Range Minimum Queries
Part Two
Recap from Last Time
The RMQ Problem

- The **Range Minimum Query (RMQ)** problem is the following:

 Given a fixed array A and two indices $i \leq j$, what is the smallest element out of $A[i], A[i + 1], \ldots, A[j - 1], A[j]$?
Why do we even care?
Lowest Common Ancestors
Lowest Common Ancestors

This is called an *Euler tour* of the tree. Euler tours have all sorts of nice properties. Depending on what topics we explore, we might see some more of them later in the quarter.
Lowest Common Ancestors

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>C</th>
<th>B</th>
<th>A</th>
<th>D</th>
<th>E</th>
<th>E</th>
<th>D</th>
<th>F</th>
<th>F</th>
<th>D</th>
<th>A</th>
<th>G</th>
<th>G</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Lowest Common Ancestors

A

B

C

D

E

F

G

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>C</th>
<th>B</th>
<th>A</th>
<th>D</th>
<th>E</th>
<th>E</th>
<th>D</th>
<th>F</th>
<th>F</th>
<th>D</th>
<th>A</th>
<th>G</th>
<th>G</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Lowest Common Ancestors

A

B

C

D

E

F

G

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>C</th>
<th>B</th>
<th>A</th>
<th>D</th>
<th>E</th>
<th>E</th>
<th>D</th>
<th>F</th>
<th>F</th>
<th>D</th>
<th>A</th>
<th>G</th>
<th>G</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Lowest Common Ancestors
Solutions to RMQ can be used to create fast solutions to LCA.

We'll use this fact next week!
A Notational Recap
Some Notation

- We'll say that an RMQ data structure has time complexity $\langle p(n), q(n) \rangle$ if
 - preprocessing takes time at most $p(n)$ and
 - queries take time at most $q(n)$.
- Last time, we saw structures with the following runtimes:
 - $\langle O(n^2), O(1) \rangle$ (full preprocessing)
 - $\langle O(n \log n), O(1) \rangle$ (sparse table)
 - $\langle O(n \log \log n), O(1) \rangle$ (hybrid approach)
 - $\langle O(n), O(n^{1/2}) \rangle$ (blocking)
 - $\langle O(n), O(\log n) \rangle$ (hybrid approach)
 - $\langle O(n), O(\log \log n) \rangle$ (hybrid approach)
Blocking Revisited
Blocking Revisited

This is just RMQ on the block minima!
This is just RMQ inside the blocks!
The Framework

• Suppose we use a \((p_1(n), q_1(n))\)-time RMQ solution for the block minimums and a \((p_2(n), q_2(n))\)-time RMQ solution within each block.

• Let the block size be \(b\).

• In the hybrid structure, the preprocessing time is

\[
O(n + p_1(n / b) + (n / b) p_2(b))
\]

• The query time is

\[
O(q_1(n / b) + q_2(b))
\]
A Useful Observation

- Sparse tables can be constructed in time $O(n \log n)$.

- If we use a sparse table as a top structure, construction time is $O((n / b) \log n)$.
 - See last lecture for the math on this.

- **Cute trick:** If we choose $b = \Theta(\log n)$, then the construction time is $O(n)$.
Is there an $O(n), O(1)$ solution to RMQ?

Yes!
New Stuff!
An Observation
The Limits of Hybrids

- The preprocessing time on a hybrid structure is $O(n + p_1(n / b) + (n / b) p_2(b))$

- The query time is $O(q_1(n / b) + q_2(b))$

- To build an $\langle O(n), O(1) \rangle$ hybrid, we need to have $p_2(n) = O(n)$ and $q_2(n) = O(1)$.

- We can't build an optimal solution with the hybrid approach unless we already have one!

- Or can we?
The Limits of Hybrids

The preprocessing time on a hybrid structure is

\[O(n + p_1(n / b) + \left(n / b \right) p_2(b)) \]

The query time is

\[O(q_1(n / b) + q_2(b)) \]

To build an \(\langle O(n), O(1) \rangle \) hybrid, we need to have \(p_2(n) = O(n) \) and \(q_2(n) = O(1) \).

We can't build an optimal solution with the hybrid approach unless we already have one!

