Suffix Trees and Suffix Arrays
Outline for Today

- **Suffix Tries**
 - A simple data structure for string searching.

- **Suffix Trees**
 - A powerful, and flexible data structure for string algorithms.

- **Suffix Arrays**
 - A compact alternative to suffix trees.

- **Applications of Suffix Trees and Arrays**
 - There are many!
Review from Last Time
A **trie** is a tree that stores a collection of strings over some alphabet Σ.

- Each node corresponds to a prefix of some string in the set.
- Tries are sometimes called **prefix trees**, since each node in a trie corresponds to a prefix of one of the words in the trie.
Aho-Corasick String Matching

- The **Aho-Corasick string matching algorithm** is an algorithm for finding all occurrences of a set of strings P_1, \ldots, P_k inside a string T.
- Runtime is $\langle O(n), O(m + z) \rangle$, where
 - $m = |T|$,
 - $n = |P_1| + \ldots + |P_k|$, and
 - z is the number of matches.
- Great for the case where the patterns are fixed and the text to search changes.
Genomics Databases

• Many string algorithms these days are developed for or used extensively in computational genomics.

• Typically, we have a huge database with many very large strings (genomes) that we'll preprocess to speed up future operations.

• Common problem: given a fixed string T to search and changing patterns P_1, \ldots, P_k, find all matches of those patterns in T.

• Question: Can we instead preprocess T to make it easy to search for variable patterns?
Suffix Tries
Substrings, Prefixes, and Suffixes

- **Useful Fact 1:** Given a trie storing a set of strings S_1, S_2, \ldots, S_k, it's possible to determine, in time $O(|Q|)$, whether a query string Q is a prefix of any S_i.
Substrings, Prefixes, and Suffixes

- **Useful Fact 1:** Given a trie storing a set of strings S_1, S_2, \ldots, S_k, it's possible to determine, in time $O(|Q|)$, whether a query string Q is a prefix of any S_i.

- **Useful Fact 2:** A string P is a substring of a string T if and only if P is a prefix of some suffix of T.
 - Specifically, write $T = \alpha P \omega$; then T is a prefix of the suffix $P \omega$ of T.
Suffix Tries

- A **suffix trie** of T is a trie of all the suffixes of T.
- Given any pattern string P, we can check in time $O(|P|)$ whether P is a substring of T by seeing whether P is a prefix in T's suffix trie.
 - (This checks whether P is a prefix of some suffix of T.)
Suffix Tries

- A **suffix trie** of T is a trie of all the suffixes of T.
- More generally, given any nonempty patterns P_1, \ldots, P_k of total length n, we can detect how many of those patterns are substrings of T in time $O(n)$.
- (Finding all matches is a bit trickier; more on that later.)
A Typical Transform

- Append some new character $ \notin \Sigma$ to the end of T, then construct the trie for T.
 - The new \notin character lexicographically precedes all other characters.
 - This is usually called the *sentinel*; think of it like the Theoryland version of a null terminator.
- Leaf nodes correspond to suffixes.
- Internal nodes correspond to prefixes of those suffixes.
Constructing Suffix Tries

- Once we build a single suffix trie for string T, we can efficiently detect whether patterns match in time $O(n)$.

Question: How long does it take to construct a suffix trie?

Problem: There's an $\Omega(m^2)$ lower bound on the worst-case complexity of any algorithm for building suffix tries.
A Degenerate Case

$a^n b^n$
A Degenerate Case

There are $\Theta(m)$ copies of nodes chained together as $b^m\$.
A Degenerate Case

There are $\Theta(m)$ copies of nodes chained together as $b^m\$.

Space usage: $\Omega(m^2)$.

Correcting the Problem

• Because suffix tries may have $\Omega(m^2)$ nodes, all suffix trie algorithms must run in time $\Omega(m^2)$ in the worst-case.

• Can we reduce the number of nodes in the trie?
Patricia Tries

• A “silly” node in a trie is a node that has exactly one child.

• A *Patricia trie* (or *radix trie*) is a trie where all “silly” nodes are merged with their parents.
Patricia Tries

- A “silly” node in a trie is a node that has exactly one child.
- A *Patricia trie* (or *radix trie*) is a trie where all “silly” nodes are merged with their parents.
Suffix Trees

- A suffix tree for a string T is a Patricia trie of $T\$ where each leaf is labeled with the index where the corresponding suffix starts in $T\$.

- (Note that suffix trees aren’t the same as suffix tries. To the best of my knowledge, suffix tries aren’t used anywhere.)
SUFFIX TIES

- A **suffix tree** for a string T is a Patricia trie of $T\$$ where each leaf is labeled with the index where the corresponding suffix starts in $T\$.

