Suffix Trees
Outline for Today

- **Review from Last Time**
 - A quick refresher on tries.

- **Suffix Tries**
 - A simple data structure for string searching.

- **Suffix Trees**
 - A compact, powerful, and flexible data structure for string algorithms.

- **Generalized Suffix Trees**
 - An even more flexible data structure.
Review from Last Time
Tries

- A **trie** is a tree that stores a collection of strings over some alphabet Σ.
- Each node corresponds to a prefix of some string in the set.
- Tries are sometimes called **prefix trees**, since each node in a trie corresponds to a prefix of one of the words in the trie.
Aho-Corasick String Matching

- The *Aho-Corasick string matching algorithm* is an algorithm for finding all occurrences of a set of strings P_1, \ldots, P_k inside a string T.
- Runtime is $\langle O(n), O(m + z) \rangle$, where
 - $m = |T|$,
 - $n = |P_1| + \ldots + |P_k|$, and
 - z is the number of matches.
- Great for the case where the patterns are fixed and the text to search changes.
Genomics Databases

- Many string algorithms these days are developed for or used extensively in computational genomics.
- Typically, we have a huge database with many very large strings (genomes) that we'll preprocess to speed up future operations.
- **Common problem:** given a fixed string T to search and changing patterns P_1, \ldots, P_k, find all matches of those patterns in T.
- **Question:** Can we instead preprocess T to make it easy to search for variable patterns?
Suffix Tries
Substrings, Prefixes, and Suffixes

• **Useful Fact 1:** Given a trie storing a set of strings S_1, S_2, \ldots, S_k, it's possible to determine, in time $O(|Q|)$, whether a query string Q is a prefix of any S_i.

![Trie Diagram]

Specifically, write $T = \alpha P \omega$; then T is a prefix of the suffix $P \omega$ of T.

![Additional Diagram]
Substrings, Prefixes, and Suffixes

- **Useful Fact 1:** Given a trie storing a set of strings S_1, S_2, \ldots, S_k, it's possible to determine, in time $O(|Q|)$, whether a query string Q is a prefix of any S_i.

- **Useful Fact 2:** A string P is a substring of a string T if and only if P is a prefix of some suffix of T.

 - Specifically, write $T = \alpha P \omega$; then T is a prefix of the suffix $P \omega$ of T.

\[
\begin{array}{c|c|c}
\alpha & P & \omega \\
\hline
\end{array}
\]

\[T \]
A suffix trie of T is a trie of all the suffixes of T.

Given any pattern string P, we can check in time $O(|P|)$ whether P is a substring of T by seeing whether P is a prefix in T's suffix trie.

(Because that means that P is a prefix of a suffix of T.)
Suffix Tries

- A **suffix trie** of T is a trie of all the suffixes of T.
- More generally, given any nonempty patterns P_1, \ldots, P_k of total length n, we can detect how many of those patterns are substrings of T in time $O(n)$.
- (Finding all matches is a bit trickier; more on that later.)
A Typical Transform

- Typically, we append some new character $ \notin \Sigma$ to the end of T, then construct the trie for T.
- Leaf nodes correspond to suffixes.
- Internal nodes correspond to prefixes of those suffixes.
Constructing Suffix Tries

- Once we build a single suffix trie for string T, we can efficiently detect whether patterns match in time $O(n)$.

- **Question:** How long does it take to construct a suffix trie?

- **Problem:** There's an $\Omega(m^2)$ lower bound on the worst-case complexity of any algorithm for building suffix tries.
A Degenerate Case
A Degenerate Case

There are $\Theta(m)$ copies of nodes chained together as $b^m\$.

Space usage: $\Theta(m^2)$.

There are $\Theta(m)$ copies of nodes chained together as $a^m b^m\$.

Space usage: $\Theta(m^2)$.

There are $\Theta(m)$ copies of nodes chained together as $b^m\$.

Space usage: $\Theta(m^2)$.

A Degenerate Case

There are $\Theta(m)$ copies of nodes chained together as b^m.

