Welcome to CS166!

- Two handouts available up front: course information and syllabus.
 - Also available online!
- Today:
 - Course overview.
 - Why study data structures?
 - The range minimum query problem.
Course Staff

Keith Schwarz (htiek@cs.stanford.edu)
Anna Saplitski (annasaps@stanford.edu)
Ilan Goodman (igoodman@stanford.edu)
Kevin Gibbons (kgibb@stanford.edu)
Luna Frank-Fischer (luna16@stanford.edu)

Course Staff Mailing List:
cs166-spr1516-staff@lists.stanford.edu
The Course Website

http://cs166.stanford.edu
Required Reading

- You'll want the third edition for this course.

- Available in the bookstore; several copies on hold at the Engineering Library.
Prerequisites

- **CS161** (Design and Analysis of Algorithms)
 - We'll assume familiarity with asymptotic notation, correctness proofs, algorithmic strategies (e.g. divide-and-conquer, dynamic programming), classical algorithms, recurrence relations, universal hashing, etc.

- **CS107** (Computer Organization and Systems)
 - We'll assume comfort working from the command-line, designing and testing nontrivial programs, and manipulating bitwise representations of data. You should have some knowledge of the memory hierarchy. You should also know how to code in both high-level and low-level languages.
Grading Policies

- 1/3 Assignments
- 1/3 Midterm
- 1/3 Final Project

Midterm: **Tuesday, May 24**
7PM - 10PM
Location TBA
Why Study Data Structures?
Why Study Data Structures?

- **Explore where theory meets practice.**
 - Many of the data structures we'll cover are used extensively in industry. In fact, some were invented there!

- **Challenge your intuition for the limits of efficiency.**
 - You'd be amazed how many times we'll take a problem you're sure you know how to solve and then see how to solve it faster.

- **See the beauty of theoretical computer science.**
 - We'll cover some amazingly clever theoretical techniques in the course of this class. You'll love them.

- **Equip yourself to solve complex problems.**
 - Powerful data structures make excellent building blocks for solving seemingly difficult problems.
Range Minimum Queries
The RMQ Problem

- The **Range Minimum Query problem** (RMQ for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?
The RMQ Problem

• The \textit{Range Minimum Query problem} (\textit{RMQ} for short) is the following:

 Given an array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i+1], \ldots, A[j-1], A[j]$?

• Notation: We'll denote a range minimum query in array A between indices i and j as $\text{RMQ}_A(i, j)$.

• For simplicity, let's assume 0-indexing.
A Trivial Solution

• There's a simple $O(n)$-time algorithm for evaluating $\text{RMQ}_A(i, j)$: just iterate across the elements between i and j, inclusive, and take the minimum!

• So... why is this problem at all algorithmically interesting?

• Suppose that the array A is fixed in advance and you're told that we're going to make a number of different queries on it.

• Can we do better than the naïve algorithm?
An Observation

- In an array of length n, there are only $\Theta(n^2)$ possible queries.
- Why?

1 subarray of length 5
2 subarrays of length 4
3 subarrays of length 3
4 subarrays of length 2
5 subarrays of length 1
A Different Approach

- There are only $\Theta(n^2)$ possible RMQs in an array of length n.

- If we precompute all of them, we can answer RMQ in time $O(1)$ per query.
Building the Table

• One simple approach: for each entry in the table, iterate over the range in question and find the minimum value.

• How efficient is this?
 • Number of entries: $\Theta(n^2)$.
 • Time to evaluate each entry: $O(n)$.
 • Time required: $O(n^3)$.

• The runtime is $O(n^3)$ using this approach. Is it also $\Theta(n^3)$?
Each entry in yellow requires at least $n / 2 = \Theta(n)$ work to evaluate.

There are roughly $n^2 / 8 = \Theta(n^2)$ entries here.

Total work required: $\Theta(n^3)$
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
A Different Approach

- Naïvely precomputing the table is inefficient.
- Can we do better?
- **Claim:** We can precompute all subarrays in time $\Theta(n^2)$ using dynamic programming.
Some Notation

• We'll say that an RMQ data structure has time complexity $\langle p(n), q(n) \rangle$ if
 • preprocessing takes time at most $p(n)$ and
 • queries take time at most $q(n)$.