Or can we?
The Limits of Hybrids

The preprocessing time on a hybrid structure is

\[O(n + p_1(n / b) + (n / b) p_2(b)) \]

The query time is

\[O(q_1(n / b) + q_2(b)) \]

To build an \(O(n), O(1) \) hybrid, we need to have \(p_2(n) = O(n) \) and \(q_2(n) = O(1) \).

We can't build an optimal solution with the hybrid approach unless we already have one!

Or can we?

This term comes from the cost of building \(O(n / b) \) RMQ structures, one per block of size \(b \).

Is this a tight bound?
A Key Difference

• Our original problem is
 \textbf{Solve RMQ on a single array in time }\langle O(n), O(1)\rangle

• The new problem is
 \textbf{Solve RMQ on a large number of small arrays with }O(1)\text{ query time and }\text{total preprocessing time }O(n)\text{.}

• These are not the same problem.

• \textbf{Question: }Why is this second problem any easier than the first?
An Observation

<table>
<thead>
<tr>
<th>10</th>
<th>30</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>361</td>
<td>261</td>
<td>464</td>
</tr>
</tbody>
</table>
An Observation

<table>
<thead>
<tr>
<th>10</th>
<th>30</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
</table>

| 166 | 361 | 261 | 464 |
An Observation
An Observation

<table>
<thead>
<tr>
<th>10</th>
<th>30</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>361</td>
<td>261</td>
<td>464</td>
</tr>
</tbody>
</table>
An Observation
An Observation
An Observation

10 30 20 40

166 361 261 464
An Observation
An Observation

10 30 20 40

166 361 261 464
An Observation

Claim: The indices of the answers to any range minimum queries on these two arrays are the same.
Modifying RMQ

• From this point forward, let's have $\text{RMQ}_A(i, j)$ denote the index of the minimum value in the range rather than the value itself.

• Observation: If RMQ structures return indices rather than values, we can use a single RMQ structure for both of these arrays:

<table>
<thead>
<tr>
<th>10</th>
<th>30</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>361</td>
<td>261</td>
<td>464</td>
</tr>
</tbody>
</table>
Some Notation

• Let B_1 and B_2 be blocks of length b.

• We'll say that B_1 and B_2 have the same block type (denoted $B_1 \sim B_2$) if the following holds:

$$\text{For all } 0 \leq i \leq j < b:\ \text{RMQ}_{B_1}(i, j) = \text{RMQ}_{B_2}(i, j)$$

• Intuitively, the RMQ answers for B_1 are always the same as the RMQ answers for B_2.

• If we build an RMQ to answer queries on some block B_1, we can reuse that RMQ structure on some other block B_2 iff $B_1 \sim B_2$.

Where We're Going

| 31 | 41 | 59 | 26 | 53 | 58 | 97 | 23 | 93 | 84 | 62 | 64 | 33 | 83 | 27 |
Where We're Going

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27
Where We're Going

| 31 | 41 | 59 | 26 | 53 | 58 | 97 | 23 | 93 | 84 | 62 | 64 | 33 | 83 | 27 |
Where We're Going
Where We're Going

RMQ Structure

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27
Where We're Going

RMQ Structure

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27
Where We're Going

RMQ Structure

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27
We don't need to build a new RMQ structure for this block – we already have one that will work!
Where We're Going

RMQ Structure

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27
Where We're Going

RMQ Structure

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27
Where We're Going

RMQ Structure

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27
Where We're Going

RMQ Structure

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27
Where We're Going

RMQ Structure

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27
Where We're Going
Now, the details!
Detecting Block Types

• For this approach to work, we need to be able to check whether two blocks have the same block type.

• **Problem:** Our formal definition of $B_1 \sim B_2$ is defined in terms of RMQ.
 • Not particularly useful *a priori*; we don't want to have to compute RMQ structures on B_1 and B_2 to decide whether they have the same block type!

• Is there a simpler way to determine whether two blocks have the same type?
An Initial Idea

- Since the elements of the array are ordered and we're looking for the smallest value in certain ranges, we might look at the permutation types of the blocks.

