Balanced Trees
Part One
Balanced Trees

- Balanced search trees are among the most useful and versatile data structures.
- Many programming languages ship with a balanced tree library.
 - C++: `std::map` / `std::set`
 - Java: `TreeMap` / `TreeSet`
- Many advanced data structures are layered on top of balanced trees.
 - We’ll see several later in the quarter!
Where We're Going

- **B-Trees (Today)**
 - A simple type of balanced tree developed for block storage.

- **Red/Black Trees (Today/Thursday)**
 - The canonical balanced binary search tree.

- **Augmented Search Trees (Thursday)**
 - Adding extra information to balanced trees to supercharge the data structure.
Outline for Today

- **BST Review**
 - Refresher on basic BST concepts and runtimes.
- **Overview of Red/Black Trees**
 - What we're building toward.
- **B-Trees and 2-3-4 Trees**
 - Simple balanced trees, in depth.
- **Intuiting Red/Black Trees**
 - A much better feel for red/black trees.
A Quick BST Review
A *binary search tree* is a binary tree with the following properties:

- Each node in the BST stores a *key*, and optionally, some auxiliary information.
- The key of every node in a BST is strictly greater than all keys to its left and strictly smaller than all keys to its right.
Binary Search Trees

- The **height** of a binary search tree is the length of the longest path from the root to a leaf, measured in the number of edges.
 - A tree with one node has height 0.
 - A tree with no nodes has height -1, by convention.
Searching a BST

```
          137
         /   \
        73    271
       /     /   \
      42    161  314
     /     /   /   \    \
    60   161  314
```
Inserting into a BST
Inserting into a BST
Deleting from a BST

Delete 60 from this tree, then 73, and then 137.

Discuss with your neighbor!
Deleting from a BST

Case 0: If the node has just no children, just remove it.
Deleting from a BST

Case 1: If the node has just one child, remove it and replace it with its child.
Deleting from a BST

Case 2: If the node has two children, find its inorder successor (which has zero or one child), replace the node's key with its successor's key, then delete its successor.
Runtime Analysis

• The time complexity of all these operations is $O(h)$, where h is the height of the tree.
 • That’s the longest path we can take.
• In the best case, $h = O(\log n)$ and all operations take time $O(\log n)$.
• In the worst case, $h = \Theta(n)$ and some operations will take time $\Theta(n)$.
• **Challenge:** How do you efficiently keep the height of a tree low?
A Glimpse of Red/Black Trees
Red/Black Trees

- A **red/black tree** is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
Red/Black Trees

- A **red/black tree** is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
Red/Black Trees

- A **red/black tree** is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
A **red/black tree** is a BST with the following properties:

- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.
Red/Black Trees

- A **red/black tree** is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
Red/Black Trees

- **Theorem:** Any red/black tree with \(n \) nodes has height \(O(\log n) \).
 - We could prove this now, but there's a much simpler proof of this we'll see later on.
- Given a fixed red/black tree, lookups can be done in time \(O(\log n) \).
Mutating Red/Black Trees
Mutating Red/Black Trees

What are we supposed to do with this new node?
Mutating Red/Black Trees
Mutating Red/Black Trees

How do we fix up the black-height property?
Fixing Up Red/Black Trees

- **The Good News:** After doing an insertion or deletion, we can locally modify a red/black tree in time $O(\log n)$ to fix up the red/black properties.

- **The Bad News:** There are a lot of cases to consider and they're not trivial.

Some questions:

- How do you memorize / remember all the rules for fixing up the tree?
- How on earth did anyone come up with red/black trees in the first place?
B-Trees
Generalizing BSTs

- In a binary search tree, each node stores a single key.
- That key splits the "key space" into two pieces, and each subtree stores the keys in those halves.
Generalizing BSTs

- In a *multiway search tree*, each node stores an arbitrary number of keys in sorted order.
- A node with k keys splits the key space into $k+1$ regions, with subtrees for keys in each region.

(-∞, 0) (0, 3) (3, 5) (5, +∞)
Generalizing BSTs

- In a *multiway search tree*, each node stores an arbitrary number of keys in sorted order.

- Surprisingly, it’s a bit easier to build a balanced multiway tree than it is to build a balanced BST. Let’s see how.
Balanced Multiway Trees

• In some sense, building a balanced multiway tree isn’t all that hard.

• We can always just cram more keys into a single node!

• At a certain point, this stops being a good idea – it’s basically just a sorted array. What does “balance” even mean here?
Balanced Multiway Trees

- What could we do if our nodes get too big?
 - **Option 1:** Push the new key down into its own node.
 - **Option 2:** Split big nodes in half, kicking the middle key up.

- Assume that, during an insertion, we add keys to the deepest node possible.

- How do these options compare?

Try this out, and discuss with your neighbor!
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

```plaintext
10  99  50  20  40  30  31  39  35  32  33  34
```
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

- **General idea:** Cap the maximum number of keys in a node. Add keys into leaves. Whenever a node gets too big, split it and kick one key higher up the tree.

