Hashing and Sketching
Part One
Randomized Data Structures

● Randomization is a powerful tool for improving efficiency and solving problems under seemingly impossible constraints.

● Over the next three lectures, we’ll explore a sampler of data structures that give a feel for the breadth of what’s out there.

● You can easily spend an entire academic career just exploring this space; take CS265 for more on randomized algorithms!
Where We’re Going

- **Hashing and Sketching (This Week)**
 - Using hash functions to count without counting.

- **Cuckoo Hashing (Next Week)**
 - Hashing with worst-case $O(1)$ lookups, along with a splash of random hypergraph theory.
Outline for Today

- **Hash Functions**
 - Understanding our basic building blocks.

- **Frequency Estimation**
 - Estimating how many times we’ve seen something.

- **Concentration Inequalities**
 - “Correct on expectation” versus “correct with high probability.”

- **Probability Amplification**
 - Increasing our confidence in our answers.
Preliminaries: *Hash Functions*
Hashing in Practice

- Hash functions are used extensively in programming and software engineering:
 - They make hash tables possible: think C++ `std::hash`, Python’s `__hash__`, or Java’s `Object.hashCode()`.
 - They’re used in cryptography: SHA-256, HMAC, etc.

Question: When we’re in Theoryland, what do we mean when we say “hash function?”
In Theoryland, a hash function is a function from some domain called the universe (typically denoted \mathcal{U}) to some codomain.

The codomain is usually a set of the form $[m] = \{0, 1, 2, 3, \ldots, m - 1\}$

$$h : \mathcal{U} \to [m]$$
Hashing in Theoryland

- **Intuition:** No matter how clever you are with designing a specific hash function, that hash function isn’t random, and so there will be pathological inputs.
 - You can formalize this with the pigeonhole principle.
- **Idea:** Rather than finding the One True Hash Function, we’ll assume we have a collection of hash functions to pick from, and we’ll choose which one to use randomly.
Families of Hash Functions

- A **family** of hash functions is a set \mathcal{H} of hash functions with the same domain and codomain.
- We can then introduce randomness into our data structures by sampling a random hash function from \mathcal{H}.
- **Key Point:** The randomness in our data structures almost always derives from the random choice of hash functions, not from the data.

Data is adversarial.

Hash function selection is random.

- **Question:** What makes a family of hash functions \mathcal{H} a “good” family of hash functions?
Goal: If we pick \(h \in \mathcal{H} \) uniformly at random, then \(h \) should distribute elements uniformly randomly.

Problem: A hash function that distributes \(n \) elements uniformly at random over \([m]\) requires \(\Omega(n \log m) \) space in the worst case.

Question: Do we actually need true randomness? Or can we get away with something weaker?
Distribution Property:
Each element should have an equal probability of being placed in each slot.

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

Find an “obviously bad” family of hash functions that satisfies the distribution property.

Formulate a hypothesis!
Distribution Property: Each element should have an equal probability of being placed in each slot.

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

Problem: This rule doesn’t guarantee that elements are spread out.
Distribution Property: Each element should have an equal probability of being placed in each slot.

Independence Property: Where one element is placed shouldn’t impact where a second goes.

For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

A family of hash functions \mathcal{H} is called **2-independent** (or pairwise independent) if it satisfies the distribution and independence properties.
For any \(x \in \mathcal{U} \) and random \(h \in \mathcal{H} \), the value of \(h(x) \) is uniform over its codomain.

Intuition: 2-independence means any pair of elements is unlikely to collide.

\[
\Pr[h(x) = h(y)] = \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i]
\]

Question: Where did these elements collide with one another?
For any \(x \in \mathcal{U} \) and random \(h \in \mathcal{H} \), the value of \(h(x) \) is uniform over its codomain.

Intuition:
2-independence means any pair of elements is unlikely to collide.

\[
\Pr[h(x) = h(y)] = \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i] = \sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i]
\]
For any \(x \in \mathcal{U} \) and random \(h \in \mathcal{H} \), the value of \(h(x) \) is uniform over its codomain.