- (Note that suffix trees aren’t the same as suffix tries. To the best of my knowledge, suffix tries aren’t used anywhere.)
A **suffix tree** for a string T is an Patricia trie of $T\$ where each leaf is labeled with the index where the corresponding suffix starts in $T\$.

(Note that suffix trees aren’t the same as suffix tries. To the best of my knowledge, suffix tries aren’t used anywhere.)
Properties of Suffix Trees

- If $|T| = m$, the suffix tree has exactly $m + 1$ leaf nodes.
- For any $T \neq \varepsilon$, all internal nodes in the suffix tree have at least two children.
- Number of nodes in a suffix tree is $\Theta(m)$.
Suffix Tree Representations

- Suffix trees may have $\Theta(m)$ nodes, but the labels on the edges can have size $\omega(1)$.
- This means that a naïve representation of a suffix tree may take $\omega(m)$ space.
- **Useful fact:** Each edge in a suffix tree is labeled with a consecutive range of characters from w.
- **Trick:** Represent each edge labeled with a string α as a pair of integers [start, end] representing where in the string α appears.
Suffix Tree Representations

nonsense$
012345678
Suffix Tree Representations

nonsense$
012345678
Suffix Tree Representations

```
<table>
<thead>
<tr>
<th>start</th>
<th>8</th>
<th>4</th>
<th>0</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>child</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
nonsense$ 012345678
```
Building Suffix Trees

- **Claim:** It’s possible to build a suffix tree for a string of length m in time $\Theta(m)$.
- *These algorithms are not trivial!* We'll discuss one of them next time.
Application: String Search
String Matching

- Suppose we preprocess a string T by building a suffix tree for it.
- Given any pattern string P of length n, we can determine, in time $O(n)$, whether n is a substring of P by looking it up in the suffix tree.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T\$, can find *all* matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T\$$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.

Observation 1: Every occurrence of P in T is a prefix of some suffix of T.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing T, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.

Observation 2: Every suffix of T beginning with some pattern P appears in the subtree found by searching for P.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T$$\$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T\$, can find *all* matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T\$$, can find *all* matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing T, can find **all** matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T\$, can find *all* matches of a string P in time $O(n + z)$, where z is the number of matches.
Claim: After spending $O(m)$ time preprocessing T, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T\$, can find *all* matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending \(O(m) \) time preprocessing \(T \), can find all matches of a string \(P \) in time \(O(n + z) \), where \(z \) is the number of matches.
Claim: After spending $O(m)$ time preprocessing $T\$, can find **all** matches of a string P in time $O(n + z)$, where z is the number of matches.
• **Claim:** After spending $O(m)$ time preprocessing $T$$\$, can find *all* matches of a string P in time $O(n + z)$, where z is the number of matches.
Claim: After spending $O(m)$ time preprocessing $T\$, can find *all* matches of a string P in time $O(n + z)$, where z is the number of matches.
String Matching

- **Claim:** After spending $O(m)$ time preprocessing $T\$$, can find all matches of a string P in time $O(n + z)$, where z is the number of matches.
Finding All Matches

- To find all matches of string P, start by searching the tree for P.
- If the search falls off the tree, report no matches.
- Otherwise, let v be the node at which the search stops, or the endpoint of the edge where it stops if it ends in the middle of an edge.
- Do a DFS and report the numbers of all the leaves found in this subtree. The indices reported this way give back all positions at which P occurs.
Finding All Matches

To find all matches of string P, start by searching the tree for P.

If the search falls off the tree, report no matches.

Otherwise, let v be the node at which the search stops, or the endpoint of the edge where it stops if it ends in the middle of an edge.

- Do a DFS and report the numbers of all the leaves found in this subtree. The indices reported this way give back all positions at which P occurs.
Finding All Matches

To find all matches of string P, start by searching the tree for P.

If the search falls off the tree, report no matches. Otherwise, let v be the node at which the search stops, or the endpoint of the edge where it stops if it ends in the middle of an edge.

- **Do a DFS and report the numbers of all the leaves found in this subtree.** The indices reported this way give back all positions at which P occurs.

How fast is this step?
Claim: The DFS to find all leaves in the subtree corresponding to prefix P takes time $O(z)$, where z is the number of matches.

Proof: If the DFS reports z matches, it must have visited z different leaf nodes.

Since each internal node of a suffix tree has at least two children, the total number of internal nodes visited during the DFS is at most $z - 1$. During the DFS, we don't need to actually match the characters on the edges. We just follow the edges, which takes time $O(1)$.