- **Advantage 1:** The tree is always balanced.
- **Advantage 2:** Insertions and lookups are pretty fast.
Balanced Multiway Trees

- We currently have a *mechanical description* of how these balanced multiway trees work:
 - Cap the size of each node.
 - Add keys into leaves.
 - Split nodes when they get too big and propagate the splits upward.

- We currently don’t have an *operational definition* of how these balanced multiway trees work.
 - e.g. “A Cartesian tree for an array is a binary tree that’s a min-heap and whose inorder traversal gives back the original array.”
B-Trees

- A **B-tree of order b** is a multiway search tree where
 - each node has between \(b-1 \) and \(2b-1 \) keys, except the root, which may have between 1 and \(2b-1 \) keys;
 - each node is either a leaf or has one more child than key; and
 - all leaves are at the same depth.
- Different authors give different bounds on how many keys can be in each node. The ranges are often \([b-1, 2b-1]\) or \([b, 2b]\). For the purposes of today’s lecture, we’ll use the range \([b-1, 2b-1]\) for the key limits, just for simplicity.
Analyzing B-Trees
The Height of a B-Tree

- What is the maximum possible height of a B-tree of order b that holds n keys?

Intuition: The branching factor of the tree is at least b, so the number of keys per level grows exponentially in b. Therefore, we’d expect something along the lines of $O(\log_b n)$.
The Height of a B-Tree

- What is the maximum possible height of a B-tree of order b that holds n keys?

\[
\begin{align*}
1 & \\
2(b - 1) & 2b(b - 1) \\
2b^2(b - 1) & 2b^{h-1}(b - 1)
\end{align*}
\]
The Height of a B-Tree

• **Theorem:** The maximum height of a B-tree of order \(b \) containing \(n \) keys is \(O(\log_b n) \).

• **Proof:** Number of keys \(n \) in a B-tree of height \(h \) is guaranteed to be at least

\[
1 + 2(b - 1) + 2b(b - 1) + 2b^2(b - 1) + \ldots + 2b^{h-1}(b - 1)
\]

\[
= 1 + 2(b - 1)(1 + b + b^2 + \ldots + b^{h-1})
\]

\[
= 1 + 2(b - 1)((b^h - 1) / (b - 1))
\]

\[
= 1 + 2(b^h - 1) = 2b^h - 1.
\]

Solving \(n = 2b^h - 1 \) yields \(h = \log_b ((n + 1) / 2) \), so the height is \(O(\log_b n) \). \(\blacksquare \)
Analyzing Efficiency

• Suppose we have a B-tree of order \(b \).

• What is the worst-case runtime of looking up a key in the B-tree?

Formulate a hypothesis, and discuss with your neighbor!

😃
Analyzing Efficiency

- Suppose we have a B-tree of order \(b \).
- What is the worst-case runtime of looking up a key in the B-tree?
- \textbf{Answer:} It depends on how we do the search!
Analyzing Efficiency

To do a lookup in a B-tree, we need to determine which child tree to descend into.

This means we need to compare our query key against the keys in the node.

Question: How should we do this?
Analyzing Efficiency

- **Option 1:** Use a linear search!
- Cost per node: $O(b)$.
- Nodes visited: $O(\log_b n)$.
- Total cost:

 $O(b) \cdot O(\log_b n)$

 $= O(b \log_b n)$
Analyzing Efficiency

• **Option 2**: Use a binary search!

• Cost per node: $O(\log b)$.

• Nodes visited: $O(\log_b n)$.

• Total cost:

 \[
 O(\log b) \cdot O(\log_b n) \\
 = O(\log b \cdot \log_b n) \\
 = O(\log b \cdot (\log n) / (\log b)) \\
 = O(\log n).
 \]

Intuition: We can’t do better than $O(\log n)$ for arbitrary data, because it’s the information-theoretic minimum number of comparisons needed to find something in a sorted collection!
Analyzing Efficiency

- Suppose we have a B-tree of order b.
- What is the worst-case runtime of inserting a key into the B-tree?
- Each insertion visits $O(\log_b n)$ nodes, and in the worst case we have to split every node we see.

Answer: $O(b \log_b n)$.
Analyzing Efficiency

- The cost of an insertion in a B-tree of order b is $O(b \log_b n)$.

- What’s the best choice of b to use here?

- Note that

 \[
 b \log_b n = b (\log n / \log b) = (b / \log b) \log n.
 \]

- What choice of b minimizes $b / \log b$?

- **Answer:** Pick $b = e$. (Or rather, $b = \lfloor e \rfloor = 2$.)

Fun fact: This is the same time bound you’d get if you used a b-ary heap instead of a binary heap for a priority queue.
2-3-4 Trees

- A 2-3-4 tree is a B-tree of order 2. Specifically:
 - each node has between 1 and 3 keys;
 - each node is either a leaf or has one more child than key; and
 - all leaves are at the same depth.
- You actually saw this B-tree earlier! It’s the type of tree from our insertion example.
The Story So Far

- A B-tree supports
 - lookups in time $O(\log n)$, and
 - insertions in time $O(b \log_b n)$.