Intuition:
2-independence means any pair of elements is unlikely to collide.

\[
\Pr[h(x) = h(y)] = \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i] = \sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i]
\]

\[
= \sum_{i=0}^{m-1} \frac{1}{m^2}
\]
For any $x \in \mathcal{U}$ and random $h \in \mathcal{H}$, the value of $h(x)$ is uniform over its codomain.

Intuition:
2-independence means any pair of elements is unlikely to collide.

For any distinct $x, y \in \mathcal{U}$ and random $h \in \mathcal{H}$, $h(x)$ and $h(y)$ are independent random variables.

\[
\Pr[h(x) = h(y)] = \sum_{i=0}^{m-1} \Pr[h(x) = i \land h(y) = i] \\
= \sum_{i=0}^{m-1} \Pr[h(x) = i] \cdot \Pr[h(y) = i] \\
= \frac{1}{m^2} \sum_{i=0}^{m-1} 1 \\
= \frac{1}{m}
\]

This is the same as if h were a truly random function.
For more on hashing outside of Theoryland, check out this Stack Exchange post.
Approximating Quantities
What makes for a good “approximate” solution?
What does it mean for an approximation to be “good”?

Let \(A \) be the true answer. Let \(\hat{A} \) be a random variable denoting our estimate.

This would not make for a good estimate. However, we have \(E[\hat{A}] = A \).

Observation 1: Being correct in expectation isn’t sufficient.

Distribution of our estimate \(\hat{A} \).

\(A \) (True answer)
What does it mean for an approximation to be “good”?

Let \(A \) be the true answer. Let \(\hat{A} \) be a random variable denoting our estimate.

It’s unlikely that we’ll get the right answer, but we’re probably going to be close.

Observation 2: The difference \(|\hat{A} - A|\) between our estimate and the truth should ideally be small.

(\(A \) (True answer))
What does it mean for an approximation to be “good”?

Let A be the true answer. Let \hat{A} be a random variable denoting our estimate.

This estimate skews low, but it’s very close to the true value.

Observation 3: An estimate doesn’t have to be unbiased to be useful.
What does it mean for an approximation to be “good”?

Let A be the true answer. Let \hat{A} be a random variable denoting our estimate.

The more resources we allocate, the better our estimate should be.

Observation 4: A good approximation should be tunable.

Memory used: 256MB
We have two user-provided values
\[
\varepsilon \in (0, 1]
\]
\[
\delta \in (0, 1]
\]
where \(\varepsilon\) represents **accuracy** and \(\delta\) represents **confidence**.

Goal: Make an estimator \(\hat{A}\) for some quantity \(A\) where

\[
\text{With probability at least } 1 - \delta, \quad |\hat{A} - A| \leq \varepsilon \cdot \text{size(input)}
\]

for some measure of the size of the input.

What does it mean for an approximation to be “good”?
Goal: Make an estimator \hat{A} for some quantity A where

With probability at least $1 - \delta$,

$$|A - \hat{A}| \leq \varepsilon \cdot \text{size(input)}$$

for some measure of the size of the input.

$\delta = \frac{1}{2}$

ε small

What does it mean for an approximation to be “good”?
Goal: Make an estimator \hat{A} for some quantity A where

$$|A - \hat{A}| \leq \varepsilon \cdot \text{size}(\text{input})$$

for some measure of the size of the input.

$\delta = \frac{1}{4}$
ε small

What does it mean for an approximation to be “good”?
Goal: Make an estimator \hat{A} for some quantity A where

$$\Pr[|A - \hat{A}| \leq \varepsilon \cdot \text{size(input)}] \geq 1 - \delta,$$

for some measure of the size of the input.

$\delta = \frac{1}{16}$

ε small

What does it mean for an approximation to be “good”?
Time-Out for Announcements!
PS2 / IA2

• PS1 and IA1 were due today at 3:15PM.
 • Need more time? You can submit during the grace period, which ends tomorrow at 3:15PM.