Therefore, the DFS visits at most $O(z)$ nodes and edges and spends $O(1)$ time per node or edge, so the total runtime is $O(z)$. ■
Reverse Aho-Corasick

- Given patterns P_1, \ldots, P_k of total length n, suffix trees can find all matches of those patterns in time $O(m + n + z)$.
 - Build the tree in time $O(m)$, then search for all matches of each P_i; total time across all searches is $O(n + z)$.
- Acts as a “reverse” Aho-Corasick:
 - Aho-Corasick string matching runs in time $\langle O(n), O(m+z) \rangle$
 - Suffix tree string matching runs in time $\langle O(m), O(n+z) \rangle$
Another Application:
Longest Repeated Substring
Longest Repeated Substring

• Consider the following problem:

 Given a string T, find the longest substring w of T that appears in at least two different positions.

• Some examples:
 • In monsoon, the longest repeated substring is on.
 • In banana, the longest repeated substring is ana. (The substrings can overlap.)

• Applications to computational biology: more than half of the human genome is formed from repeated DNA sequences!
Longest Repeated Substring

nonsense$ 012345678
Observation 1: If \(w \) is a repeated substring of \(T \), it must be a prefix of at least two different suffixes.
Observation 2: If w is a repeated substring of T, it must correspond to a prefix of a path to an internal node.
Observation 3: If w is a longest repeated substring, it corresponds to a full path to an internal node.
Observation 3: If w is a longest repeated substring, it corresponds to a full path to an internal node.
Longest Repeated Substring

• For each node v in a suffix tree, let $s(v)$ be the string that it corresponds to.

• The **string depth** of a node v is defined as $|s(v)|$, the length of the string v corresponds to.

• The longest repeated substring in T can be found by finding the internal node in T with the maximum string depth.
Longest Repeated Substring

• Here's an $O(m)$-time algorithm for solving the longest repeated substring problem:
 • Build the suffix tree for T in time $O(m)$.
 • Run a DFS over T, tracking the string depth as you go, to find the internal node of maximum string depth.
 • Recover the string T corresponds to.

• **Good exercise:** How might you find the longest substring of T that repeats at least k times?
Challenge Problem:

Solve this problem in linear time without using suffix trees (or suffix arrays).
Time-Out for Announcements!
Problem Sets

- Problem Set 0 solutions will be up on the course website later today.
 - We’ll try to get it graded and returned as soon as possible.
- Problem Set 1 is due on Tuesday at 2:30PM.
 - Stop by office hours with questions!
 - Ask questions on Piazza!
WICS PRESENTS

DISTINGUISHED SPEAKER SERIES

FEATURING

TRACY YOUNG

Come hear from co-founders of Plangrid, Tracy Young and Ralph Gootee, about their journey building Plangrid, a company that creates software for the $8 trillion a year construction industry. Dinner will be provided.

04.17.18
6:30-8:00 PM
HEWLETT 102

PlanGrid
Back to CS166!
Generalized Suffix Trees
Suffix Trees for Multiple Strings

- Suffix trees store information about a single string and exports a huge amount of structural information about that string.
- However, many applications require information about the structure of multiple different strings.
Generalized Suffix Trees

- A **generalized suffix tree** for T_1, ..., T_k is a Patricia trie of all suffixes of T_1, ..., T_k. Each T_i has a unique end marker.

- Leaves are tagged with i_j, meaning “ith suffix of string T_j”
Generalized Suffix Trees

- **Claim:** A generalized suffix tree for strings T_1, \ldots, T_k of total length m can be constructed in time $\Theta(m)$.

- Use a two-phase algorithm:
 - Construct a suffix tree for the single string T_1\$1T_2$\$2 \ldots T_k$\k in time $\Theta(m)$.
 - This will end up with some invalid suffixes.
 - Do a DFS over the suffix tree and prune the invalid suffixes.
 - Runs in time $O(m)$ if implemented intelligently.
Applications of Generalized Suffix Trees
Longest Common Substring

• Consider the following problem:
 Given two strings T_1 and T_2, find the longest string w that is a substring of both T_1 and T_2.

• Can solve in time $O(|T_1| \cdot |T_2|)$ using dynamic programming.

• Can we do better?
Longest Common Substring

Observation: Any common substring of T_1 and T_2 will be a prefix of a suffix of T_1 and a prefix of a suffix of T_2.

nonsense$₁$

012345678

offense$₂$

01234567
Longest Common Substring

Observation: Any common substring of T_1 and T_2 will be a prefix of a suffix of T_1 and a prefix of a suffix of $T_2.$
Observation: Any common substring of T_1 and T_2 will be a prefix of a suffix of T_1 and a prefix of a suffix of T_2.
Observation: Any common substring of T_1 and T_2 will be a prefix of a suffix of T_1 and a prefix of a suffix of T_2.

nonsense$_1$

012345678

offense$_2$

01234567
Longest Common Substring

Observation: Any common substring of T_1 and T_2 will be a prefix of a suffix of T_1 and a prefix of a suffix of T_2.

