer blocks to look at).
- As b decreases:
 - The b term drops (fewer elements to scan within a block).
 - The n/b term rises (more blocks to look at).
- Is there an optimal choice of b given these constraints?
Optimizing b

- What choice of b minimizes $b + n / b$?

- Start by taking the derivative:

 \[
 \frac{d}{db} (b + n/b) = 1 - \frac{n}{b^2}
 \]

- Setting the derivative to zero:

 \[
 1 - \frac{n}{b^2} = 0
 \]

 \[
 1 = \frac{n}{b^2}
 \]

 \[
 b^2 = n
 \]

 \[
 b = \sqrt{n}
 \]

- Asymptotically optimal runtime is when $b = n^{1/2}$.

- In that case, the runtime is

 \[
 O(b + n / b) = O(n^{1/2} + n / n^{1/2}) = O(n^{1/2} + n^{1/2}) = O(n^{1/2})
 \]
Summary of Approaches

- Three solutions so far:
 - Full preprocessing: $\langle O(n^2), O(1) \rangle$.
 - Block partition: $\langle O(n), O(n^{1/2}) \rangle$.
 - No preprocessing: $\langle O(1), O(n) \rangle$.
- Modest preprocessing yields modest performance increases.
- **Question:** Can we do better?
A Second Approach: \textit{Sparse Tables}
An Intuition

• The \(O(n^2), O(1)\) solution gives fast queries because every range we might look up has already been precomputed.

• This solution is slow overall because we have to compute the minimum of every possible range.

• **Question:** Can we still get constant-time queries without preprocessing all possible ranges?
An Observation
An Observation
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>41</td>
<td>41</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The numbers 31, 41, 59, 26, 53, 58, 97, and 93 are highlighted in blue. The star indicates a special observation.
The Intuition

- It's still possible to answer any query in time $O(1)$ without precomputing RMQ over all ranges.
- If we precompute the answers over too many ranges, the preprocessing time will be too large.
- If we precompute the answers over too few ranges, the query time won't be $O(1)$.

Goal: Precompute RMQ over a set of ranges such that

- There are $o(n^2)$ total ranges, but
- there are enough ranges to support $O(1)$ query times.
Some Observations
The Approach

- For each index i, compute RMQ for ranges starting at i of size 1, 2, 4, 8, 16, ..., 2^k as long as they fit in the array.
 - Gives both large and small ranges starting at any point in the array.
 - Only $O(\log n)$ ranges computed for each array element.
 - Total number of ranges: $O(n \log n)$.
- **Claim:** Any range in the array can be formed as the union of two of these ranges.
Creating Ranges

18

16

16
Creating Ranges

7

4

4
Doing a Query

- To answer $\text{RMQ}_A(i, j)$:
 - Find the largest k such that $2^k \leq j - i + 1$.
 - With the right preprocessing, this can be done in time $O(1)$; you'll figure out how in Problem Set One.
 - The range $[i, j]$ can be formed as the overlap of the ranges $[i, i + 2^k - 1]$ and $[j - 2^k + 1, j]$.
 - Each range can be looked up in time $O(1)$.
 - Total time: $O(1)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Sparse Tables

• This data structure is called a *sparse table*.
• It gives an \(\langle O(n \log n), O(1) \rangle \) solution to RMQ.
• This is asymptotically better than precomputing all possible ranges!
The Story So Far

- We now have the following solutions for RMQ:
 - Precompute all: \(\langle O(n^2), O(1) \rangle \).
 - Sparse table: \(\langle O(n \log n), O(1) \rangle \).
 - Blocking: \(\langle O(n), O(n^{1/2}) \rangle \).
 - Precompute none: \(\langle O(1), O(n) \rangle \).

- Can we do better?
A Third Approach: Hybrid Strategies
Blocking Revisited

[Diagram showing a sequence of numbers with arrows indicating a pattern or process.]
Blocking Revisited

This is just RMQ on the block minima!
Blocking Revisited

This is just RMQ inside the blocks!
The Framework

- Split the input into blocks of size \(b \).
- Form an array of the block minima.
- Construct a “summary” RMQ structure over the block minima.
- Construct “block” RMQ structures for each block.
- Aggregate the results together.
Analyzing Efficiency

- Suppose we use a \((p_1(n), q_1(n))\)-time RMQ for the block minima and a \((p_2(n), q_2(n))\)-time RMQ within each block, with block size \(b\).

- What is the preprocessing time for this hybrid structure?
 - \(O(n)\) time to compute the minima of each block.
 - \(O(p_1(n / b))\) time to construct RMQ on the minima.
 - \(O((n / b) p_2(b))\) time to construct the block RMQs

- Total construction time is \(O(n + p_1(n / b) + (n / b) p_2(b))\).
Analyzing Efficiency

- Suppose we use a \((p_1(n), q_1(n)) \)-time RMQ for the block minima and a \((p_2(n), q_2(n)) \)-time RMQ within each block, with block size \(b \).
- What is the query time for this hybrid structure?
 - \(O(q_1(n / b)) \) time to query the summary RMQ.
 - \(O(q_2(b)) \) time to query the block RMQs.
- Total query time: \(O(q_1(n / b) + q_2(b)) \).
Analyzing Efficiency

- Suppose we use a \((p_1(n), q_1(n))\)-time RMQ for the block minima and a \((p_2(n), q_2(n))\)-time RMQ within each block, with block size \(b\).