Space usage: $\Omega(m^2)$.
Correcting the Problem

- Because suffix tries may have $\Omega(m^2)$ nodes, all suffix trie algorithms must run in time $\Omega(m^2)$ in the worst-case.
- Can we reduce the number of nodes in the trie?
Patricia Tries

- A “silly” node in a trie is a node that has exactly one child.
- A *Patricia trie* (or *radix trie*) is a trie where all “silly” nodes are merged with their parents.
Patricia Tries

- A “silly” node in a trie is a node that has exactly one child.

- A Patricia trie (or radix trie) is a trie where all “silly” nodes are merged with their parents.
Suffix Trees

- A suffix tree for a string T is an Patricia trie of $T\$ where each leaf is labeled with the index where the corresponding suffix starts in $T\$.
A **suffix tree** for a string T is an Patricia trie of $T\$ where each leaf is labeled with the index where the corresponding suffix starts in $T\$.
A **suffix tree** for a string T is an Patricia trie of $T\$ where each leaf is labeled with the index where the corresponding suffix starts in $T\$.
Properties of Suffix Trees

- If $|T| = m$, the suffix tree has exactly $m + 1$ leaf nodes.
- For any $T \neq \varepsilon$, all internal nodes in the suffix tree have at least two children.
- Number of nodes in a suffix tree is $\Theta(m)$.
Suffix Tree Representations

- Suffix trees may have $\Theta(m)$ nodes, but the labels on the edges can have size $\omega(1)$.
- This means that a naïve representation of a suffix tree may take $\omega(m)$ space.
- **Useful fact:** Each edge in a suffix tree is labeled with a consecutive range of characters from w.
- **Trick:** Represent each edge labeled with a string α as a pair of integers [start, end] representing where in the string α appears.
Suffix Tree Representations

nonsense$

012345678
Suffix Tree Representations

nonsense$
012345678
Suffix Tree Representations

```
<table>
<thead>
<tr>
<th></th>
<th>start</th>
<th>end</th>
<th>child</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
```

nonsense$ 012345678
Building Suffix Trees

- Using this representation, suffix trees can be constructed using space $\Theta(m)$.
- **Claim:** There are $\Theta(m)$-time algorithms for building suffix trees.
- *These algorithms are not trivial!* We'll discuss one of them next time.
Application: Multi-String Matching
String Matching

- Suppose we preprocess a string T by building a suffix tree for it.
- Given any pattern string P of length n, we can determine, in time $O(n)$, whether n is a substring of P by looking it up in the suffix tree.
• **Claim:** After spending $O(m)$ time preprocessing $T$$\$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing T, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.

Observation 1: Every occurrence of P in T is a prefix of some suffix of T.
Claim: After spending $O(m)$ time preprocessing T, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.

Observation 2: Every suffix of T beginning with some pattern P appears in the subtree found by searching for P.
String Matching

- **Claim**: After spending $O(m)$ time preprocessing $T\$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
Claim: After spending $O(m)$ time preprocessing $T\$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
Claim: After spending $O(m)$ time preprocessing $T$$\$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim**: After spending $O(m)$ time preprocessing T, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
• **Claim:** After spending $O(m)$ time preprocessing T, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T\$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T\$$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing T, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
Claim: After spending $O(m)$ time preprocessing $T\$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T\$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
Claim: After spending $O(m)$ time preprocessing $T\$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T\$\$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
Finding All Matches

- To find all matches of string P, start by searching the tree for P.
- If the search falls off the tree, report no matches.
- Otherwise, let v be the node at which the search stops, or the endpoint of the edge where it stops if it ends in the middle of an edge.
- Do a DFS and report the numbers of all the leaves found in this subtree. The indices reported this way give back all positions at which P occurs.
Finding All Matches

To find all matches of string P, start by searching the tree for P.

If the search falls off the tree, report no matches. Otherwise, let v be the node at which the search stops, or the endpoint of the edge where it stops if it ends in the middle of an edge.

- Do a DFS and report the numbers of all the leaves found in this subtree. The indices reported this way give back all positions at which P occurs.
Finding All Matches

To find all matches of string P, start by searching the tree for P.
If the search falls off the tree, report no matches. Otherwise, let v be the node at which the search stops, or the endpoint of the edge where it stops if it ends in the middle of an edge.