nonsense1
012345678

offense2
01234567
Longest Common Substring

Observation: Any common substring of T_1 and T_2 will be a prefix of a suffix of T_1 and a prefix of a suffix of T_2.

nonsense1
012345678

offense2
01234567
Observation: Any common substring of T_1 and T_2 will be a prefix of a suffix of T_1 and a prefix of a suffix of T_2.
Observation: Any common substring of T_1 and T_2 will be a prefix of a suffix of T_1 and a prefix of a suffix of $T_2.$
Observation: Any common substring of T_1 and T_2 will be a prefix of a suffix of T_1 and a prefix of a suffix of T_2.

nonsense$₁ 012345678$

offense$₂ 01234567$
Longest Common Substring

• Build a generalized suffix tree for T_1 and T_2 in time $O(m)$.

• Annotate each internal node in the tree with whether that node has at least one leaf node from each of T_1 and T_2.
 • Takes time $O(m)$ using DFS.

• Run a DFS over the tree to find the marked node with the highest string depth.
 • Takes time $O(m)$ using DFS

• Overall time: $O(m)$.

Suffix Trees: The Catch
Space Usage

- Suffix trees are memory hogs.
- Suppose $\Sigma = \{A, C, G, T, \$$\}$.
- Each internal node needs 15 machine words: for each character, words for the start/end index and a child pointer.

This is still $O(m)$, but it's a huge hidden constant!
Can we get the flexibility of a suffix tree without the memory costs?
Yes... kinda!
Suffix Arrays

- A **suffix array** for a string T is an array of the suffixes of $T\$, stored in sorted order.

- By convention, $\$ precedes all other characters.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>nonsense$</td>
</tr>
<tr>
<td>1</td>
<td>onsense$</td>
</tr>
<tr>
<td>2</td>
<td>nsense$</td>
</tr>
<tr>
<td>3</td>
<td>sense$</td>
</tr>
<tr>
<td>4</td>
<td>ense$</td>
</tr>
<tr>
<td>5</td>
<td>nse$</td>
</tr>
<tr>
<td>6</td>
<td>se$</td>
</tr>
<tr>
<td>7</td>
<td>e$</td>
</tr>
<tr>
<td>8</td>
<td>$</td>
</tr>
</tbody>
</table>
Suffix Arrays

- A **suffix array** for a string T is an array of the suffixes of $T\$, stored in sorted order.

- By convention, $\$ precedes all other characters.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$</td>
</tr>
<tr>
<td>7</td>
<td>e$</td>
</tr>
<tr>
<td>4</td>
<td>ense$</td>
</tr>
<tr>
<td>0</td>
<td>nonsense$</td>
</tr>
<tr>
<td>5</td>
<td>nse$</td>
</tr>
<tr>
<td>2</td>
<td>nsense$</td>
</tr>
<tr>
<td>1</td>
<td>onsense$</td>
</tr>
<tr>
<td>6</td>
<td>se$</td>
</tr>
<tr>
<td>3</td>
<td>sense$</td>
</tr>
</tbody>
</table>
Representing Suffix Arrays

- Suffix arrays are typically represented implicitly by just storing the indices of the suffixes in sorted order rather than the suffixes themselves.
- Space required: $\Theta(m)$.
- More precisely, space for $T\$, plus one extra word for each character.

<table>
<thead>
<tr>
<th>8</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>e$</td>
</tr>
<tr>
<td>4</td>
<td>ense$</td>
</tr>
<tr>
<td>0</td>
<td>nonsense$</td>
</tr>
<tr>
<td>5</td>
<td>nse$</td>
</tr>
<tr>
<td>2</td>
<td>nsense$</td>
</tr>
<tr>
<td>1</td>
<td>onsense$</td>
</tr>
<tr>
<td>6</td>
<td>se$</td>
</tr>
<tr>
<td>3</td>
<td>sense$</td>
</tr>
</tbody>
</table>
Representing Suffix Arrays

• Suffix arrays are typically represented implicitly by just storing the indices of the suffixes in sorted order rather than the suffixes themselves.

• Space required: $\Theta(m)$.

• More precisely, space for $T\$, plus one extra word for each character.