• We now have two RMQ data structures:
 • $\langle O(1), O(n) \rangle$ with no preprocessing.
 • $\langle O(n^2), O(1) \rangle$ with full preprocessing.

• These are two extremes on a curve of tradeoffs: no preprocessing versus full preprocessing.

• Question: Is there a “golden mean” between these extremes?
Another Approach: *Block Decomposition*
A Block-Based Approach

- Split the input into $O(n / b)$ blocks of some “block size” b.
 - Here, $b = 3$.
- Compute the minimum value in each block.
A Block-Based Approach

● Split the input into $O(n / b)$ blocks of some “block size” b.
 ● Here, $b = 3$.
● Compute the minimum value in each block.
Analyzing the Approach

- Let's analyze this approach in terms of n and b.

- Preprocessing time:
 - $O(b)$ work on $O(n / b)$ blocks to find minimums.
 - Total work: $O(n)$.

- Time to evaluate $\text{RMQ}_A(i, j)$:
 - $O(1)$ work to find block indices (divide by block size).
 - $O(b)$ work to scan inside i and j's blocks.
 - $O(n / b)$ work looking at block minima between i and j.
 - Total work: $O(b + n / b)$.

| 31 | 41 | 59 | 26 | 53 | 58 | 97 | 93 | 23 | 84 | 62 | 64 | 33 | 83 | 27 |
Intuiting $O(b + \frac{n}{b})$

- As b increases:
 - The b term rises (more elements to scan within each block).
 - The $\frac{n}{b}$ term drops (fewer blocks to look at).
- As b decreases:
 - The b term drops (fewer elements to scan within a block).
 - The $\frac{n}{b}$ term rises (more blocks to look at).
- Is there an optimal choice of b given these constraints?
Optimizing b

- What choice of b minimizes $b + n / b$?
- Start by taking the derivative:
 \[\frac{d}{db}(b+n/b) = 1 - \frac{n}{b^2} \]
- Setting the derivative to zero:
 \[
 1 - \frac{n}{b^2} = 0 \\
 1 = \frac{n}{b^2} \\
 b^2 = n \\
 b = \sqrt{n}
 \]
- Asymptotically optimal runtime is when $b = n^{1/2}$.
- In that case, the runtime is
 \[O(b + n / b) = O(n^{1/2} + n / n^{1/2}) = O(n^{1/2} + n^{1/2}) = O(n^{1/2}) \]
Summary of Approaches

- Three solutions so far:
 - No preprocessing: \(O(1), O(n)\).
 - Full preprocessing: \(O(n^2), O(1)\).
 - Block partition: \(O(n), O(n^{1/2})\).
- Modest preprocessing yields modest performance increases.
- **Question:** Can we do better?
A Second Approach: *Sparse Tables*
An Intuition

- The \(O(n^2), O(1) \) solution gives fast queries because every range we might look up has already been precomputed.
- This solution is slow overall because we have to compute the minimum of every possible range.
- **Question:** Can we still get \(O(1) \) queries without preprocessing all possible ranges?
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>59</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>59</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>59</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
<td>93</td>
</tr>
</tbody>
</table>

The table shows a pattern where each row and column contains the numbers 31, 41, 59, 26, 53, 58, 97, and 93 in a specific order. The pattern is repeated across the table, with each row and column starting with 31 and ending with 93.
An Observation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>

The numbers 31, 41, 59, 26, 53, 58, 97, and 93 are highlighted in blue.
The Intuition

- It's still possible to answer any query in time $O(1)$ without precomputing RMQ over all ranges.
- If we precompute the answers over too many ranges, the preprocessing time will be too large.
- If we precompute the answers over too few ranges, the query time won't be $O(1)$.

Goal: Precompute RMQ over a set of ranges such that

- There are $o(n^2)$ total ranges, but
- there are enough ranges to support $O(1)$ query times.
Some Observations
The Approach

- For each index i, compute RMQ for ranges starting at i of size $1, 2, 4, 8, 16, \ldots, 2^k$ as long as they fit in the array.
 - Gives both large and small ranges starting at any point in the array.
 - Only $O(\log n)$ ranges computed for each array element.
 - Total number of ranges: $O(n \log n)$.
- **Claim:** Any range in the array can be formed as the union of two of these ranges.
Creating Ranges
Creating Ranges
Doing a Query

- To answer $\text{RMQ}_A(i, j)$:
 - Find the largest k such that $2^k \leq j - i + 1$.
 - With the right preprocessing, this can be done in time $O(1)$; you'll figure out how in the problem set!
 - The range $[i, j]$ can be formed as the overlap of the ranges $[i, i + 2^k - 1]$ and $[j - 2^k + 1, j]$.
 - Each range can be looked up in time $O(1)$.
 - Total time: $O(1)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.
Precomputing the Ranges

- There are $O(n \log n)$ ranges to precompute.
- Using dynamic programming, we can compute all of them in time $O(n \log n)$.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sparse Tables

- This data structure is called a **sparse table**.