• PS2 and IA2 go out today. They’re due next Thursday at the start of class.
 • Explore balanced trees, data structure isometries, and the Method of Four Russians!
Final Project Logistics

• We’ve posted information about the CS166 final project to the course website.
• The brief summary:
 • You’ll work in teams of three or four.
 • You’ll pick a data structure and become an expert on it.
 • You’ll put together an explanatory article that guides readers on a magical journey to understanding.
 • You’ll do something “interesting” with the topic, broadly construed.
 • You’ll meet with the course staff for a Q&A session to discuss your writeup, “interesting” component, and the topic at large.
• We hope you have fun with this one – you’ll learn a ton in the process of working through this!
Final Project Logistics

• Your first deliverable is a project proposal, which is due next Thursday at the start of class.
 • Because we need to do topic matchmaking, there is no grace period for the project proposal.

• What you need to do:
 • Select a team of 3 – 4 people.
 • Give us an ordered list of your top four project topics, along with two sources for each topic. (One source per topic must be a research paper.)

• We’ve compiled an extensive list of recommended project topics. It’s available up on the course website.
Back to CS166!
Frequency Estimation
Frequency Estimators

- A frequency estimator is a data structure supporting the following operations:
 - `increment(x)`, which increments the number of times that \(x \) has been seen, and
 - `estimate(x)`, which returns an estimate of the frequency of \(x \).

- Using BSTs, we can solve this in space \(\Theta(n) \) with worst-case \(O(\log n) \) costs on the operations.

- Using hash tables, we can solve this in space \(\Theta(n) \) with expected \(O(1) \) costs on the operations.
Frequency Estimators

• Frequency estimation has many applications:
 • Search engines: Finding frequent search queries.
 • Network routing: Finding common source and destination addresses.

• In these applications, $\Theta(n)$ memory can be impractical.

• **Goal:** Get *approximate* answers to these queries in sublinear space.
The Count-Min Sketch
Revisiting the Exact Solution

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.

- **Idea:** Store a fixed number of counters and assign a counter to each $x_i \in \mathcal{U}$. Multiple x_i's might be assigned to the same counter.

- To **increment**(x), increment the counter for x.

- To **estimate**(x), read the value of the counter for x.

![Diagram showing counters and symbols with numbers 12, 6, 5, 7]
Our Initial Structure

- We can model “assigning each x_i to a counter” by using hash functions.
- Pick a number of counters w (for “width;” more on that later). We’ll choose the exact value of w later.
- Choose, from a family of 2-independent hash functions \mathcal{H}, a uniformly-random hash function $h : \mathcal{U} \rightarrow [w]$.
- Create an array count of w counters, each initially zero.
- To $\text{increment}(x)$, increment $\text{count}[h(x)]$.
- To $\text{estimate}(x)$, return $\text{count}[h(x)]$.

\[\begin{array}{ccc}
137 & 42 & 166 \\
\vdots & & \\
& & 161
\end{array} \]
Analyzing our Structure
Some Notation

• Let \(x_1, x_2, x_3, \ldots \) denote the list of distinct items whose frequencies are being stored.

• Let \(a_1, a_2, a_3, \ldots \) denote the frequencies of those items.
 • e.g. \(a_i \) is the true number of times \(x_i \) is seen.

• Let \(\hat{a}_1, \hat{a}_2, \hat{a}_3, \ldots \) denote the estimate our data structure gives for the frequency of each item.
 • e.g. \(\hat{a}_i \) is our estimate for how many times \(x_i \) has been seen.

• **Important detail:** the \(a_i \) values are not random variables (data are chosen adversarially), while the \(\hat{a}_i \) values are random variables (they depend on a randomly-sampled hash function).
Our Goal

• We want to show that, with high probability, our estimate isn’t too far from the correct value.

• Mathematically, we want to look at the expression $\hat{a}_i - a_i$ and show that there is a “high probability” that this is “small enough.”

• We need to pin down what “high probability” and “small enough” mean. To do that, let’s first work out, mathematically, what $\hat{a}_i - a_i$ is.
Idea: Think of our element frequencies a_1, a_2, a_3, \ldots as a vector $a = [a_1, a_2, a_3, \ldots]$.

The total number of objects is the sum of the vector entries.

This is called the **L_1 norm** of a, and is denoted $\|a\|_1$:

$$\|a\|_1 = \sum_i |a_i|$$

There are $\|a\|_1$ total elements distributed across w buckets. We’re using a 2-independent hash family.

