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Outline for Today

● Review from Last Time
● A quick refresher on tries.

● Suffix Tries
● A simple data structure for string searching.

● Suffix Trees
● A compact, powerful, and flexible data 

structure for string algorithms.

● Generalized Suffix Trees
● An even more flexible data structure.



  

Review from Last Time



  

Tries

● A trie is a tree that stores 
a collection of strings over 
some alphabet Σ.

● Each node corresponds to 
a prefix of some string in 
the set.

● Tries are sometimes called 
prefix trees, since each 
node in a trie corresponds 
to a prefix of one of the 
words in the trie.
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Aho-Corasick String Matching

● The Aho-Corasick string matching algorithm 
is an algorithm for finding all occurrences of a 
set of strings P₁, …, Pₖ inside a string T.

● Runtime is ⟨O(n), O(m + z)⟩, where
● m = |T|,
● n = |P₁| + … + |Pₖ|, and
● z is the number of matches.

● Great for the case where the patterns are fixed 
and the text to search changes.



  

Genomics Databases

● Many string algorithms these days are 
developed for or used extensively in 
computational genomics.

● Typically, we have a huge database with many 
very large strings (genomes) that we'll 
preprocess to speed up future operations.

● Common problem: given a fixed string T to 
search and changing patterns P₁, …, Pₖ, find all 
matches of those patterns in T.

● Question: Can we instead preprocess T to 
make it easy to search for variable patterns?



  

Suffix Tries



  

Substrings, Prefixes, and Suffixes

● Useful Fact 1: Given a trie storing a set of 
strings S₁, S₂, …, Sₖ, it's possible to 
determine, in time O(|Q|), whether a query 
string Q is a prefix of any Sᵢ.

● Useful Fact 2: A string P is a substring of 
a string T if and only if T is a prefix of 
some suffix of P.
● Specifically, write T = αPω; then T is a prefix 

of the suffix Pω of T.
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Substrings, Prefixes, and Suffixes

● Useful Fact 1: Given a trie storing a set of 
strings S₁, S₂, …, Sₖ, it's possible to 
determine, in time O(|Q|), whether a query 
string Q is a prefix of any Sᵢ.

● Useful Fact 2: A string P is a substring of 
a string T if and only if P is a prefix of 
some suffix of T.
● Specifically, write T = αPω; then T is a prefix 

of the suffix Pω of T.
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Suffix Tries

● A suffix trie of T is a trie 
of all the suffixes of T.

● Given any pattern string 
P, we can check in time 
O(|P|) whether P is a 
substring of T by seeing 
whether P is a prefix in 
T's suffix trie.

● (Because that means 
that P is a prefix of a 
suffix of T.)
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Suffix Tries

● A suffix trie of T is a trie 
of all the suffixes of T.

● More generally, given 
any nonempty patterns 
P₁, …, Pₖ of total length 
n, we can detect how 
many of those patterns 
are substrings of T in 
time O(n).

● (Finding all matches is a 
bit trickier; more on that 
later.)
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A Typical Transform

● Typically, we 
append some new 
character $ ∉ Σ to 
the end of T, then 
construct the trie 
for T$.

● Leaf nodes 
correspond to 
suffixes.

● Internal nodes 
correspond to 
prefixes of those 
suffixes.
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Constructing Suffix Tries

● Once we build a single suffix trie for 
string T, we can efficiently detect 
whether patterns match in time O(n).

● Question: How long does it take to 
construct a suffix trie?

● Problem: There's an Ω(m2) lower bound 
on the worst-case complexity of any 
algorithm for building suffix tries.
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There are Θ(m) 
copies of nodes 

chained together as 
bm$.

Space usage: Ω(m2).

There are Θ(m) 
copies of nodes 

chained together as 
bm$.

Space usage: Ω(m2).



  

Patricia Tries

● A “silly” node in a 
trie is a node that 
has exactly one 
child.

● A Patricia trie (or 
radix trie) is a trie 
where all “silly” 
nodes are merged 
with their parents.
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Suffix Trees
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● A suffix tree for
a string T is an 
Patricia trie of T$ 
where each leaf is 
labeled with the 
index where the 
corresponding 
suffix starts in T$.



  

Properties of Suffix Trees

● If |T| = m, the 
suffix tree has 
exactly m + 1 
leaf nodes.

● For any T ≠ ε, all 
internal nodes in 
the suffix tree 
have at least two 
children.

● Number of nodes 
in a suffix tree is 
Θ(m).
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Suffix Tree Representations

● Suffix trees may have Θ(m) nodes, but the 
labels on the edges can have size ω(1).