<table>
<thead>
<tr>
<th>31</th>
<th>41</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td>66</td>
<td>73</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>72</td>
<td>99</td>
<td>27</td>
</tr>
</tbody>
</table>
An Initial Idea

- Since the elements of the array are ordered and we're looking for the smallest value in certain ranges, we might look at the permutation types of the blocks.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>16</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>5</td>
<td>66</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>28</td>
<td>60</td>
<td>22</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>66</td>
<td>73</td>
<td>84</td>
<td>72</td>
<td>99</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
An Initial Idea

- Since the elements of the array are ordered and we're looking for the smallest value in certain ranges, we might look at the permutation types of the blocks.

- **Claim:** If B_1 and B_2 have the same permutation on their elements, then $B_1 \sim B_2$.
Some Problems

- There are two main problems with this approach.
- **Problem One:** It's possible for two blocks to have different permutations but the same block type.
Some Problems

• There are two main problems with this approach.

• **Problem One:** It's possible for two blocks to have different permutations but the same block type.

• All three of these blocks have the same block type but different permutation types:

```
<table>
<thead>
<tr>
<th>261</th>
<th>268</th>
<th>161</th>
<th>167</th>
<th>166</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>167</th>
<th>261</th>
<th>161</th>
<th>268</th>
<th>166</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>166</th>
<th>268</th>
<th>161</th>
<th>261</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
```
Some Problems

- There are two main problems with this approach.

 Problem One: It's possible for two blocks to have different permutations but the same block type.

 All three of these blocks have the same block type but different permutation types:

<table>
<thead>
<tr>
<th>261</th>
<th>268</th>
<th>161</th>
<th>167</th>
<th>166</th>
<th>167</th>
<th>261</th>
<th>161</th>
<th>268</th>
<th>166</th>
<th>166</th>
<th>268</th>
<th>161</th>
<th>261</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

 Problem Two: The number of possible permutations of a block is $b!$.

 - b has to be absolutely minuscule for $b!$ to be small.
Some Problems

- There are two main problems with this approach.

- **Problem One:** It's possible for two blocks to have different permutations but the same block type.

- All three of these blocks have the same block type but different permutation types:

<table>
<thead>
<tr>
<th>261</th>
<th>268</th>
<th>161</th>
<th>167</th>
<th>166</th>
<th>167</th>
<th>261</th>
<th>161</th>
<th>268</th>
<th>166</th>
<th>166</th>
<th>268</th>
<th>161</th>
<th>261</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

- **Problem Two:** The number of possible permutations of a block is \(b! \).
 - \(b \) has to be absolutely minuscule for \(b! \) to be small.
- Is there a better criterion we can use?
An Observation

- **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.
An Observation

• **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.
An Observation

• **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.
An Observation

- **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.
An Observation

- **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.
An Observation

- **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.
An Observation

• **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.
An Observation

• **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.

- 261 268 161 167 166
- 6 5 3 9 7
- 14 22 11 43 35
An Observation

• **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.

• **Claim:** This property must hold recursively on the subarrays to the left and right of the minimum.
An Observation

- **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.

- **Claim:** This property must hold recursively on the subarrays to the left and right of the minimum.
An Observation

• **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.

• **Claim:** This property must hold recursively on the subarrays to the left and right of the minimum.

```
261 268 161 167 166
```

```
6  5  3  9  7
```

```
14 22 11 43 35
```
An Observation

- **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.

- **Claim:** This property must hold recursively on the subarrays to the left and right of the minimum.
An Observation

- **Claim**: If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.

- **Claim**: This property must hold recursively on the subarrays to the left and right of the minimum.
An Observation

- **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.

- **Claim:** This property must hold recursively on the subarrays to the left and right of the minimum.
An Observation

• **Claim:** If $B_1 \sim B_2$, the minimum elements of B_1 and B_2 must occur at the same position.

- $261 \quad 268 \quad 161 \quad 167 \quad 166$

• **Claim:** This property must hold recursively on the subarrays to the left and right of the minimum.