Reasonable guess: each bin has $\|a\|_1 / w$ elements in it, so $E[\hat{a}_i - a_i] \leq \|a\|_1 / w$

Question: Intuitively, what should we expect our approximation error to be?
Analyzing this Structure

- Let's look at $\hat{a}_i = \text{count}[h(x_i)]$ for some choice of x_i.
- For each element x_j:
 - If $h(x_i) = h(x_j)$, then x_j contributes a_j to $\text{count}[h(x_i)]$.
 - If $h(x_i) \neq h(x_j)$, then x_j contributes 0 to $\text{count}[h(x_i)]$.
- To pin this down precisely, let’s define a set of random variables X_1, X_2, \ldots, as follows:

$$X_j = \begin{cases}
1 & \text{if } h(x_i) = h(x_j) \\
0 & \text{otherwise}
\end{cases}$$

Each of these variables is called an *indicator random variable*, since it “indicates” whether some event occurs.
Analyzing this Structure

- Let's look at $\hat{a}_i = \text{count}[h(x_i)]$ for some choice of x_i.
- For each element x_j:
 - If $h(x_i) = h(x_j)$, then x_j contributes a_j to $\text{count}[h(x_i)]$.
 - If $h(x_i) \neq h(x_j)$, then x_j contributes 0 to $\text{count}[h(x_i)]$.
- To pin this down precisely, let’s define a set of random variables X_1, X_2, \ldots, as follows:

 $$X_j = \begin{cases}
 1 & \text{if } h(x_i) = h(x_j) \\
 0 & \text{otherwise}
 \end{cases}$$

- The value of $\hat{a}_i - a_i$ is then given by

 $$\hat{a}_i - a_i = \sum_{j \neq i} a_j X_j$$
$$
E[\hat{a}_i - a_i] = E\left[\sum_{j \neq i} a_j X_j\right]
$$

$$
= \sum_{j \neq i} E[a_j X_j]
$$

This follows from \textit{linearity of expectation}. We’ll use this property extensively over the next few days.
\[
E[\hat{a}_i - a_i] = E[\sum_{j \neq i} a_j X_j]
\]

\[
= \sum_{j \neq i} E[a_j X_j]
\]

\[
= \sum_{j \neq i} a_j E[X_j]
\]

The values of \(a_j\) are not random. **The randomness comes from our choice of hash function.**
\[
\begin{align*}
E[\hat{a}_i - a_i] &= E[\sum_{j \neq i} a_j X_j] \\
&= \sum_{j \neq i} E[a_j X_j] \\
&= \sum_{j \neq i} a_j E[X_j]
\end{align*}
\]

\[
E[X_j] = 1 \cdot \Pr[h(x_i) = h(x_j)] + 0 \cdot \Pr[h(x_i) \neq h(x_j)]
\]

\[
X_j = \begin{cases}
1 & \text{if } h(x_i) = h(x_j) \\
0 & \text{otherwise}
\end{cases}
\]
$$E[\widehat{a}_i - a_i] = E[\sum_{j \neq i} a_j X_j]$$

$$= \sum_{j \neq i} E[a_j X_j]$$

$$= \sum_{j \neq i} a_j E[X_j]$$

$$E[X_j] = 1 \cdot Pr[h(x_i) = h(x_j)] + 0 \cdot Pr[h(x_i) \neq h(x_j)]$$

$$= Pr[h(x_i) = h(x_j)]$$

If X is an indicator variable for some event \mathcal{E}, then $E[X] = Pr[\mathcal{E}]$. This is really useful when using linearity of expectation!
\[E[\hat{a}_i - a_i] = E\left[\sum_{j \neq i} a_j X_j\right] \]

\[= \sum_{j \neq i} E[a_j X_j] \]

\[= \sum_{j \neq i} a_j E[X_j] \]

\[
\begin{align*}
E[X_j] &= 1 \cdot \Pr[h(x_i) = h(x_j)] + 0 \cdot \Pr[h(x_i) \neq h(x_j)] \\
&= \Pr[h(x_i) = h(x_j)] \\
&= \frac{1}{w}
\end{align*}
\]