- Do a DFS and report the numbers of all the leaves found in this subtree. The indices reported this way give back all positions at which P occurs.

How fast is this step?
Claim: The DFS to find all leaves in the subtree corresponding to prefix P takes time $O(z)$, where z is the number of matches.

Proof: If the DFS reports z matches, it must have visited z different leaf nodes.

Since each internal node of a suffix tree has at least two children, the total number of internal nodes visited during the DFS is at most $z - 1$.

During the DFS, we don't need to actually match the characters on the edges. We just follow the edges, which takes time $O(1)$.

Therefore, the DFS visits at most $O(z)$ nodes and edges and spends $O(1)$ time per node or edge, so the total runtime is $O(z)$. ■
Reverse Aho-Corasick

- Given patterns P_1, \ldots, P_k of total length n, suffix trees can find all matches of those patterns in time $O(m + n + z)$.
 - Search for all matches of each P_i; total time across all searches is $O(n + z)$.
- Acts as a “reverse” Aho-Corasick:
 - Aho-Corasick string matching runs in time $\langle O(n), O(m+z) \rangle$
 - Suffix tree string matching runs in time $\langle O(m), O(n+z) \rangle$
Another Application:
Longest Repeated Substring
Longest Repeated Substring

• Consider the following problem:

 Given a string T, find the longest substring w of T that appears in at least two different positions.

• Applications to computational biology: more than half of the human genome is formed from repeated DNA sequences!
Longest Repeated Substring

nonsense$ 012345678
Observation 1: If w is a repeated substring of T, it must be a prefix of at least two different suffixes.
Observation 2: If w is a repeated substring of T, it must correspond to a prefix of a path to an internal node.
Observation 3: If w is a longest repeated substring, it corresponds to a full path to an internal node.
Observation 3: If w is a longest repeated substring, it corresponds to a full path to an internal node.
Longest Repeated Substring

- For each node v in a suffix tree, let $s(v)$ be the string that it corresponds to.
- The **string depth** of a node v is defined as $|s(v)|$, the length of the string v corresponds to.
- The longest repeated substring in T can be found by finding the internal node in T with the maximum string depth.
Longest Repeated Substring

• Here's an $O(m)$-time algorithm for solving the longest repeated substring problem:
 • Build the suffix tree for T in time $O(m)$.
 • Run a DFS over T, tracking the string depth as you go, to find the internal node of maximum string depth.
 • Recover the string T corresponds to.

• **Good exercise:** How might you find the longest substring of T that repeats at least k times?
Challenge Problem:

Solve this problem in linear time without using suffix trees (or suffix arrays).
Time-Out for Announcements!
Problem Set One

• Problem Set One was due today at 3:00PM.
 • Want to use your late days? Submit by Saturday at 3:00PM.

• Solutions will go out on Tuesday.

• Problem Set Two goes out on Tuesday – have a good weekend!
Talk Today

- Jon Kleinberg (who authored *Algorithm Design* along with Eva Tardos) is giving a talk today at 4:15PM in the Mackenzie Boardroom.

- Focus is on algorithms for solving problems with agents who don't plan rationally.

- Sounds really fun – hopefully we'll finish with a little buffer time. 😊
Back to CS166!
Generalized Suffix Trees
Suffix Trees for Multiple Strings

- Suffix trees store information about a single string and exports a huge amount of structural information about that string.

- However, many applications require information about the structure of multiple different strings.
Generalized Suffix Trees

- A **generalized suffix tree** for T_1, \ldots, T_k is a Patricia trie of all suffixes of $T_1\$, \ldots, $T_k\$. Each T_i has a unique end marker.
- Leaves are tagged with $i:j$, meaning “jth suffix of string T_i”
Generalized Suffix Trees

- **Claim:** A generalized suffix tree for strings T_1, ..., T_k of total length m can be constructed in time $\Theta(m)$.

- Use a two-phase algorithm:
 - Construct a suffix tree for the single string T_1\$1T_2$\$2 ... T_k\k in time $\Theta(m)$.
 - This will end up with some invalid suffixes.
 - Do a DFS over the suffix tree and prune the invalid suffixes.
 - Runs in time $O(m)$ if implemented intelligently.
Applications of Generalized Suffix Trees
Longest Common Substring

• Consider the following problem:

 Given two strings T_1 and T_2, find the longest string w that is a substring of both T_1 and T_2.