8
7
4
0
5
2
1
6
3
nonsense$
Searching a Suffix Array

- **Recall**: P is a substring of T iff it's a prefix of a suffix of T.
- All matches of P in T have a common prefix, so they'll be stored consecutively.
- Can find all matches of P in T by doing a binary search over the suffix array.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$</td>
</tr>
<tr>
<td>7</td>
<td>e$</td>
</tr>
<tr>
<td>4</td>
<td>ense$</td>
</tr>
<tr>
<td>0</td>
<td>nonsense$</td>
</tr>
<tr>
<td>5</td>
<td>nse$</td>
</tr>
<tr>
<td>2</td>
<td>nsense$</td>
</tr>
<tr>
<td>1</td>
<td>onsense$</td>
</tr>
<tr>
<td>6</td>
<td>se$</td>
</tr>
<tr>
<td>3</td>
<td>sense$</td>
</tr>
</tbody>
</table>
Analyzing the Runtime

- The binary search will require $O(\log m)$ probes into the suffix array.
- Each comparison takes time $O(n)$: have to compare P against the current suffix.
- Time for binary searching: $O(n \log m)$.
- Time to report all matches after that point: $O(z)$.
- Total time: $O(n \log m + z)$.
Why the Slowdown?
A Loss of Structure

• Many algorithms on suffix trees involve looking for internal nodes with various properties:
 • Longest repeated substring: internal node with largest string depth.
 • Longest common substring: internal node with largest string depth that has a child from each string.
• Because suffix arrays do not store the tree structure, we lose access to this information.
Suffix Trees and Suffix Arrays

nonsense$
012345678
Suffix Trees and Suffix Arrays

nonsense$
012345678

8 $
7 e$
4 ense$
0 nonsense$
5 nse$
2 nsense$
1 onsense$
6 se$
3 sense$

0
4
7
8
1
2
3
5
6
7
8
Suffix Trees and Suffix Arrays

nonsense$
012345678

8 $
7 e$
4 ense$
0 nonsense$
5 nse$
2 nsense$
1 onsense$
6 se$
3 sense$

Diagram showing the suffix tree and suffix array for the word "nonsense.$"
Suffix Trees and Suffix Arrays

nonsense$
012345678
Suffix Trees and Suffix Arrays

nonsense$
012345678

8	$
7	e$
4	sense$
0	nonsense$
5	nse$
2	nsense$
1	onsense$
6	se$
3	sense$
The longest common prefix of a range of strings in a suffix array corresponds to the lowest common ancestor of those suffixes in the suffix tree.
Longest Common Prefixes

- Given two strings x and y, the **longest common prefix** or *(LCP)* of x and y is the longest prefix of x that is also a prefix of y.
- The LCP of x and y is denoted $\text{lcp}(x, y)$.
- **Fun fact:** There is an $O(m)$-time algorithm for computing LCP information on a suffix array.
- Let's see how it works.
Pairwise LCP

- **Fact:** There is an algorithm (due to Kasai et al.) that constructs, in time $O(m)$, an array of the LCPs of adjacent suffix array entries.

- The algorithm isn't that complex, but the correctness argument is a bit nontrivial.
Pairwise LCP

- **Claim:** This information is enough for us to figure out the longest common prefix of a range of elements in the suffix array.
Pairwise LCP

- **Claim:** This information is enough for us to figure out the longest common prefix of a range of elements in the suffix array.
Pairwise LCP

- **Claim:** This information is enough for us to figure out the longest common prefix of a range of elements in the suffix array.

Hey, look! It's a range minimum query problem!
Computing LCPs

• To preprocess a suffix array to support O(1) LCP queries:
 • Use Kasai's O(m)-time algorithm to build the LCP array.
 • Build an RMQ structure over that array in time O(m) using Fischer-Heun.
 • Use the precomputed RMQ structure to answer LCP queries over ranges.
• Requires O(m) preprocessing time and only O(1) query time.
Searching a Suffix Array

- **Recall**: Can search a suffix array of T for all matches of a pattern P in time $O(n \log m + z)$.
- If we've done $O(m)$ preprocessing to build the LCP information, we can speed this up.
Searching a Suffix Array

nonsense$
012345678
Searching a Suffix Array

nonsense$

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>e$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>nonsense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>nse$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>nsense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>onsense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>se$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>sense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

nonsense$
012345678
Searching a Suffix Array

nonsense$

012345678
Searching a Suffix Array

nonsense$

012345678
Searching a Suffix Array
Searching a Suffix Array

nonsense$
012345678$

<table>
<thead>
<tr>
<th>Index</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>nonsense$</td>
</tr>
<tr>
<td>1</td>
<td>onsense$</td>
</tr>
<tr>
<td>2</td>
<td>nse$</td>
</tr>
<tr>
<td>3</td>
<td>sense$</td>
</tr>
<tr>
<td>4</td>
<td>ense$</td>
</tr>
<tr>
<td>5</td>
<td>nse$</td>
</tr>
<tr>
<td>6</td>
<td>se$</td>
</tr>
<tr>
<td>7</td>
<td>e$</td>
</tr>
<tr>
<td>8</td>
<td>$</td>
</tr>
</tbody>
</table>