● This means that a naïve representation of a 
suffix tree may take ω(m) space.

● Useful fact: Each edge in a suffix tree is 
labeled with a consecutive range of characters 
from w.

● Trick: Represent each edge labeled with a 
string α as a pair of integers [start, end] 
representing where in the string α appears.



  

Suffix Tree Representations
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Building Suffix Trees

● Using this representation, suffix trees 
can be constructed using space Θ(m).

● Claim: There are Θ(m)-time algorithms 
for building suffix trees.

● These algorithms are not trivial! We'll 
discuss one of them next time.



  

Application: Multi-String Matching



  

String Matching

● Suppose we 
preprocess a string 
T by building a 
suffix tree for it.

● Given any pattern 
string P of length n, 
we can determine, 
in time O(n), 
whether n is a 
substring of P by 
looking it up in the 
suffix tree.
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String Matching

● Claim: After 
spending O(m) time 
preprocessing T$, 
can find all 
matches of a string 
P in time O(n + z), 
where z is the 
number of matches.
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Observation 1: Every 
occurrence of P in T is a 
prefix of some suffix of T.

Observation 1: Every 
occurrence of P in T is a 
prefix of some suffix of T.



  

String Matching

● Claim: After 
spending O(m) time 
preprocessing T$, 
can find all 
matches of a string 
P in time O(n + z), 
where z is the 
number of matches.
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Observation 2: Every 
suffix of T$ beginning 
with some pattern P 

appears in the subtree 
found by searching for P.

Observation 2: Every 
suffix of T$ beginning 
with some pattern P 

appears in the subtree 
found by searching for P.



  

String Matching

● Claim: After 
spending O(m) time 
preprocessing T$, 
can find all 
matches of a string 
P in time O(n + z), 
where z is the 
number of matches.
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String Matching

● Claim: After 
spending O(m) time 
preprocessing T$, 
can find all 
matches of a string 
P in time O(n + z), 
where z is the 
number of matches.
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String Matching

● Claim: After 
spending O(m) time 
preprocessing T$, 
can find all 
matches of a string 
P in time O(n + z), 
where z is the 
number of matches.
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Finding All Matches

● To find all matches of string P, start by searching 
the tree for P.

● If the search falls off the tree, report no matches.
● Otherwise, let v be the node at which the search 

stops, or the endpoint of the edge where it stops 
if it ends in the middle of an edge.

● Do a DFS and report the numbers of all the leaves 
found in this subtree. The indices reported this 
way give back all positions at which P occurs.



  

Finding All Matches

To find all matches of string P, start by searching 
the tree for P.

If the search falls off the tree, report no matches.

Otherwise, let v be the node at which the search 
stops, or the endpoint of the edge where it stops 
if it ends in the middle of an edge.

● Do a DFS and report the numbers of all the leaves 
found in this subtree. The indices reported this 
way give back all positions at which P occurs.

How fast is 
this step?

How fast is 
this step?



  

Claim: The DFS to find all leaves in the subtree
corresponding to prefix P takes time O(z),
where z is the number of matches.

Proof: If the DFS reports z matches, it must have
visited z different leaf nodes.

Since each internal node of a suffix tree has at 
least two children, the total number of internal 
nodes visited during the DFS is at most z – 1.

During the DFS, we don't need to actually 
match the characters on the edges. We just 
follow the edges, which takes time O(1).

Therefore, the DFS visits at most O(z) nodes 
and edges and spends O(1) time per node or 
edge, so the total runtime is O(z). ■



  

Reverse Aho-Corasick

● Given patterns P₁, … Pₖ of total length n, 
suffix trees can find all matches of those 
patterns in time O(m + n + z).
● Search for all matches of each Pᵢ; total time 

across all searches is O(n + z).

● Acts as a “reverse” Aho-Corasick:
● Aho-Corasick string matching runs in time 

⟨O(n), O(m+z)⟩ 
● Suffix tree string matching runs in time 

⟨O(m), O(n+z)⟩ 



  

Another Application:
Longest Repeated Substring



  

Longest Repeated Substring

● Consider the following problem:

Given a string T, find the longest 
substring w of T that appears in at least 

two different positions.
● Applications to computational biology: 

more than half of the human genome is 
formed from repeated DNA sequences!



  

Longest Repeated Substring
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Observation 1: If w is 
a repeated substring of 
T, it must be a prefix of 
at least two different 

suffixes.

Observation 1: If w is 
a repeated substring of 
T, it must be a prefix of 
at least two different 

suffixes.



  

Longest Repeated Substring
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Observation 2: If w is 
a repeated substring of 
T, it must correspond 
to a prefix of a path to 

an internal node.