- $14 \quad 22 \quad 11 \quad 43 \quad 35$
Cartesian Trees

- A **Cartesian tree** is a binary tree derived from an array and defined as follows:
 - The empty array has an empty Cartesian tree.
 - For a nonempty array, the root stores the index of the minimum value. Its left and right children are Cartesian trees for the subarrays to the left and right of the minimum.
Theorem: Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.
Cartesian Trees and RMQ

- **Theorem:** Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

- **Proof sketch:**
 - (\Rightarrow) Induction. B_1 and B_2 have equal RMQs, so corresponding ranges have the same minima.
Cartesian Trees and RMQ

- **Theorem:** Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

- **Proof sketch:**
 - (\Rightarrow) Induction. B_1 and B_2 have equal RMQs, so corresponding ranges have the same minima.
Theorem: Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

Proof sketch:

- (\Rightarrow) Induction. B_1 and B_2 have equal RMQs, so corresponding ranges have the same minima.
Cartesian Trees and RMQ

- **Theorem:** Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

- **Proof sketch:**
 - (\Rightarrow) Induction. B_1 and B_2 have equal RMQs, so corresponding ranges have the same minima.
Cartesian Trees and RMQ

- **Theorem:** Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

- **Proof sketch:**
 - (\Rightarrow) Induction. B_1 and B_2 have equal RMQs, so corresponding ranges have the same minima.
Cartesian Trees and RMQ

- **Theorem:** Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

- **Proof sketch:**
 - (⇒) Induction. B_1 and B_2 have equal RMQs, so corresponding ranges have the same minima.
Cartesian Trees and RMQ

- **Theorem:** Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

- **Proof sketch:**
 - (\Rightarrow) Induction. B_1 and B_2 have equal RMQs, so corresponding ranges have the same minima.
Cartesian Trees and RMQ

- **Theorem:** Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

- **Proof sketch:**
 - (\Leftarrow) Induction. It's possible to answer RMQ using a recursive walk on the Cartesian tree.
Cartesian Trees and RMQ

- **Theorem:** Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

- **Proof sketch:**
 - (\Rightarrow) Induction. It's possible to answer RMQ using a recursive walk on the Cartesian tree.
Cartesian Trees and RMQ

- **Theorem:** Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

- **Proof sketch:**
 - (\Leftarrow) Induction. It's possible to answer RMQ using a recursive walk on the Cartesian tree.
Cartesian Trees and RMQ

- **Theorem:** Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

- **Proof sketch:**
 - (\Leftarrow) Induction. It's possible to answer RMQ using a recursive walk on the Cartesian tree.
Cartesian Trees and RMQ

- **Theorem:** Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

- **Proof sketch:**
 - (\Rightarrow) Induction. It's possible to answer RMQ using a recursive walk on the Cartesian tree.
Theorem: Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

Proof sketch:

\Rightarrow Induction. It's possible to answer RMQ using a recursive walk on the Cartesian tree.
Theorem: Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

Proof sketch:

(\Leftarrow) Induction. It's possible to answer RMQ using a recursive walk on the Cartesian tree.
Theorem: Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

Proof sketch:

- (\Rightarrow) Induction. It's possible to answer RMQ using a recursive walk on the Cartesian tree.
Theorem: Let B_1 and B_2 be blocks of length b. Then $B_1 \sim B_2$ iff B_1 and B_2 have equal Cartesian trees.

Proof sketch:

- (\Rightarrow) Induction. It's possible to answer RMQ using a recursive walk on the Cartesian tree.
Building Cartesian Trees

• The previous theorem lets us check whether $B_1 \sim B_2$ by testing whether they have the same Cartesian tree.

• How efficiently can we actually build these trees?
Building Cartesian Trees

• Here's a naïve algorithm for constructing Cartesian trees:
 • Find the minimum value.
 • Recursively build a Cartesian tree for the array to the left of the minimum.
 • Recursively build a Cartesian tree with the elements to the right of the minimum.
 • Return the overall tree.

• How efficient is this approach?
Building Cartesian Trees

- This algorithm works by
 - doing a linear scan over the array,
 - identifying the minimum at whatever position it occupies, then
 - recursively processing the left and right halves on the array.
- Similar to the recursion in quicksort: it depends on where the minima are.
 - Always get good splits: $\Theta(n \log n)$.
 - Always get bad splits: $\Theta(n^2)$.
- We're going to need to be faster than this.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.
- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- *High-level idea:* Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

High-level idea: Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

 High-level idea: Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.

 ![Cartesian tree example]

 Observation 1: This new node cannot end up as the left child of any node in the tree.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.
- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.

Observation 2: This new node will end up on the right spine of the tree.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.
- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.

Observation 3: Cartesian trees are min-heaps with respect to the elements in the original array.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.

![Cartesian tree diagram]
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.
- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- **High-level idea**: Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.
- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.
- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- *High-level idea:* Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Better Approach

- It turns out that it's possible to build a Cartesian tree over an array of length k in time $O(k)$.

