

Suffix and LCP Arrays

Recap from Last Time

8

7

4

0

1
3

6

o
n
s
e
n
s
e
$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

Suffix Trees

nonsense$
onsense$
nsense$
sense$
ense$
nse$
se$
e$
$

nonsense$
012345678

5

2

n
s
e
$

$

n

s
e

Theorem: w is a
substring of x if and

only if w is a prefix of
a suffix of x.

New Stuff!

Representing Suffix Trees

Representing a Suffix Tree

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● We know that a
suffix tree has O(m)
nodes, where m is
the number of
characters in the
input string.

● This means that
there are O(m)
edges.

● Question: Why can’t
we immediately
claim that the space
usage of the suffix
tree is O(m)?

Representing a Suffix Tree

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● Claim: Writing out
all suffixes of a string
of length m requires
Θ(m2) characters.

● Proof idea: Those
suffixes have length
1 + 2 + … + (m+1),
factoring in the
special $ character.

● Problem: It is
indeed possible to
build a suffix tree
with Θ(m2) total
letters on the edges.

Representing a Suffix Tree

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● By being clever with
our representation, we
can guarantee that a
suffix tree uses only
Θ(m) space, regardless
of the input string.

● Observation: Each
edge is labeled with a
substring of the
original input string.

● Idea: Don’t actually
write out the labels on
the edges. Just write
down the start and end
index!

Representing a Suffix Tree

nonsense$
012345678

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$ $ n
s
e
$

8
8

4
4

0
0

1
8

start

end

child

$ e n o
3
4

s

n o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

Representing a Suffix Tree

nonsense$
012345678

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

● Space usage
required for a
suffix tree:
● O(m) space for

all the nodes.
● O(m) space for

a copy of the
original string.

● O(m) space for
the edges.

● Total space: O(m).

Suffix Tree Space Usage
● Suffix tree edges take up a lot of space.

● Two machine words per edge to denote the range of
characters visited.

● One machine word per edge for the pointer itself.
● Number of edges ranges from m to 2m – 1, so this is between

3m and 6m machine words for the whole string!
● Example: a human genome is about three billion

characters long.
● With clever techniques, that can be packed into about

800MB.
● On a 32-bit machine, the suffix tree needs about 48GB – too

big to fit into memory!
● On a 64-bit machine, the suffix tree needs about 96GB – way

more than a typical machine can hold!

Key Question: Can we get the benefits of
a suffix tree without the space penalty?

What is it about suffix trees that make
them so useful algorithmically?

Theorem: There is a node labeled ω in a suffix tree for T
if and only if

ω is a suffix of T$ or ω is a branching word in T$.

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

$

$ n
s
e
$

Theorem: There is a node labeled ω in a suffix tree for T
if and only if

ω is a suffix of T$ or ω is a branching word in T$.

n

s
e

 s
 ee

A string ω is a
branching word in

T$ if there are distinct
characters a and b

where ωa and ωb are
substrings of T$.

Key Intuition: The efficiency in a suffix tree is largely due to
1. keeping the suffixes in sorted order, and
2. exposing branching words.

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

Where We’re Going
● Today, we’ll see two data structures that

encode much of the same information as
suffix trees, but in much less space.
● The suffix array stores information about the

ordering of the suffixes of a string.
● The LCP array stores information about the

branching words of a string.
● Together, they’ll provide algorithms that

match or are comparable to the time
bounds from last time.

Suffix Arrays

Theorem: There is a node labeled ω in a suffix tree for T
if and only if

ω is a suffix of T$ or ω is a branching word in T$.

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

Theorem: There is a node labeled ω in a suffix tree for T
if and only if

ω is a suffix of T$ or ω is a branching word in T$.

n

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

8

7

4

0

5

2

1
3

6

nonsense$
012345678

$
e$
ense$
nonsense$
nse$
nsense$
onsense$
se$
sense$

Suffix Arrays
● A suffix array for a string

T is a sorted array of the
suffixes of the string T$.

● Suffix arrays distill out
just the first component of
suffix trees: they store
suffixes in sorted order.

● Non-obvious fact: Suffix
arrays can be built in time
O(m). We can cover this
later in the quarter if
you’re interested.

ABANANABANDANA$

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

Suffix Arrays
● The way we’ve

drawn suffix
arrays is terribly
space-inefficient.
● It always uses

space Θ(m2), since
that’s how many
total characters
occur in all
suffixes.

● Can we do better? ABANANABANDANA$

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

Suffix Arrays
● We reduced the space

usage of suffix trees by
representing substrings,
implicitly, as ranges
within the original string.

● Idea: Don’t store the
suffixes themselves. Just
store the starting
positions of the suffixes.

● Space: Θ(m), and with
only one machine word
used per character of
input. ABANANABANDANA$

012345678901234

14
13
0
6
11
4
2
8
1
7
10
12
5
3
9

Suffix Arrays
● Although the picture

to the right is how
we’d represent the
suffix array in
memory, for this
lecture we’ll draw
things out the longer
way.

● This is just to build
intuition; we
wouldn’t actually do
that in practice. ABANANABANDANA$

012345678901234

14
13
0
6
11
4
2
8
1
7
10
12
5
3
9

Using Suffix Arrays
● Last time, we saw

how to find all
instances of a
pattern P in a text
T using suffix
trees.

● How could we do
that with suffix
arrays?