nons
Searching a Suffix Array

nonsense$
012345678

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>e$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>nonsense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>nse$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>nsense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>onsense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>se$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>sense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_nons
Searching a Suffix Array

nonsense$
012345678

<table>
<thead>
<tr>
<th>8</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>e$</td>
</tr>
<tr>
<td>4</td>
<td>ense$</td>
</tr>
<tr>
<td>0</td>
<td>nonsense$</td>
</tr>
<tr>
<td>5</td>
<td>nse$</td>
</tr>
<tr>
<td>2</td>
<td>nsense$</td>
</tr>
<tr>
<td>1</td>
<td>onsense$</td>
</tr>
<tr>
<td>6</td>
<td>se$</td>
</tr>
<tr>
<td>3</td>
<td>sense$</td>
</tr>
</tbody>
</table>
Searching a Suffix Array

nonsense$
012345678$

8 $
7 e$
4 ense$
0 nonsense$
5 nse$
2 nsense$
1 nonsense$
6 se$
3 sense$

_nons
Searching a Suffix Array

nonsense$
012345678

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>e$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>sense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>nonsense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>nse$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>nsense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>onset$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>se$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>sense$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_nons
Searching a Suffix Array

nonsense$

012345678

nons
Searching a Suffix Array

nonsense$
012345678$

<table>
<thead>
<tr>
<th>8</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>e$</td>
</tr>
<tr>
<td>4</td>
<td>ense$</td>
</tr>
<tr>
<td>0</td>
<td>nonsense$</td>
</tr>
<tr>
<td>5</td>
<td>nse$</td>
</tr>
<tr>
<td>2</td>
<td>nsense$</td>
</tr>
<tr>
<td>1</td>
<td>onsetse$</td>
</tr>
<tr>
<td>6</td>
<td>se$</td>
</tr>
<tr>
<td>3</td>
<td>sense$</td>
</tr>
</tbody>
</table>

_nons
Searching a Suffix Array

nonsense$

012345678
Searching a Suffix Array

nonsense$

012345678

nons
Searching a Suffix Array

nonsense$

8 7 4 0 5 2 1 3 6

nonsene

012345678
Searching a Suffix Array

nonsense$
012345678$

Table:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$</td>
</tr>
<tr>
<td>7</td>
<td>e$</td>
</tr>
<tr>
<td>4</td>
<td>ense$</td>
</tr>
<tr>
<td>0</td>
<td>nonsense$</td>
</tr>
<tr>
<td>5</td>
<td>nse$</td>
</tr>
<tr>
<td>2</td>
<td>nsense$</td>
</tr>
<tr>
<td>1</td>
<td>nonsense$</td>
</tr>
<tr>
<td>6</td>
<td>sense$</td>
</tr>
<tr>
<td>3</td>
<td>sense$</td>
</tr>
</tbody>
</table>

nons
Searching a Suffix Array

nonsense$

012345678

nons
Searching a Suffix Array

nonsense$

012345678

\begin{array}{|c|c|}
\hline
0 & nonsense$
\hline
1 & nonsense$
\hline
2 & nsense$
\hline
3 & sense$
\hline
4 & ense$
\hline
5 & nse$
\hline
6 & se$
\hline
7 & e$
\hline
8 & $
\hline
\end{array}
Searching a Suffix Array
Searching a Suffix Array

• Intuitively, simulate doing a binary search of the leaves of a suffix tree, remembering the deepest subtree you've matched so far.

• At each point, if the binary search probes a leaf outside of the current subtree, skip it and continue the binary search in the direction of the current subtree.

• To implement this on an actual suffix array, we use LCP information to implicitly keep track of where the bounds on the current subtree are.
Searching a Suffix Array

- **Claim:** The algorithm we just sketched runs in time $O(n + \log m + z)$.

- **Proof Sketch:** The $O(\log m)$ term comes from the binary search over the leaves of the suffix tree. The $O(n)$ term corresponds to descending deeper into the suffix tree one character at a time. Finally, we have to spend $O(z)$ time reporting matches. ■
Applications:

Longest Common Extensions
Longest Common Extensions

• Given two strings T_1 and T_2 and start positions i and j, the *longest common extension* of T_1 and T_2, starting at positions i and j, is the length of the longest string w that appears at position i in T_1 and position j in T_2.

• We'll denote this value by $\text{LCE}_{T_1, T_2}(i, j)$.

• Typically, T_1 and T_2 are fixed and multiple (i, j) queries are specified.
Longest Common Extensions

• Given two strings \(T_1 \) and \(T_2 \) and start positions \(i \) and \(j \), the *longest common extension* of \(T_1 \) and \(T_2 \), starting at positions \(i \) and \(j \), is the length of the longest string \(w \) that appears at position \(i \) in \(T_1 \) and position \(j \) in \(T_2 \).