- **High-level idea:** Build a Cartesian tree for the first element, then the first two, then the first three, then the first four, etc.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.

- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or `null` if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or `null` if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.

- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or `null` if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or `null` if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.

- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node’s left child to be the last value popped (or `null` if nothing was popped).
 - Set the new node’s parent to be the top node on the stack (or `null` if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.

- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or `null` if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or `null` if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.

- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.

- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or `null` if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or `null` if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.

- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or `null` if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or `null` if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.

- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or `null` if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or `null` if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.

To insert a new node:

- Pop the stack until it's empty or the top node has a lower value than the current value.
- Set the new node's left child to be the last value popped (or null if nothing was popped).
- Set the new node's parent to be the top node on the stack (or null if the stack is empty).
- Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.

- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or `null` if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or `null` if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or `null` if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or `null` if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or \texttt{null} if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or \texttt{null} if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.
- To insert a new node:
 - Pop the stack until it's empty or the top node has a lower value than the current value.
 - Set the new node's left child to be the last value popped (or null if nothing was popped).
 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).
 - Push the new node onto the stack.
A Stack-Based Algorithm

- Maintain a stack of the nodes on the right spine of the tree.

- To insert a new node:

 - Pop the stack until it's empty or the top node has a lower value than the current value.

 - Set the new node's left child to be the last value popped (or null if nothing was popped).

 - Set the new node's parent to be the top node on the stack (or null if the stack is empty).

 - Push the new node onto the stack.
Analyzing the Runtime

- Adding in another node to the Cartesian tree might take time $O(n)$, since we might have to pop everything off the stack.
- Since there are n nodes to add, the runtime of this approach is $O(n^2)$.

Claim: This is a weak bound! The runtime is actually $\Theta(n)$.

Proof: Work done per node is directly proportional to the number of stack operations performed when that node was processed.

- Total number of stack operations is at most $2n$.
 - Every node is pushed once.
 - Every node is popped at most once.
- Total runtime is therefore $\Theta(n)$.
Time-Out for Announcements!
WICS PRESENT:

WiCS Info Session

Sunday, April 3
8:00-8:30pm @ Old Union 216

Interested in getting involved with Women in Computer Science? Want to hear more about WiCS Executive Board positions and structure? Come to our Info Session on Sunday to hear more! We will be releasing applications for exec positions after the session, and although attendance isn’t mandatory to apply, it’s highly encouraged! Dessert and tea provided.
Problem Set One

- Problem Set One goes out today. It's due next Thursday (April 7) at the start of class (3:00PM).
 - Explore the theory behind RMQ!
 - Implement what you're seeing here!
- **Start early!** There aren't many problems, but you definitely don't want to have to figure everything out last-minute.
Problem Set Logistics

• We will be using GradeScope for assignment submissions this quarter.
• To use it, visit the GradeScope website and use the code

\textbf{93DENM}

\textbf{to register for CS166.}

• \textbf{No hardcopy assignments will be accepted.} We're using GradeScope to track due dates and as a gradebook.
Problem Set Logistics

• You're welcome to work on this problem set individually or in a pair.

• If you work in a pair, just submit a single, joint problem set. You'll receive the same grade as your partner.

• Each assignment is independent, so feel free to work individually on one, then in a pair on the next, then in a different pair, etc.
Honor Code

- This probably isn't a surprise, but we take the Honor Code seriously in this class.
- Please review Handout #04 for our policies with regards to the Honor Code as applied to CS166.
Back to CS166!
The Story So Far

- Our high-level idea is to use the hybrid framework, but to avoid rebuilding RMQ structures for blocks when they've already been computed.

- Since we can build Cartesian trees in linear time, we can test if two blocks have the same type in linear time.

- **Goal:** Choose a block size that's small enough that there are duplicated blocks, but large enough that the top-level RMQ can be computed efficiently.

- So how many Cartesian trees are there?
Theorem: The number of Cartesian trees for an array of length b is at most 4^b.