Observation 2: If w is 
a repeated substring of 
T, it must correspond 
to a prefix of a path to 

an internal node.



  

Longest Repeated Substring
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Observation 3: If w is a 
longest repeated 

substring, it corresponds 
to a full path to an 

internal node.
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Longest Repeated Substring
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Longest Repeated Substring

● For each node v in a suffix tree, let s(v) 
be the string that it corresponds to.

● The string depth of a node v is defined 
as |s(v)|, the length of the string v 
corresponds to.

● The longest repeated substring in T can 
be found by finding the internal node in T 
with the maximum string depth.



  

Longest Repeated Substring

● Here's an O(m)-time algorithm for solving 
the longest repeated substring problem:
● Build the suffix tree for T in time O(m).
● Run a DFS over T, tracking the string depth 

as you go, to find the internal node of 
maximum string depth.

● Recover the string T corresponds to.

● Good exercise: How might you find the 
longest substring of T that repeats at 
least k times?



  

Challenge Problem:
 

Solve this problem in linear time without 
using suffix trees (or suffix arrays).



  

Time-Out for Announcements!



  

Problem Set One

● Problem Set One was due today at 
3:00PM.
● Want to use your late days? Submit by 

Saturday at 3:00PM.

● Solutions will go out on Tuesday.
● Problem Set Two goes out on Tuesday – 

have a good weekend!



  

Talk Today

● Jon Kleinberg (who authored Algorithm 
Design along with Eva Tardos) is giving a 
talk today at 4:15PM in the Mackenzie 
Boardroom.

● Focus is on algorithms for solving problems 
with agents who don't plan rationally.

● Sounds really fun – hopefully we'll finish 
with a little buffer time. ☺



  

Back to CS166!



  

Generalized Suffix Trees



  

Suffix Trees for Multiple Strings

● Suffix trees store information about a 
single string and exports a huge amount 
of structural information about that 
string.

● However, many applications require 
information about the structure of 
multiple different strings.



  

Generalized Suffix Trees

● A generalized suffix tree for T₁, …, Tₖ is a Patricia trie of 
all suffixes of T₁$₁, …, Tₖ$ₖ. Each Tᵢ has a unique end marker.

● Leaves are tagged with i:j, meaning “jth suffix of string Tᵢ”
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Generalized Suffix Trees

● Claim: A generalized suffix tree for 
strings T₁, …, Tₖ of total length m can be 
constructed in time Θ(m).

● Use a two-phase algorithm:
● Construct a suffix tree for the single string 

T₁$₁T₂$₂ … Tₖ$ₖ in time Θ(m).
– This will end up with some invalid suffixes.

● Do a DFS over the suffix tree and prune the 
invalid suffixes.
– Runs in time O(m) if implemented intelligently.



  

Applications of Generalized Suffix Trees



  

Longest Common Substring

● Consider the following problem:

Given two strings T₁ and T₂, find the 
longest string w that is a substring of 

both T₁ and T₂.
● Can solve in time O(|T₁| · |T₂|) using 

dynamic programming.
● Can we do better?
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Longest Common Substring

Observation: Any common 
substring of T₁ and T₂ will be 
a prefix of a suffix of T₁ and 
a prefix of a suffix of T₂.

Observation: Any common 
substring of T₁ and T₂ will be 
a prefix of a suffix of T₁ and 
a prefix of a suffix of T₂.



  

Longest Common Substring

● Build a generalized suffix tree for T₁ and T₂ 
in time O(m).

● Annotate each internal node in the tree with 
whether that node has at least one leaf node 
from each of T₁ and T₂.
● Takes time O(m) using DFS.

● Run a DFS over the tree to find the marked 
node with the highest string depth.
● Takes time O(m) using DFS

● Overall time: O(m).



  

Longest Common Extensions



  

Longest Common Extensions

● Given two strings T₁ and T₂ and start positions i 
and j, the longest common extension of T₁ and 
T₂, starting at positions i and j, is the length of the 
longest string w that appears at position i in T₁ and 
position j in T₂.

● We'll denote this value by LCET₁, T₂(i, j).

● Typically, T₁ and T₂ are fixed and multiple (i, j) 
queries are specified.
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Longest Common Extensions

● Observation: LCET₁, T₂(i, j) is the length of the 
longest common prefix of the suffixes of T₁ and 
T₂ starting at positions i and j.

  

 

● The generalized suffix tree of T₁ and T₂ makes 
it easy to query for these suffixes and stores 
information about their common prefixes.
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Longest Common Extensions

● Observation: LCET₁, T₂(i, j) is the length of the 
longest common prefix of the suffixes of T₁ and 
T₂ starting at positions i and j.