• We'll denote this value by \(\text{LCE}_{T_1, T_2}(i, j) \).

• Typically, \(T_1 \) and \(T_2 \) are fixed and multiple \((i, j)\) queries are specified.
Longest Common Extensions

- Given two strings T_1 and T_2 and start positions i and j, the **longest common extension** of T_1 and T_2, starting at positions i and j, is the length of the longest string w that appears at position i in T_1 and position j in T_2.

- We'll denote this value by $LCE_{T_1, T_2}(i, j)$.

- Typically, T_1 and T_2 are fixed and multiple (i, j) queries are specified.
Longest Common Extensions

• Given two strings T_1 and T_2 and start positions i and j, the *longest common extension* of T_1 and T_2, starting at positions i and j, is the length of the longest string w that appears at position i in T_1 and position j in T_2.

• We'll denote this value by $\text{LCE}_{T_1, T_2}(i, j)$.

• Typically, T_1 and T_2 are fixed and multiple (i, j) queries are specified.
Longest Common Extensions

- Given two strings T_1 and T_2 and start positions i and j, the *longest common extension* of T_1 and T_2, starting at positions i and j, is the length of the longest string w that appears at position i in T_1 and position j in T_2.

- We'll denote this value by $\text{LCE}_{T_1, T_2}(i, j)$.

- Typically, T_1 and T_2 are fixed and multiple (i, j) queries are specified.
Longest Common Extensions

- Given two strings T_1 and T_2 and start positions i and j, the *longest common extension* of T_1 and T_2, starting at positions i and j, is the length of the longest string w that appears at position i in T_1 and position j in T_2.

- We'll denote this value by $\text{LCE}_{T_1, T_2}(i, j)$.

- Typically, T_1 and T_2 are fixed and multiple (i, j) queries are specified.
Longest Common Extensions

- **Observation:** $\text{LCE}_{T_1, T_2}(i, j)$ is the length of the longest common prefix of the suffixes of T_1 and T_2 starting at positions i and j.

```
nononsense
offense
```
Longest Common Extensions

- **Observation:** $LCE_{T_1, T_2}(i, j)$ is the length of the longest common prefix of the suffixes of T_1 and T_2 starting at positions i and j.
Longest Common Extensions

- **Observation:** $\text{LCE}_{T_1, T_2}(i, j)$ is the length of the longest common prefix of the suffixes of T_1 and T_2 starting at positions i and j.

```
  n s e n s e
  n s e
```
Longest Common Extensions

- **Observation:** $\text{LCE}_{T_1, T_2}(i, j)$ is the length of the longest common prefix of the suffixes of T_1 and T_2 starting at positions i and j.
Claim: There is an \(O(m), O(1)\) data structure for LCE.

Preprocessing:
- Construct a **generalized suffix array** for \(T_1\) and \(T_2\) augmented with LCP information.
 - (Just build a suffix array for \(T_1$1T_2$2\).)
- Then build a table mapping each index in the string to its index in the suffix array.

Query:
- Do an RMQ over the LCP array at the appropriate indices.
Suffix Arrays and LCE

- **Claim:** There is an $\langle O(m), O(1) \rangle$ data structure for LCE.

- **Preprocessing:**
 - Construct a *generalized suffix array* for T_1 and T_2 augmented with LCP information.
 - (Just build a suffix array for T_1,$_1$,$_2$,$_2$.)
 - Then build a table mapping each index in the string to its index in the suffix array.

- **Query:**
 - Do an RMQ over the LCP array at the appropriate indices.
Suffix Arrays and LCE

- **Claim:** There is an \(O(m), O(1)\) data structure for LCE.

- **Preprocessing:**
 - Construct a *generalized suffix array* for \(T_1\) and \(T_2\) augmented with LCP information.
 - (Just build a suffix array for \(T_1$₁T_2$₂\).)
 - Then build a table mapping each index in the string to its index in the suffix array.

- **Query:**
 - Do an RMQ over the LCP array at the appropriate indices.

<table>
<thead>
<tr>
<th>0</th>
<th>8</th>
<th>$₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>$₂</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>e$₁</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>e$₂</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>ense$₁</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>ense$₂</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>nonsense$₁</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>nse$₁</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>nse$₂</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>nsense$₁</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>se$₁</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>se$₂</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>sense$₁</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>tense$₂</td>
</tr>
<tr>
<td>1</td>
<td>nonsense$₂</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>tense$₂</td>
<td></td>
</tr>
</tbody>
</table>
Suffix Arrays and LCE

• **Claim:** There is an \(O(m), O(1)\) data structure for LCE.