• Can solve in time $O(|T_1| \cdot |T_2|)$ using dynamic programming.

• Can we do better?
Longest Common Substring

nonsense$ _1
012345678

offense$ _2
01234567
Observation: Any common substring of T_1 and T_2 will be a prefix of a suffix of T_1 and a prefix of a suffix of $T_2.
Longest Common Substring

nonsense$₁
012345678

offense$₂
01234567
Longest Common Substring

- Build a generalized suffix tree for \(T_1 \) and \(T_2 \) in time \(O(m) \).
- Annotate each internal node in the tree with whether that node has at least one leaf node from each of \(T_1 \) and \(T_2 \).
 - Takes time \(O(m) \) using DFS.
- Run a DFS over the tree to find the marked node with the highest string depth.
 - Takes time \(O(m) \) using DFS
- Overall time: \(O(m) \).
Longest Common Extensions
Longest Common Extensions

• Given two strings T_1 and T_2 and start positions i and j, the **longest common extension** of T_1 and T_2, starting at positions i and j, is the length of the longest string w that appears at position i in T_1 and position j in T_2.

• We'll denote this value by $\text{LCE}_{T_1, T_2}(i, j)$.

• Typically, T_1 and T_2 are fixed and multiple (i, j) queries are specified.
Longest Common Extensions

- Given two strings T_1 and T_2 and start positions i and j, the *longest common extension* of T_1 and T_2, starting at positions i and j, is the length of the longest string w that appears at position i in T_1 and position j in T_2.

- We'll denote this value by $\text{LCE}_{T_1, T_2}(i, j)$.

- Typically, T_1 and T_2 are fixed and multiple (i, j) queries are specified.
Longest Common Extensions

- Given two strings T_1 and T_2 and start positions i and j, the **longest common extension** of T_1 and T_2, starting at positions i and j, is the length of the longest string w that appears at position i in T_1 and position j in T_2.

- We'll denote this value by $\text{LCE}_{T_1, T_2}(i, j)$.

- Typically, T_1 and T_2 are fixed and multiple (i, j) queries are specified.

```
non sense
off ense
```
Longest Common Extensions

- Given two strings T_1 and T_2 and start positions i and j, the **longest common extension** of T_1 and T_2, starting at positions i and j, is the length of the longest string w that appears at position i in T_1 and position j in T_2.

- We'll denote this value by $\text{LCE}_{T_1, T_2}(i, j)$.

- Typically, T_1 and T_2 are fixed and multiple (i, j) queries are specified.

```
  nonsense
  offense
```
Longest Common Extensions

- Given two strings T_1 and T_2 and start positions i and j, the *longest common extension* of T_1 and T_2, starting at positions i and j, is the length of the longest string w that appears at position i in T_1 and position j in T_2.

- We'll denote this value by $\text{LCE}_{T_1, T_2}(i, j)$.

- Typically, T_1 and T_2 are fixed and multiple (i, j) queries are specified.
Longest Common Extensions

- Given two strings T_1 and T_2 and start positions i and j, the *longest common extension* of T_1 and T_2, starting at positions i and j, is the length of the longest string w that appears at position i in T_1 and position j in T_2.
- We'll denote this value by $\text{LCE}_{T_1, T_2}(i, j)$.
- Typically, T_1 and T_2 are fixed and multiple (i, j) queries are specified.
Longest Common Extensions

- **Observation:** \(\text{LCE}_{T_1, T_2}(i, j) \) is the length of the longest common prefix of the suffixes of \(T_1 \) and \(T_2 \) starting at positions \(i \) and \(j \).

- The generalized suffix tree of \(T_1 \) and \(T_2 \) makes it easy to query for these suffixes and stores information about their common prefixes.
Longest Common Extensions

- **Observation:** \(\text{LCE}_{T_1, T_2}(i, j) \) is the length of the longest common prefix of the suffixes of \(T_1 \) and \(T_2 \) starting at positions \(i \) and \(j \).