- Hybrid preprocessing time:

\[
O(n + p_1(n/b) + (n/b)p_2(b))
\]

- Hybrid query time:

\[
O(q_1(n/b) + q_2(b))
\]
A Sanity Check

- The \(\langle O(n), O(n^{1/2})\rangle\) block-based structure from earlier uses this framework with the \(\langle O(1), O(n)\rangle\) no-preprocessing RMQ structure and \(b = n^{1/2}\).

- According to our formulas, the preprocessing time should be

\[
O(n + p_1(n / b) + (n / b) p_2(b)) \\
= O(n + 1 + n / b) \\
= O(n)
\]

- The query time should be

\[
O(q_1(n / b) + q_2(b)) \\
= O(n / b + b) \\
= O(n^{1/2})
\]

- Looks good so far!

For Reference

\[
\begin{align*}
p_1(n) &= O(1) \\
q_1(n) &= O(n) \\
p_2(n) &= O(1) \\
q_2(n) &= O(n) \\
b &= n^{1/2}
\end{align*}
\]
An Observation

- We can use any data structures we’d like for the summary and block RMQs.
- Suppose we use an $\langle O(n \log n), O(1) \rangle$ sparse table for the summary RMQ.
- If the block size is b, the time to construct a sparse table over the (n / b) blocks is $O((n / b) \log (n / b))$.
- **Cute trick:** If $b = \Theta(\log n)$, the time to construct a sparse table over the minima is

 $$O((n / \log n) \log(n / \log n))$$

 $$= O((n / \log n) \log n) \quad (O \text{ is an upper bound})$$

 $$= O(n) \quad (\text{logs cancel out})$$
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the top-level structure.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:
 \[
 O(n + p_1(n / b) + (n / b) p_2(b)) \\
 = O(n + n + n / \log n) \\
 = O(n)
 \]
- Query time:
 \[
 O(q_1(n / b) + q_2(b)) \\
 = O(1 + \log n) \\
 = O(\log n)
 \]
- An $\langle O(n), O(\log n) \rangle$ solution!

For Reference
\[
\begin{align*}
 p_1(n) &= O(n \log n) \\
 q_1(n) &= O(1) \\
 p_2(n) &= O(1) \\
 q_2(n) &= O(n) \\
 b &= \log n
\end{align*}
\]
Another Hybrid

- Let's suppose we use the \(\langle O(n \log n), O(1) \rangle \) sparse table for both the top and bottom RMQ structures with a block size of \(\log n \).

- The preprocessing time is

\[
O(n + p_1(n / b) + (n / b) p_2(b))
= O(n + n + (n / \log n) b \log b)
= O(n + (n / \log n) \log n \log \log n)
= O(n \log \log n)
\]

- The query time is

\[
O(q_1(n / b) + q_2(b))
= O(1)
\]

- We have an \(\langle O(n \log \log n), O(1) \rangle \) solution to RMQ!

For Reference

\[
\begin{align*}
p_1(n) &= O(n \log n) \\
q_1(n) &= O(1) \\
p_2(n) &= O(n \log n) \\
q_2(n) &= O(1) \\
b &= \log n
\end{align*}
\]
One Last Hybrid

- Suppose we use a sparse table for the top structure and the \(\langle O(n), O(\log n) \rangle \) solution for the bottom structure. Let's choose \(b = \log n \).

- The preprocessing time is

\[
O(n + p_1(n/b) + (n/b) p_2(b)) = O(n + n + (n / \log n) b) = O(n + n + (n / \log n) \log n) = O(n)
\]

- The query time is

\[
O(q_1(n/b) + q_2(b)) = O(1 + \log \log n) = O(\log \log n)
\]

- We have an \(\langle O(n), O(\log \log n) \rangle \) solution to RMQ!

For Reference

\[
p_1(n) = O(n \log n) \\
q_1(n) = O(1) \\
p_2(n) = O(n) \\
q_2(n) = O(\log n) \\
b = \log n
\]
Where We Stand

- We've seen a bunch of RMQ structures today:
 - No preprocessing: \(O(1), O(n)\)
 - Full preprocessing: \(O(n^2), O(1)\)
 - Block partition: \(O(n), O(n^{1/2})\)
 - Sparse table: \(O(n \log n), O(1)\)
 - Hybrid 1: \(O(n), O(\log n)\)
 - Hybrid 2: \(O(n \log \log n), O(1)\)
 - Hybrid 3: \(O(n), O(\log \log n)\)
Where We Stand

We've seen a bunch of RMQ structures today:

- No preprocessing: \(O(1), O(n) \)
- **Full preprocessing:** \(O(n^2), O(1) \)
- Block partition: \(O(n), O(n^{1/2}) \)
- **Sparse table:** \(O(n \log n), O(1) \)
- Hybrid 1: \(O(n), O(\log n) \)
- **Hybrid 2:** \(O(n \log \log n), O(1) \)
- Hybrid 3: \(O(n), O(\log \log n) \)
Where We Stand

We've seen a bunch of RMQ structures today:

- No preprocessing: \(O(1), O(n)\)
- Full preprocessing: \(O(n^2), O(1)\)
- **Block partition**: \(O(n), O(n^{1/2})\)
- Sparse table: \(O(n \log n), O(1)\)
- **Hybrid 1**: \(O(n), O(\log n)\)
- Hybrid 2: \(O(n \log \log n), O(1)\)
- **Hybrid 3**: \(O(n), O(\log \log n)\)
Is there an $O(n)$, $O(1)$ solution to RMQ? Yes!
Next Time

- **Cartesian Trees**
 - A data structure closely related to RMQ.
- **The Method of Four Russians**
 - A technique for shaving off log factors.
- **The Fischer-Heun Structure**
 - A deceptively simple, asymptotically optimal RMQ structure.