Hey, we saw this earlier!
\[E[\hat{a}_i - a_i] = E[\sum_{j \neq i} a_j X_j] \]

\[= \sum_{j \neq i} E[a_j X_j] \]

\[= \sum_{j \neq i} a_j E[X_j] \]

\[= \sum_{j \neq i} \frac{a_j}{w} \]

\[E[X_j] = 1 \cdot \Pr[h(x_i) = h(x_j)] + 0 \cdot \Pr[h(x_i) \neq h(x_j)] \]

\[= \Pr[h(x_i) = h(x_j)] \]

\[= \frac{1}{w} \]

Hey, we saw this earlier!
\[E[\hat{a}_i - a_i] = E[\sum_{j \neq i} a_j X_j] \]
\[= \sum_{j \neq i} E[a_j X_j] \]
\[= \sum_{j \neq i} a_j E[X_j] \]
\[= \sum_{j \neq i} \frac{a_j}{w} \]
\[\leq \frac{||a||_1}{w} \]

\[E[X_j] = 1 \cdot \Pr[h(x_i) = h(x_j)] + 0 \cdot \Pr[h(x_i) \neq h(x_j)] \]
\[= \Pr[h(x_i) = h(x_j)] \]
\[= \frac{1}{w} \]
Goal: Make an estimator \hat{a} for some quantity a where

$$|\hat{a} - a| \leq \varepsilon \cdot \text{size(input)}$$

for some measure of the size of the input.

How do we tune w so we’re likely to fall in this range?

$$E[\hat{a}_i - a_i] \leq \frac{||a||_1}{w}$$
\[
\Pr \left[\hat{a}_i - a_i > \varepsilon \|a\|_1 \right] \\
\leq \frac{\mathbb{E} \left[\hat{a}_i - a_i \right]}{\varepsilon \|a\|_1}
\]

We don’t know the exact distribution of this random variable.

However, we have a **one-sided error**: our estimate can never be lower than the true value. This means that \(\hat{a}_i - a_i \geq 0 \).

Markov’s inequality says that if \(X \) is a nonnegative random variable, then

\[
\Pr[X \geq c] \leq \frac{\mathbb{E}[X]}{c}.
\]
\[\Pr \left[\hat{a}_i - a_i > \varepsilon \|a\|_1 \right] \leq \frac{E \left[\hat{a}_i - a_i \right]}{\varepsilon \|a\|_1} \leq \frac{\|a\|_1}{w} \cdot \frac{1}{\varepsilon \|a\|_1} \]

\[E[\hat{a}_i - a_i] \leq \frac{\|a\|_1}{w} \]
\[
\text{Pr} \left[\hat{a}_i - a_i > \varepsilon \| a \|_1 \right]
\leq \frac{\text{E} \left[\hat{a}_i - a_i \right]}{\varepsilon \| a \|_1}
\leq \frac{\| a \|_1}{\omega} \cdot \frac{1}{\varepsilon \| a \|_1}
= \frac{1}{\varepsilon \omega}
\]
Goal: Make an estimator \hat{a} for some quantity a where

With probability at least $1 - \delta$,

$$|\hat{a} - a| \leq \varepsilon \cdot \text{size(input)}$$

for some measure of input size.

Initial Idea:

Pick $w = \varepsilon^{-1} \cdot \delta^{-1}$. Then

$$\Pr[\hat{a}_i - a_i > \varepsilon \|a\|_1] \leq \frac{1}{\varepsilon w}$$

Suppose we’re counting 1,000 distinct items.

If we want our estimate to be within $\varepsilon \|a\|_1$ of the true value with 99.9% probability, how much memory do we need?

Answer: $1,000 \cdot \varepsilon^{-1}$.