- The generalized suffix tree of \(T_1 \) and \(T_2 \) makes it easy to query for these suffixes and stores information about their common prefixes.
Longest Common Extensions

- **Observation**: LCE_{T_1, T_2}(i, j) is the length of the longest common prefix of the suffixes of T_1 and T_2 starting at positions i and j.

- The generalized suffix tree of T_1 and T_2 makes it easy to query for these suffixes and stores information about their common prefixes.
Longest Common Extensions

- **Observation:** $\text{LCE}_{T_1, T_2}(i, j)$ is the length of the longest common prefix of the suffixes of T_1 and T_2 starting at positions i and j.

- The generalized suffix tree of T_1 and T_2 makes it easy to query for these suffixes and stores information about their common prefixes.
An Observation

nonsense$_1$
012345678

offense$_2$
01234567
An Observation

non sense$₁
012345678

offense$₂
01234567
An Observation

nonsense$_1$
012345678

offense$_2$
01234567
An Observation

nonsense$$_1$
012345678

offense$$_2$
01234567
An Observation

nonsense
012345678

offense
01234567
An Observation

$nonsense_1$
012345678

$offense_2$
01234567
An Observation
An Observation

• **Notation:** Let $S[i:]$ denote the suffix of string S starting at position i.

• **Claim:** $\text{LCE}_{T_1, T_2}(i, j)$ is given by the string label of the LCA of $T_1[i:]$ and $T_2[j:]$ in the generalized suffix tree of T_1 and T_2.

• And hey... don't we have a way of computing these in time $O(1)$?
Computing LCE's

- Given two strings T_1 and T_2, construct a generalized suffix tree for T_1 and T_2 in time $O(m)$.
- Construct an LCA data structure for the generalized suffix tree in time $O(m)$.
 - Use Fischer-Heun plus an Euler tour of the nodes in the tree.
- Can now query for the node representing the LCE in time $O(1)$.
One Last Detail

nonsense$₁
012345678

offense$₂
01234567
One Last Detail

nonsense$₁
012345678

offense$₂
01234567
One Last Detail

nonsense$₁
012345678

offense$₂
01234567
One Last Detail

What string does this node correspond to?

nonsense $₁
012345678

offense $₂
01234567
The Overall Construction

- Using an $O(m)$-time DFS, annotate each node in the suffix tree with its string depth.
- To compute LCE:
 - Find the leaves corresponding to $T_1[i:]$ and $T_2[j:]$.
 - Find their LCA; let its string depth be d.
 - Report $T_1[i:i + d - 1]$ or $T_2[j:j + d - 1]$.
- Overall, requires $O(m)$ preprocessing time to support $O(1)$ query time.
An Application: Longest Palindromic Substring
Palindromes

• A **palindrome** is a string that's the same forwards and backwards.

• A **palindromic substring** of a string T is a substring of T that's a palindrome.

• Surprisingly, of great importance in computational biology.
Palindromes

• A **palindrome** is a string that's the same forwards and backwards.

• A **palindromic substring** of a string T is a substring of T that's a palindrome.

• Surprisingly, of great importance in computational biology.
Palindromes

- A **palindrome** is a string that's the same forwards and backwards.
- A **palindromic substring** of a string T is a substring of T that's a palindrome.
- Surprisingly, of great importance in computational biology.
Palindromes

- A **palindrome** is a string that's the same forwards and backwards.
- A **palindromic substring** of a string T is a substring of T that's a palindrome.
- Surprisingly, of great importance in computational biology.

![A diagram showing a molecular structure with nucleotides A, C, U, G, and U, G, A, C.](image)
Longest Palindromic Substring

• The *longest palindromic substring* problem is the following:

 Given a string T, find the longest substring of T that is a palindrome.

• How might we solve this problem?
An Initial Idea

● To deal with the issues of strings going forwards and backwards, start off by forming T and T^R, the reverse of T.

● **Initial Idea:** Find the longest common substring of T and T^R.

● Unfortunately, this doesn't work:

 • $T = \text{abcdabaadbcabb}$
 • $T^R = \text{bbabcdaabadcba}$
 • Longest common substring: abcda
 • Longest palindromic substring: aa
Palindromes Centers and Radii

• For now, let's focus on even-length palindromes.