- It gives an $\langle O(n \log n), O(1) \rangle$ solution to RMQ.

- This is asymptotically better than precomputing all possible ranges!
The Story So Far

• We now have the following solutions for RMQ:
 • Precompute all: \(O(n^2), O(1)\).
 • Precompute none: \(O(1), O(n)\).
 • Blocking: \(O(n), O(n^{1/2})\).
 • Sparse table: \(O(n \log n), O(1)\).

• \textit{Can we do better?}
A Third Approach: *Hybrid Strategies*
Blocking Revisited

This is just RMQ on the block minima!
Blocking Revisited

This is just RMQ inside the blocks!
The Setup

- Here's a new possible route for solving RMQ:
 - Split the input into blocks of some block size b.
 - For each of the $O(n/b)$ blocks, compute the minimum.
 - **Construct an RMQ structure on the block minima.**
 - **Construct RMQ structures on each block.**
 - Combine the local RMQ answers to solve RMQ globally.
- This technique of splitting a problem into a bunch of smaller pieces unified by a larger piece is common in data structure design.
Combinations and Permutations

• The decomposition we just saw isn't a single data structure; it's a framework for data structures.

• We get to choose
 • the block size,
 • which RMQ structure to use on top, and
 • which RMQ structure to use for the blocks.

• Summary and block RMQ structures don't have to be the same type of RMQ data structure – we can combine different structures together to get different results.
The Framework

- Suppose we use a \((p_1(n), q_1(n))\)-time RMQ solution for the block minima and a \((p_2(n), q_2(n))\)-time RMQ solution within each block.
- Let the block size be \(b\).
- In the hybrid structure, the preprocessing time is \(O(n + p_1(n / b) + (n / b) p_2(b))\)

<table>
<thead>
<tr>
<th></th>
<th>31</th>
<th>26</th>
<th>23</th>
<th>62</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>97</td>
<td>93</td>
<td>23</td>
<td>84</td>
<td>62</td>
</tr>
</tbody>
</table>
The Framework

- Suppose we use a \(p_1(n), q_1(n)\)-time RMQ solution for the block minima and a \(p_2(n), q_2(n)\)-time RMQ solution within each block.
- Let the block size be \(b\).
- In the hybrid structure, the preprocessing time is \(O(n + p_1(n / b) + (n / b) \cdot p_2(b))\).
- The query time is \(O(q_1(n / b) + q_2(b))\).
A Sanity Check

• The \((O(n), O(n^{1/2})) \) block-based structure from earlier uses this framework with the \((O(1), O(n)) \) no-preprocessing RMQ structure and \(b = n^{1/2} \).

• According to our formulas, the preprocessing time should be

\[
O(n + p_1(n / b) + (n / b) p_2(b)) \\
= O(n + 1 + n / b) \\
= O(n)
\]

• The query time should be

\[
O(q_1(n / b) + q_2(b)) \\
= O(n / b + b) \\
= O(n^{1/2})
\]

• Looks good so far!

For Reference
\[
\begin{align*}
p_1(n) &= 1 \\
q_1(n) &= n \\
p_2(n) &= 1 \\
q_2(n) &= n \\
b &= n^{1/2}
\end{align*}
\]
An Observation

- A sparse table takes time $O(n \log n)$ to construct on an array of n elements.
- With block size b, there are $O(n / b)$ total blocks.
- Time to construct a sparse table over the block minima: $O((n / b) \log (n / b))$.
- Since $\log (n / b) = O(\log n)$, the time to build the sparse table is at most $O((n / b) \log n)$.
- **Cute trick**: If $b = \Theta(\log n)$, the time to construct a sparse table over the minima is

 $O((n / b) \log n) = O((n / \log n) \log n) = O(n)$
One Possible Hybrid

- Set the block size to $\log n$.
- Use a sparse table for the top-level structure.
- Use the “no preprocessing” structure for each block.
- Preprocessing time:

 $$O(n + p_1(n / b) + (n / b) p_2(b))$$

 $$= O(n + n + n / \log n)$$

 $$= O(n)$$

- Query time:

 $$O(q_1(n / b) + q_2(b))$$

 $$= O(1 + \log n)$$

 $$= O(\log n)$$

- An $\langle O(n), O(\log n) \rangle$ solution!