In case you're curious, the actual number is

$$\frac{1}{b+1} \binom{2b}{b},$$

which is roughly equal to

$$\frac{4^b}{b^{3/2} \sqrt{\pi}}.$$

*Look up the **Catalan numbers** for more information!*
Proof Approach

- Our stack-based algorithm for generating Cartesian trees is capable of producing a Cartesian tree for every possible input array.
- Therefore, if we can count the number of possible executions of that algorithm, we can count the number of Cartesian trees.
- Using a simple counting scheme, we can show that there are at most 4^b possible executions.
The Insight

- **Claim:** The Cartesian tree produced by the stack-based algorithm is uniquely determined by the sequence of pushes and pops made on the stack.

- There are at most $2b$ stack operations during the execution of the algorithm: b pushes and no more than b pops.

- Can represent the execution as a $2b$-bit number, where 1 means “push” and 0 means “pop.” We'll pad the end with 0's (pretend we pop everything from the stack.)
 - We'll call this number the **Cartesian tree number** of a particular block.

- There are at most $2^{2b} = 4^b$ possible $2b$-bit numbers, so there are at most 4^b possible Cartesian trees.
Cartesian Tree Numbers

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>45</td>
<td>16</td>
<td>18</td>
<td>9</td>
<td>33</td>
</tr>
</tbody>
</table>
Cartesian Tree Numbers
Cartesian Tree Numbers

32

[Diagram of tree with numbers 32, 45, 16, 18, 9, 33]
Cartesian Tree Numbers

32 45 16 18 9 33
Cartesian Tree Numbers

32

32

32 45 16 18 9 33

1
Cartesian Tree Numbers

32

32 45 16 18 9 33

1
Cartesian Tree Numbers

32

45

32

32

45

32

32

45

32 45 16 18 9 33

1
Cartesian Tree Numbers

32

45

32

16 18 9 33

1
Cartesian Tree Numbers
Cartesian Tree Numbers

32 45

32

45

32 45 16 18 9 33

1 1
Cartesian Tree Numbers

32 45
|
32 45
|
32 45
|
16

32 45 16 18 9 33

1 1
Cartesian Tree Numbers

32

16

32

45

32

16

18

9

33

1

1

0
Cartesian Tree Numbers

32 45 16 18 9 33

1 1 0 0
Cartesian Tree Numbers

32 45 16 18 9 33
Cartesian Tree Numbers

32 45 16 18 9 33

1 1 0 0 1
Cartesian Tree Numbers
Cartesian Tree Numbers
Cartesian Tree Numbers
Cartesian Tree Numbers

32 45 16 18 9 33

1 1 0 0 1 1
Cartesian Tree Numbers

32 45 16 18

32 45 16 18 9 33

1 1 0 0 1 1
Cartesian Tree Numbers

```
|   32 | 45 | 16 | 18 | 9  | 33 |
```

```
1 1 0 0 1 1
```
Cartesian Tree Numbers

32 45 16 18 9 33

1 1 0 0 1 1 0
Cartesian Tree Numbers
Cartesian Tree Numbers

32 45 16 18 9 33

1 1 0 0 1 1 0 0
Cartesian Tree Numbers
Cartesian Tree Numbers
Cartesian Tree Numbers

32 45 16 18 9 33

1 1 0 0 1 1 0 0 1
Cartesian Tree Numbers
Cartesian Tree Numbers
Cartesian Tree Numbers

32 45 16 18 9 33

1 1 0 0 1 1 0 0 1 1 0
Cartesian Tree Numbers

32 45 16 18 9 33

1 1 0 0 1 1 0 0 1 1 0 0
Cartesian Tree Numbers

32 45 16 18 9 33
One Last Observation

- **Recall:** Our goal is to be able to detect when two blocks have the same type so that we can share RMQ structures between them.
- We've seen that two blocks have the same type if and only if they have the same Cartesian tree.
- Using the connection between Cartesian trees and Cartesian tree numbers, we can see that we don't actually have to build any Cartesian trees!
- We can just compute the Cartesian tree number of each block and use those numbers to test for block equivalence.
Cartesian Tree Numbers
Cartesian Tree Numbers

| 27 | 18 | 28 | 18 | 28 | 45 | 90 | 45 | 23 | 53 | 60 | 28 | 74 | 71 | 35 |

↑
Cartesian Tree Numbers

| 27 | 18 | 28 | 18 | 28 | 45 | 90 | 45 | 23 | 53 | 60 | 28 | 74 | 71 | 35 |

1

27
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1

27
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

18

1 0 1
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

↑

18

1 0 1
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1
Cartesian Tree Numbers
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