• An even-length palindrome substring ww^R of a string T has a center and radius:
 - **Center**: The spot between the duplicated center character.
 - **Radius**: The length of the string going out in each direction.

• **Idea**: For each center, find the largest corresponding radius.
Palindromes and Radii

\[a b b a c c a b c c b \]
Palindrome Centers and Radii
Palindrome Centers and Radii
Palindromes Centers and Radii
Palindromes Centers and Radii

\[w = \begin{array}{cccccccc}
 a & b & b & a & c & c & a & b & c & c & b \\
\end{array}\]
Palindromes Centers and Radii

\[w = a b b a c c a b c c b \]

\[w^R = b c c b a c c a b b a a \]
Palindrome Centers and Radii

\[w \]

\[
\begin{array}{cccccccc}
 a & b & b & a & c & c & a & b & c & c & b \\
\end{array}
\]

\[w^R \]

\[
\begin{array}{cccccccc}
 b & c & c & b & a & c & c & a & b & b & a \\
\end{array}
\]
Palindrome Centers and Radii

\[w = \text{abcabccabc} \]

\[w^R = \text{bccbbacacccabba} \]
Palindromic Centers and Radii

w

\[
\begin{array}{cccccc}
 a & b & b & a & c & c \\
 a & b & c & c & a & b \\
 b & c & c & b & c & c \\
\end{array}
\]

w^R

\[
\begin{array}{cccccccc}
 b & c & c & b & a & c & c & a \\
 a & b & b & a & c & c & a & b \\
 b & a & b & a & c & c & a & b \\
\end{array}
\]
Palindromes Centers and Radii

w

| a | b | b | a | c | c | a | b | c | c | b |

w^R

| b | c | c | b | a | c | c | a | b | b | a |
Palindrome Centers and Radii

w

w^R
Palindromes Centers and Radii

w:

```
abbbacccabc
```

w^R:

```
bcbbacccabbba
```
Palindrome Centers and Radii

w

\[
\begin{array}{cccccccccc}
 a & b & b & a & c & c & a & b & c & c & b \\
\end{array}
\]

w^R

\[
\begin{array}{cccccccccc}
 b & c & c & b & a & c & c & a & b & b & a \\
\end{array}
\]
An Algorithm

• In time $O(m)$, construct T^R.
• Preprocess T and T^R in time $O(m)$ to support LCE queries.
• For each spot between two characters in T, find the longest palindrome centered at that location by executing LCE queries on the corresponding locations in T and T^R.
 • Each query takes time $O(1)$ if it just reports the length.
 • Total time: $O(m)$.
• Report the longest string found this way.
• Total time: $O(m)$.
Suffix Trees: The Catch
Space Usage

- Suffix trees are memory hogs.
- Suppose $\Sigma = \{A, C, G, T, $\}.
- Each internal node needs 15 machine words: for each character, words for the start/end index and a child pointer.

This is still $O(m)$, but it's a huge hidden constant!
Combating Space Usage

• In 1990, Udi Manber and Gene Myers introduced the **suffix array** as a space-efficient alternative to suffix trees.

• Requires one word per character; typically, an extra word is stored as well (details next Tuesday)

• Can't support all operations permitted by suffix trees, but has much better performance.

• Curious? Details are next time!
Summary

- Given a string, it's possible to build a suffix tree for it in time $\Theta(m)$. Suffix trees support efficient detection of all matching substrings, efficient detection of duplicated substrings, efficient detection of common substrings, efficient detection of common extensions, and a lot more!

- Suffix trees use space $\Theta(m)$, but with a huge hidden constant factor.

- Building suffix trees is hard. We'll see how to do it next time.
Next Time

- **Suffix Arrays**
 - A space-efficient alternative to suffix trees.
- **LCP Arrays**
 - A useful auxiliary data structure for speeding up suffix arrays.
- **Constructing Suffix Trees**
 - How on earth do you build suffix trees in time $O(m)$?
- **Constructing Suffix Arrays**
 - Start by building suffix arrays in time $O(m)$...
- **Constructing LCP Arrays**
 - ... and adding in LCP arrays in time $O(m)$.