  

 

● The generalized suffix tree of T₁ and T₂ makes 
it easy to query for these suffixes and stores 
information about their common prefixes.
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An Observation

● Notation: Let S[i:] denote the suffix of 
string S starting at position i.

● Claim: LCET₁, T₂(i, j) is given by the string 
label of the LCA of T₁[i:] and T₂[j:] in the 
generalized suffix tree of T₁ and T₂.

● And hey... don't we have a way of 
computing these in time O(1)?



  

Computing LCE's

● Given two strings T₁ and T₂, construct a 
generalized suffix tree for T₁ and T₂ in 
time O(m).

● Construct an LCA data structure for the 
generalized suffix tree in time O(m).
● Use Fischer-Heun plus an Euler tour of the 

nodes in the tree.

● Can now query for the node representing 
the LCE in time O(1).
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The Overall Construction

● Using an O(m)-time DFS, annotate each 
node in the suffix tree with its string 
depth.

● To compute LCE:
● Find the leaves corresponding to T₁[i:] and 

T₂[j:].
● Find their LCA; let its string depth be d.
● Report T₁[i:i + d – 1] or T₂[j:j + d – 1].

● Overall, requires O(m) preprocessing 
time to support O(1) query time.



  

An Application: Longest Palindromic 
Substring



  

Palindromes

● A palindrome is a string that's the same 
forwards and backwards.

● A palindromic substring of a string T is 
a substring of T that's a palindrome.

● Surprisingly, of great importance in 
computational biology.

A C U G

U G A C



  

Longest Palindromic Substring

● The longest palindromic substring 
problem is the following:

Given a string T, find the longest 
substring of T that is a palindrome.

● How might we solve this problem?



  

An Initial Idea

● To deal with the issues of strings going 
forwards and backwards, start off by 
forming T and TR, the reverse of T.

● Initial Idea: Find the longest common 
substring of T and TR.

● Unfortunately, this doesn't work:
● T = abcdabaadbcabb
● TR = bbabcdaabadcba
● Longest common substring: abcda
● Longest palindromic substring: aa



  

Palindrome Centers and Radii

● For now, let's focus on even-length 
palindromes.

● An even-length palindrome substring wwR of a 
string T has a center and radius:
● Center: The spot between the duplicated center 

character.
● Radius: The length of the string going out in 

each direction.

● Idea: For each center, find the largest 
corresponding radius.



  

Palindrome Centers and Radii

a b b a c ac b c c b

a b b aca cbccb

w

wR



  

An Algorithm

● In time O(m), construct TR.
● Preprocess T and TR in time O(m) to support LCE 

queries.
● For each spot between two characters in T, find 

the longest palindrome centered at that location 
by executing LCE queries on the corresponding 
locations in T and TR.
● Each query takes time O(1) if it just reports the 

length.
● Total time: O(m).

● Report the longest string found this way.
● Total time: O(m).



  

Suffix Trees: The Catch



  

Space Usage

● Suffix trees are memory hogs.
● Suppose Σ = {A, C, G, T, $}.
● Each internal node needs 15 machine words: for 

each character, words for the start/end index and 
a child pointer.

 

 

 

 

This is still O(m), but it's a huge hidden constant!

8
8

4
4

0
0

1
8

start

end

child

A C T G
3
4

$



  

Combating Space Usage

● In 1990, Udi Manber and Gene Myers 
introduced the suffix array as a space-
efficient alternative to suffix trees.

● Requires one word per character; typically, an 
extra word is stored as well (details next 
Tuesday)

● Can't support all operations permitted by 
suffix trees, but has much better performance.

● Curious? Details are next time!



  

Summary

● Given a string, it's possible to build a suffix tree 
for it in time Θ(m). Suffix trees support

efficient detection of all matching substrings,

efficient detection of duplicated substrings,

efficient detection of common substrings,

efficient detection of common extensions,

and a lot more!
● Suffix trees use space Θ(m), but with a huge 

hidden constant factor.
● Building suffix trees is hard. We'll see how to do it 

next time.



  

Next Time

● Suffix Arrays
● A space-efficient alternative to suffix trees.

● LCP Arrays
● A useful auxiliary data structure for speeding up suffix 

arrays.

● Constructing Suffix Trees
● How on earth do you build suffix trees in time O(m)?

● Constructing Suffix Arrays
● Start by building suffix arrays in time O(m)...

● Constructing LCP Arrays
● … and adding in LCP arrays in time O(m).
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