- Picking b to be around 2 or 3 makes this optimal in Theoryland.
 - The 2-3-4 tree is great for that reason.

- **Plot Twist:** In practice, you most often see choices of b like 1,024 or 4,096.

- **Question:** Why would anyone do that?
The Memory Hierarchy
Memory Tradeoffs

• There is an enormous tradeoff between speed and size in memory.

• SRAM (the stuff registers are made of) is fast but very expensive:
 • Can keep up with processor speeds in the GHz.
 • SRAM units can’t be easily combined together; increasing sizes require better nanofabrication techniques (difficult, expensive!)

• Hard disks are cheap but very slow:
 • As of 2021, you can buy a 4TB hard drive for about $70.
 • As of 2021, good disk seek times for magnetic drives are measured in ms (about two to four million times slower than a processor cycle!)
The Memory Hierarchy

• **Idea:** Try to get the best of all worlds by using multiple types of memory.

- **Registers**
 - 256B - 8KB
 - 0.25 - 1ns

- **L1 Cache**
 - 16KB - 64KB
 - 1ns - 5ns

- **L2 Cache**
 - 1MB - 4MB
 - 5ns - 25ns

- **Main Memory**
 - 4GB - 256GB
 - 25ns - 100ns

- **Hard Disk**
 - 1TB+
 - 3 - 10ms

- **Network (The Cloud)**
 - Lots
 - 10 - 2000ms

* in some data centers, it’s faster to store all data in RAM and access it over the network than to use magnetic disks!
External Data Structures

- Suppose you have a data set that’s *way* too big to fit in RAM.
- The data structure is on disk and read into RAM as needed.
- Data from disk doesn’t come back one *byte* at a time, but rather one *page* at a time.
- **Goal:** Minimize the number of disk reads and writes, not the number of instructions executed.

"Please give me 4KB starting at location addr1"

1101110010111011110001…

1101110010111011110001…
Analyzing B-Trees

• Suppose we tune b so that each node in the B-tree fits inside a single disk page.

• We only care about the number of disk pages read or written.
 • It’s so much slower than RAM that it’ll dominate the runtime.

• **Question:** What is the cost of a lookup in a B-tree in this model?
 • Answer: The height of the tree, $O(\log_b n)$.

• **Question:** What is the cost of inserting into a B-tree in this model?
 • Answer: The height of the tree, $O(\log_b n)$.
External Data Structures

- Because B-trees have a huge branching factor, they're great for on-disk storage.
 - Disk block reads/writes are slow compared to CPU operations.
 - The high branching factor minimizes the number of blocks to read during a lookup.
 - Extra work scanning inside a block offset by these savings.
- Major use cases for B-trees and their variants (B^+-trees, H-trees, etc.) include
 - databases (huge amount of data stored on disk);
 - file systems (ext4, NTFS, ReFS); and, recently,
 - in-memory data structures (due to cache effects).
Analyzing B-Trees

• The cost model we use will change our overall analysis.

• Cost is number of operations:
 \[O(\log n) \text{ per lookup, } O(b \log_b n) \text{ per insertion.} \]

• Cost is number of blocks accessed:
 \[O(\log_b n) \text{ per lookup, } O(\log_b n) \text{ per insertion.} \]

• Going forward, we’ll use operation counts as our cost model, though there’s a ton of research done on designing data structures that are optimal from a cache miss perspective!
The Story So Far

- We’ve just built a simple, elegant, balanced multiway tree structure.
- We can use them as balanced trees in main memory (2-3-4 trees).
- We can use them to store huge quantities of information on disk (B-trees).
- We’ve seen that different cost models are appropriate in different situations.
So... red/black trees?
A red/black tree is a BST with the following properties:

- Every node is either red or black.
- The root is black.
- No red node has a red child.
- Every root-null path in the tree passes through the same number of black nodes.
Red/Black Trees

- A **red/black tree** is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
- After we hoist red nodes into their parents:
 - Each “meta node” has 1, 2, or 3 keys in it. (No red node has a red child.)
 - Each “meta node” is either a leaf or has one more child than key. (Root-null path property.)
 - Each “meta leaf” is at the same depth. (Root-null path property.)

This is a 2-3-4 tree!
Data Structure Isometries

- Red/black trees are an **isometry** of 2-3-4 trees; they represent the structure of 2-3-4 trees in a different way.
- Many data structures can be designed and analyzed in the same way.
- **Huge advantage:** Rather than memorizing a complex list of red/black tree rules, just think about what the equivalent operation on the corresponding 2-3-4 tree would be and simulate it with BST operations.
Next Time

• **Deriving Red/Black Trees**
 • Figuring out rules for red/black trees using our isometry.

• **Tree Rotations**
 • A key operation on binary search trees.

• **Augmented Trees**
 • Building data structures on top of balanced BSTs.