• Preprocessing:
 - Construct a *generalized suffix array* for \(T_1\) and \(T_2\) augmented with LCP information.
 - (Just build a suffix array for \(T_1$1T_2$2\).)
 - Then build a table mapping each index in the string to its index in the suffix array.

• Query:
 - Do an RMQ over the LCP array at the appropriate indices.
An Application: Longest Palindromic Substring
Palindromes

- A **palindrome** is a string that's the same forwards and backwards.

- A **palindromic substring** of a string T is a substring of T that's a palindrome.

- Surprisingly, of great importance in computational biology.
Palindromes

• A *palindrome* is a string that's the same forwards and backwards.

• A *palindromic substring* of a string T is a substring of T that's a palindrome.

• Surprisingly, of great importance in computational biology.
Palindromes

- A *palindrome* is a string that's the same forwards and backwards.
- A *palindromic substring* of a string T is a substring of T that's a palindrome.
- Surprisingly, of great importance in computational biology.
Palindromes

• A *palindrome* is a string that's the same forwards and backwards.

• A *palindromic substring* of a string T is a substring of T that's a palindrome.

• Surprisingly, of great importance in computational biology.
Longest Palindromic Substring

- The *longest palindromic substring* problem is the following:

 Given a string T, find the longest substring of T that is a palindrome.

- How might we solve this problem?
An Initial Idea

- To deal with the issues of strings going forwards and backwards, start off by forming T and T^R, the reverse of T.
- **Initial Idea**: Find the longest common substring of T and T^R.
- Unfortunately, this doesn't work:
 - $T = \text{abcdba}$
 - $T^R = \text{abdcba}$
 - Longest common substring: ab / ba
 - Longest palindromic substring: $\text{a} / \text{b} / \text{c} / \text{d}$
Palindromes are strings that read the same backward as forward. Let's focus on even-length palindromes.

For an even-length palindrome substring wwR of a string T, there is a center and radius:

- **Center**: The spot between the duplicated center character.
- **Radius**: The length of the string going out in each direction.

Idea: For each center, find the largest corresponding radius.
Palindrome Centers and Radii

a b b a c c a b c c b
Palindrome Centers and Radii
Palindrome Centers and Radii
Palindromes Centers and Radii

a b b a c c a b c c c b
Palindromes Centers and Radii

\[w \quad \begin{array}{cccccccc}
 a & b & b & a & c & c & b & b \\
\end{array} \]
Palindromic Centers and Radii

$w = \text{a b b a c c a b c c b}$

$w^R = \text{b c c b a c c a b b a}$
Palindromic Centers and Radii

$w = \text{abbaccabcccb}$

$w^R = \text{bcbbacbaccabba}$
Palindrome Centers and Radii

\[w \quad \text{a b b b a c c a b c c b} \]

\[w^R \quad \text{b c c b a c c a b b a} \]
Palindrome Centers and Radii

w

\[
\begin{array}{cccccccccccc}
& a & b & b & a & c & c & a & b & c & c & b \\
\end{array}
\]

w^R

\[
\begin{array}{cccccccccccc}
b & c & c & b & a & c & c & a & b & b & a \\
\end{array}
\]
Palindromes Centers and Radii

w

$$
\begin{array}{cccccccccccc}
 a & b & b & a & c & c & a & b & c & c & b
\end{array}
$$

w^R

$$
\begin{array}{cccccccccccc}
 b & c & c & b & a & c & c & a & b & b & a
\end{array}
$$
Palindromes Centers and Radii

w

```
abbbacccabcccb
```

w^R

```
bcbbbacccabbaa
```
Palindromic Centers and Radii

w

\[
\begin{array}{cccccccc}
 a & b & b & a & c & c & a & b & c & c & b \\
\end{array}
\]

w^R

\[
\begin{array}{ccccccccc}
 b & c & c & b & a & c & c & a & b & b & a
\end{array}
\]
Palindromes Centers and Radii

\[w = \text{a b b a c c a b c c b} \]

\[w^R = \text{b c c b a c c a b b a} \]
An Algorithm

- In time $O(m)$, construct T^R.
- Preprocess T and T^R in time $O(m)$ to support LCE queries.
- For each spot between two characters in T, find the longest palindrome centered at that location by executing LCE queries on the corresponding locations in T and T^R.
 - Each query takes time $O(1)$ if it just reports the length.
 - Total time: $O(m)$.
- Report the longest string found this way.
- Total time: $O(m)$.
Next Time

- **Constructing Suffix Trees**
 - How on earth do you build suffix trees in time $O(m)$?

- **Constructing Suffix Arrays**
 - Start by building suffix arrays in time $O(m)$...

- **Constructing LCP Arrays**
 - ... and adding in LCP arrays in time $O(m)$.