18

1 0 1 1 0
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1

18 18
Cartesian Tree Numbers
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1
Cartesian Tree Numbers
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

18 18 28 45 90

1 0 1 1 0 1 1 1 1
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 0
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 0 1

18 18 28 45 45
Cartesian Tree Numbers

<table>
<thead>
<tr>
<th>27</th>
<th>18</th>
<th>28</th>
<th>18</th>
<th>28</th>
<th>45</th>
<th>90</th>
<th>45</th>
<th>23</th>
<th>53</th>
<th>60</th>
<th>28</th>
<th>74</th>
<th>71</th>
<th>35</th>
</tr>
</thead>
</table>

1011101111101
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 0 1 0
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 0 1 0 0
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 0 1 0 0 0
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 0 1 0 0 0 1

18 18 23
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 0 1 0 0 0 1
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

18 18 23 53

1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

18 18 23 53 60

1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1
Cartesian Tree Numbers
Cartesian Tree Numbers
Cartesian Tree Numbers
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

18 18 23 28

101101111101000011110001
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

18 18 23 28

1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1
Cartesian Tree Numbers

```
27 18 28 18 28 45 90 45 23 53 60 28 74 71 35
```

```
1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1
```
Cartesian Tree Numbers
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

18 18 23 28

1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0
Cartesian Tree Numbers

<table>
<thead>
<tr>
<th>27</th>
<th>18</th>
<th>28</th>
<th>18</th>
<th>28</th>
<th>45</th>
<th>90</th>
<th>45</th>
<th>23</th>
<th>53</th>
<th>60</th>
<th>28</th>
<th>74</th>
<th>71</th>
<th>35</th>
</tr>
</thead>
</table>

| 18 | 18 | 23 | 28 | 35 |

| 101101111101000111001110101 |
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0
Cartesian Tree Numbers

<p>| | | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>18</td>
<td>28</td>
<td>18</td>
<td>28</td>
<td>45</td>
<td>90</td>
<td>45</td>
<td>23</td>
<td>53</td>
<td>60</td>
<td>28</td>
<td>74</td>
<td>71</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0

18
18
23

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0 0
Cartesian Tree Numbers

<table>
<thead>
<tr>
<th>27</th>
<th>18</th>
<th>28</th>
<th>18</th>
<th>28</th>
<th>45</th>
<th>90</th>
<th>45</th>
<th>23</th>
<th>53</th>
<th>60</th>
<th>28</th>
<th>74</th>
<th>71</th>
<th>35</th>
</tr>
</thead>
</table>

Binary Encoding:

![Binary Encoding](image)
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0
Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0
Cartesian Tree Numbers

| 27 | 18 | 28 | 18 | 28 | 45 | 90 | 45 | 23 | 53 | 60 | 28 | 74 | 71 | 35 |

```
1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0
```
Finishing Things Up

- Using the previous algorithm, we can compute the Cartesian tree number of a block in time $O(b)$ and without actually building the tree.
- We now have a simple and efficient linear-time algorithm for testing whether two blocks have the same block type.
- And, we bounded the number of Cartesian trees at 4^b using this setup!
The Fischer-Heun Structure

- In 2005, Fischer and Heun introduced a (slight variation on) the following RMQ data structure.
- Use a hybrid approach with block size b (we'll choose b later), a sparse table as a top RMQ structure, and the full precomputation data structure for the blocks.
- However, make the following modifications:
 - Make a table of length 4^b storing pointers to RMQ structures. The index corresponds to the Cartesian tree number. Initially, the array is empty.
 - When computing the RMQ for a particular block, first compute its Cartesian tree number t.
 - If there's an RMQ structure for t in the array, use it.
 - Otherwise, compute the RMQ structure for the current block, store it in the array and index t, then use it.
Fischer-Heun, Schematically

<table>
<thead>
<tr>
<th>31</th>
<th>41</th>
<th>59</th>
<th>26</th>
<th>53</th>
<th>58</th>
<th>97</th>
<th>23</th>
<th>93</th>
<th>84</th>
<th>62</th>
<th>64</th>
<th>33</th>
<th>83</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
<td>58</td>
<td>97</td>
<td>23</td>
<td>93</td>
<td>84</td>
<td>62</td>
<td>64</td>
<td>33</td>
<td>83</td>
<td>27</td>
</tr>
</tbody>
</table>

\[\langle O(n^2), O(1) \rangle \]
RMQ Structure

\[\langle O(n \log n), O(1) \rangle \]
What's the query time on this structure?
What's the query time on this structure?