Can we do better?
Goal: Make an estimator \(\hat{a} \) for some quantity \(a \) where

With probability at least 1 – \(\delta \),

\[
|\hat{a} - a| \leq \varepsilon \cdot \text{size(input)}
\]

for some measure of input size.

\[
\Pr[\hat{a}_i - a_i > \varepsilon \|a\|_1] \leq \frac{1}{\varepsilon w}
\]

Probably

Approximately

Correct

Revised Idea: Pick \(w = e \cdot \varepsilon^{-1} \). Then

\[
\Pr[\hat{a}_i - a_i > \varepsilon \|a\|_1] < e^{-1}
\]

We could choose \(w = k \cdot \varepsilon^{-1} \) for any constant \(k \) to get a failure probability of at most \(k^{-1} \). The choice of \(e \) is (mostly) arbitrary.
Goal: Make an estimator \(\hat{a} \) for some quantity \(a \) where

With probability at least \(1 - \delta \),

\[
|\hat{a} - a| \leq \varepsilon \cdot \text{size}(\text{input})
\]

for some measure of input size.

\[
\Pr[\hat{a}_i - a_i > \varepsilon \|a\|_1] \leq \frac{1}{\varepsilon w}
\]

Revised Idea: Pick \(w = e \cdot \varepsilon^{-1} \). Then

\[
\Pr[\hat{a}_i - a_i > \varepsilon \|a\|_1] < e^{-1}
\]

This simple data structure, by itself, is likely to be wrong.

What happens if we run a bunch of copies of this approach in parallel?
Running in Parallel

• Let’s run d copies of our data structure in parallel with one another.

• Each row has its hash function sampled uniformly at random from our hash family.

• Each time we **increment** an item, we perform the corresponding **increment** operation on each row.

\[w = \lceil e \cdot \varepsilon^{-1} \rceil \]

\[
\begin{array}{cccccccc}
 & h_1 & h_2 & h_3 & \ldots & h_d \\
 31 & 41 & 59 & 26 & 53 & \ldots & 58 \\
27 & 18 & 28 & 18 & 28 & \ldots & 45 \\
16 & 18 & 3 & 39 & 88 & \ldots & 75 \\
 \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
 69 & 31 & 47 & 18 & 5 & \ldots & 59 \\
\end{array}
\]
Running in Parallel

- Imagine we call $\text{estimate}(x)$ on each of our estimators and get back these estimates.
- We need to give back a single number.
- **Question:** How should we aggregate these numbers into a single estimate?

Formulate a hypothesis!

<table>
<thead>
<tr>
<th>Estimator 1:</th>
<th>Estimator 2:</th>
<th>Estimator 3:</th>
<th>Estimator 4:</th>
<th>Estimator 5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>271</td>
<td>166</td>
<td>103</td>
<td>261</td>
</tr>
</tbody>
</table>
Running in Parallel

• Imagine we call \textit{estimate}(x) on each of our estimators and get back these estimates.

• We need to give back a single number.

• \textbf{Question:} How should we aggregate these numbers into a single estimate?

\begin{itemize}
 \item \textbf{Estimator 1:} 137
 \item \textbf{Estimator 2:} 271
 \item \textbf{Estimator 3:} 166
 \item \textbf{Estimator 4:} 103
 \item \textbf{Estimator 5:} 261
\end{itemize}

Discuss with your neighbors!
Running in Parallel

- Imagine we call \textit{estimate}(x) on each of our estimators and get back these estimates.
- We need to give back a single number.
- \textbf{Question:} How should we aggregate these numbers into a single estimate?

\begin{align*}
\text{Estimator 1:} & \quad 137 \\
\text{Estimator 2:} & \quad 271 \\
\text{Estimator 3:} & \quad 166 \\
\text{Estimator 4:} & \quad 103 \\
\text{Estimator 5:} & \quad 261
\end{align*}

\textit{Intuition:} The smallest estimate returned has the least “noise,” and that’s the best guess for the frequency.
\[
\Pr \left[\min \left\{ \hat{a}_{ij} \right\} - a_i > \varepsilon \| a \|_1 \right] = \Pr \left[\bigwedge_{j=1}^d \left(\hat{a}_{ij} - a_i > \varepsilon \| a \|_1 \right) \right]
\]

The only way the minimum estimate is inaccurate is if every estimate is inaccurate.

Let \(\hat{a}_{ij} \) be the estimate from the \(j \)th copy of the data structure.