For Reference

- $p_1(n) = n \log n$
- $q_1(n) = 1$
- $p_2(n) = 1$
- $q_2(n) = n$
- $b = \log n$
Another Hybrid

- Let's suppose we use the $\langle O(n \log n), O(1) \rangle$ sparse table for both the top and bottom RMQ structures with a block size of $\log n$.

- The preprocessing time is

 \[
 O(n + p_1(n / b) + (n / b) p_2(b)) = O(n + n + (n / \log n) b \log b) = O(n + (n / \log n) \log n \log \log n) = O(n \log \log n)
 \]

- The query time is

 \[
 O(q_1(n / b) + q_2(b)) = O(1)
 \]

- We have an $\langle O(n \log \log n), O(1) \rangle$ solution to RMQ!

For Reference

\[
\begin{align*}
p_1(n) &= n \log n & q_1(n) &= 1 \\
p_2(n) &= n \log n & q_2(n) &= 1 \\
b &= \log n
\end{align*}
\]
One Last Hybrid

- Suppose we use a sparse table for the top structure and the \(O(n), O(\log n)\) solution for the bottom structure. Let's choose \(b = \log n\).

- The preprocessing time is

 \[
 O(n + p_1(n / b) + (n / b) p_2(b)) \\
 = O(n + n + (n / \log n) b) \\
 = O(n + n + (n / \log n) \log n) \\
 = O(n)
 \]

- The query time is

 \[
 O(q_1(n / b) + q_2(b)) \\
 = O(1 + \log \log n) \\
 = O(\log \log n)
 \]

- We have an \(O(n), O(\log \log n)\) solution to RMQ!
Where We Stand

- We've seen a bunch of RMQ structures today:
 - No preprocessing: $\langle O(1), O(n) \rangle$
 - Full preprocessing: $\langle O(n^2), O(1) \rangle$
 - Block partition: $\langle O(n), O(n^{1/2}) \rangle$
 - Sparse table: $\langle O(n \log n), O(1) \rangle$
 - Hybrid 1: $\langle O(n), O(\log n) \rangle$
 - Hybrid 2: $\langle O(n \log \log n), O(1) \rangle$
 - Hybrid 3: $\langle O(n), O(\log \log n) \rangle$
Where We Stand

We've seen a bunch of RMQ structures today:

- **No preprocessing**: $\langle O(1), O(n) \rangle$
- **Full preprocessing**: $\langle O(n^2), O(1) \rangle$
- **Block partition**: $\langle O(n), O(n^{1/2}) \rangle$
- **Sparse table**: $\langle O(n \log n), O(1) \rangle$
- **Hybrid 1**: $\langle O(n), O(\log n) \rangle$
- **Hybrid 2**: $\langle O(n \log \log n), O(1) \rangle$
- **Hybrid 3**: $\langle O(n), O(\log \log n) \rangle$
Where We Stand

We've seen a bunch of RMQ structures today:

- No preprocessing: \(O(1), O(n)\)
- Full preprocessing: \(O(n^2), O(1)\)
- **Block partition**: \(O(n), O(n^{1/2})\)
- Sparse table: \(O(n \log n), O(1)\)
- **Hybrid 1**: \(O(n), O(\log n)\)
- Hybrid 2: \(O(n \log \log n), O(1)\)
- **Hybrid 3**: \(O(n), O(\log \log n)\)
Is there an $\langle O(n), O(1) \rangle$ solution to RMQ?

Yes!
Next Time

- **Cartesian Trees**
 - A data structure closely related to RMQ.

- **The Method of Four Russians**
 - A technique for shaving off log factors.

- **The Fischer-Heun Structure**
 - A deceptively simple, asymptotically optimal RMQ structure.