Answer: $O(1)$
What's the preprocessing time for this structure if the block size is b?

\[
\langle O(n^2), O(1) \rangle
\]

\[
\langle O(n \log n), O(1) \rangle
\]
What's the preprocessing time for this structure if the block size is b?

$O(n)$ time to compute block minima.
What's the preprocessing time for this structure if the block size is b?

- $O(n)$ time to compute block minima.
- $O((n / b) \log n)$ time to build the sparse table.
What's the preprocessing time for this structure if the block size is \(b \)?

\[
O(n) \text{ time to compute block minima.}
\]

\[
O\left(\frac{n}{b} \log n\right) \text{ time to build the sparse table.}
\]

\[
O(b^2) \text{ per smaller RMQ structure, of which at most } 4^b \text{ are built.}
\]
What's the preprocessing time for this structure if the block size is \(b \)?

\[
O(n) \text{ time to compute block minima.}
\]

\[
O((n / b) \log n) \text{ time to build the sparse table.}
\]

\[
O(b^2) \text{ per smaller RMQ structure, of which at most } 4^b \text{ are built.}
\]

Total: \(O(n + (n / b) \log n + 4^b b^2) \)
The Finishing Touches

• The runtime is

\[O(n + (n / b) \log n + 4^b b^2) \]

• As we saw earlier, if we set \(b = \Theta(\log n) \), then

\[(n / b) \log n = O(n) \]

• Suppose we set \(b = \log_4 (n^{1/2}) = \frac{1}{4} \log_2 n \). Then

\[4^b b^2 = n^{1/2} (\log_2 n)^2 = o(n) \]

• With \(b = \frac{1}{4} \log_2 n \), the preprocessing time is

\[O(n + n + n^{1/2} (\log n)^2) = O(n) \]

• We finally have an \(\langle O(n), O(1) \rangle \) RMQ solution!
Practical Concerns

- This structure is actually reasonably efficient; preprocessing is relatively fast.
- In practice, the \(O(n), O(\log n)\) hybrid we talked about last time is a bit faster.
 - Constant factor in the Fischer-Heun's O(n) preprocessing is a bit higher.
 - Constant factor in the hybrid approach's O(n) and O(\log n) are very low.
- Check the Fischer-Heun paper for details.
Wait a Minute...

- This approach assumes that the Cartesian tree numbers will fit into individual machine words!
- If $b = \frac{1}{4} \log_2 n$, then each Cartesian tree number will have $\frac{1}{2} \log_2 n$ bits.
- Cartesian tree numbers will fit into a machine word if n fits into a machine word.
- In the *transdichotomous machine model*, we assume the problem size always fits into a machine word.
 - Reasonable – think about how real computers work.
 - So there's nothing to worry about.
The Method of Four Russians

- The technique employed here is an example of the *Method of Four Russians*.

- Idea:
 - Split the input apart into blocks of size $\Theta(\log n)$.
 - Using the fact that there can only be polynomially many different blocks of size $\Theta(\log n)$, precompute all possible answers for each possible block and store them for later use.
 - Combine the results together using a top-level structure on an input of size $\Theta(n / \log n)$.

- This technique is used frequently to shave log factors off of runtimes.
Why Study RMQ?

• I chose RMQ as our first problem for a few reasons:
 • *See different approaches to the same problem.* Different intuitions produced different runtimes.
 • *Build data structures out of other data structures.* Many modern data structures use other data structures as building blocks, and it's very evident here.
 • *See the Method of Four Russians.* This trick looks like magic the first few times you see it and shows up in lots of places.
 • *Explore modern data structures.* This is relatively recent data structure (2005), and I wanted to show you that the field is still very active!

• So what's next?
Next Time

- **Tries**
 - A powerful and versatile data structure for sets of strings.

- **Substring Searching**
 - Challenges in implementing `.indexOf`.

- **The Aho-Corasick Algorithm**
 - A linear-time substring search algorithm that doubles as a data structure!