Our final estimate is \(\min \left\{ \hat{a}_{ij} \right\} \).
\[
\Pr \left[\min \{ \hat{a}_{ij} \} - a_i > \varepsilon \|a\|_1 \right] = \Pr \left[\bigwedge_{j=1}^{d} \left(\hat{a}_{ij} - a_i > \varepsilon \|a\|_1 \right) \right] = \prod_{j=1}^{d} \Pr \left[\hat{a}_{ij} - a_i > \varepsilon \|a\|_1 \right]
\]

Each copy of the data structure is independent of the others.

Let \(\hat{a}_{ij} \) be the estimate from the \(j \)th copy of the data structure.

Our final estimate is \(\min \{ \hat{a}_{ij} \} \).
\[
\Pr \left[\min \left\{ \hat{a}_{ij} \right\} - a_i > \varepsilon \|a\|_1 \right]
\]

\[
= \Pr \left[\bigwedge_{j=1}^{d} \left(\hat{a}_{ij} - a_i > \varepsilon \|a\|_1 \right) \right]
\]

\[
= \prod_{j=1}^{d} \Pr \left[\hat{a}_{ij} - a_i > \varepsilon \|a\|_1 \right]
\]

\[
\leq \prod_{j=1}^{d} e^{-1}
\]

Let \(\hat{a}_{ij} \) be the estimate from the \(j \)th copy of the data structure.

Our final estimate is

\[
\min \left\{ \hat{a}_{ij} \right\}
\]
Let \hat{a}_{ij} be the estimate from the jth copy of the data structure.

Our final estimate is

$$\min \{ \hat{a}_{ij} \}$$
Goal: Make an estimator \hat{a} for some quantity a where

With probability at least $1 - \delta$,

$$|\hat{a} - a| \leq \varepsilon \cdot \text{size}(\text{input})$$

for some measure of input size.

Idea: Choose $d = -\ln \delta$.
(Equivalently: $d = \ln \delta^{-1}$.) Then

$$\Pr[\min \{\hat{a}_{ij} - a_i\} > \varepsilon \|a\|_1] \leq e^{-d}$$

$$\Pr[\min \{\hat{a}_{ij} - a_i\} > \varepsilon \|a\|_1] \leq \delta$$
The Count-Min Sketch

\[w = \lceil e \cdot \varepsilon^{-1} \rceil \]

<table>
<thead>
<tr>
<th></th>
<th>(h_1)</th>
<th>(h_2)</th>
<th>(h_3)</th>
<th>...</th>
<th>(h_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31</td>
<td>41</td>
<td>59</td>
<td>26</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>18</td>
<td>28</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>18</td>
<td>3</td>
<td>39</td>
<td>88</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>31</td>
<td>47</td>
<td>18</td>
<td>5</td>
</tr>
</tbody>
</table>

Sampled uniformly and independently from a 2-independent family of hash functions
The Count-Min Sketch

increment(x):
 for i = 1 … d:
 count[i][h_i(x)]++

estimate(x):
 result = \infty
 for i = 1 … d:
 result = \min(result, count[i][h_i(x)])
 return result
The Count-Min Sketch

- Update and query times are $\Theta(d)$, which is $\Theta(\log \delta^{-1})$.
- Space usage: $\Theta(\varepsilon^{-1} \cdot \log \delta^{-1})$ counters.
 - Each individual estimator has $\Theta(\varepsilon^{-1})$ counters, and we run $\Theta(\log \delta^{-1})$ copies in parallel.
- This is a major improvement over our earlier approach that used $\Theta(\varepsilon^{-1} \cdot \delta^{-1})$ counters.
- This can be significantly better than just storing a raw frequency count!
- Provides an estimate to within $\varepsilon \|a\|_1$ with probability at least $1 - \delta$.
Major Ideas From Today

- **2-independent hash families** are useful when we want to keep collisions low.

- A “good” approximation of some quantity should have tunable *confidence* and *accuracy* parameters.

- **Sums of indicator variables** are useful for deriving expected values of estimators.

- **Concentration inequalities** like *Markov’s inequality* are useful for showing estimators don’t stay too much from their expected values.

- Good estimators can be built from multiple parallel copies of weaker estimators.
Next Time

- **Count Sketches**
 - An alternative frequency estimator with different time/space bounds.

- **Cardinality Estimation**
 - Estimating how many different items you’ve seen in a data stream.