ABANANABANDANA$

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

Using Suffix Arrays
● Reminder: Our text string T

has length m. Our pattern
string P has length n.

● Claim: With a suffix array, we
can determine whether P
appears in T in time O(n log m).

Binary search has O(log m)
rounds.
Each probe takes time O(n).

This bound can be made tight.
(How?)
Figure that m is often much
bigger than n, so this is a huge
win over a raw scan.

ABANANABANDANA$

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

How?
Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23

Using Suffix Arrays
● Reminder: Our text string T

has length m. Our pattern
string P has length n.

● Claim: With a suffix array, we
can determine whether P
appears in T in time O(n log m).
● Binary search has O(log m)

rounds.
● Each probe takes time O(n).

● This bound can be made tight.
(How?)

● Figure that m is often much
bigger than n, so this is a huge
win over a raw scan.

ANA$
ANABANDANA$

$
A$
ABANANABANDANA$
ABANDANA$

ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$

ANANABANDANA$

ANAN

Using Suffix Arrays
$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$

NDANA$

ABANANABANDANA$

NA$
NABANDANA$
NANABANDANA$

NA

● Claim: With a suffix
array, we can find all
matches of a pattern P in
T in time O(n log m + z),
where z is the number of
matches.

● Idea: Binary search can
be used to find a range of
values equal to some key.
Adapt that idea to find all
suffixes beginning with
the same prefix.

The Story So Far
● Suffix arrays store all the suffixes of a string in

sorted order.
● They provide an

⟨O(m), O(n log m + z)⟩
solution to the substring search problem.

● Intuition: Suffix trees are valuable in large
part because they just keep the suffixes sorted.

● What else are suffix trees doing?

Theorem: There is a node labeled ω in a suffix tree for T
if and only if

ω is a suffix of T$ or ω is a branching word in T$.

n

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

s
e

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

 s
 e

$ e

$ n
s
e
$

nonsense$
012345678

8

7

4

0

5

2

1
3

6

o
n
s
e
n
s
e
$

n
s
e
$

$

 n
 s
 e
 $

$

 o
 n
 s
 e
 n
 s
 e
 $

$

$ n
s
e
$

Theorem: There is a node labeled ω in a suffix tree for T
if and only if

ω is a suffix of T$ or ω is a branching word in T$.

n

s
e

 s
 ee

nonsense$
012345678

Branching Words
● Recall: If T is a

string, then ω is a
branching word
in T$ if there are
characters a ≠ b
such that ωa and
ωb are substrings
of T$.

ABANANABANDANA$

Branching Words
● Recall: If T is a

string, then ω is a
branching word
in T$ if there are
characters a ≠ b
such that ωa and
ωb are substrings
of T$.

ABANANABANDANA$

Although ABA is a
repeated substring, it is
not a branching word

because all appearances
are followed by N.

Branching Words
● Recall: If T is a

string, then ω is a
branching word
in T$ if there are
characters a ≠ b
such that ωa and
ωb are substrings
of T$.

ABANANABANDANA$

The substring ANANA only
appears once, so it’s not

a branching word.

Branching Words
$
A$

ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$

ABANANABANDANA$
ABANDANA$

● Notice that, by sorting
suffixes, we’ve made it
easier to spot branching
words.

● Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix
array.

● The branching word will
be the longest common
prefix (or LCP) of those
adjacent suffixes.

Branching Words
$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$

NDANA$

ABANANABANDANA$

NA$
NABANDANA$
NANABANDANA$

● Notice that, by sorting
suffixes, we’ve made it
easier to spot branching
words.

● Specifically, all suffixes
starting with a
branching word will be
adjacent in the suffix
array.

● The branching word will
be the longest common
prefix (or LCP) of those
adjacent suffixes.

Branching Words
● Theorem: A string ω is a

branching word in string T$ if
and only if it’s the longest
common prefix of two adjacent
suffixes in T’s suffix array.

● Proof idea: If ω is the longest
common prefix of two adjacent
suffixes, let a and b be the
characters immediately following
ω in those two suffixes. Then ωa
and ωb are substrings of T$.
If ω is branching, choose the
lexicographically smallest a and
b making the definition work.
Then the last suffix starting with
ωa and the first suffix starting
with ωb are adjacent in the suffix
array. ■ ABANANABANDANA$

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ω is an internal node in the suffix tree for T

if and only if

ω is a branching word in T$

if and only if

ω is the LCP of two adjacent suffixes in the suffix array for T

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

$ A

$ B
A
N

A
N
A
B
A
N
D
A
N
A
$

 D
 A
 N
 A
 $

B
A
N

A
N
A
B
A
N
D
A
N
A
$

 D
 A
 N
 A
 $

 D
 A
 N
 A
 $

 N

$ B
A
N
D
A
N
A
$

 N
 A
 B
 A
 N
 D
 A
 N
 A
 $

 A D
 A
 N
 A
 $

 N

$ B
A
N
D
A
N
A
$

 N
 A
 B
 A
 N
 D
 A
 N
 A
 $

 A D
 A
 N
 A
 $

ABANANABANDANA$

Key Intuition: Adjacent suffixes with long
shared prefixes correspond to subtrees of

the suffix tree.

Harnessing this Connection

Longest Repeated Substring
● Last time, we

saw how to solve
the longest
repeated
substring
problem by
using suffix
trees.

● Algorithm: Find
the internal node
in the suffix tree
with the longest
label.

● Question: Can
we do this with
just a suffix
array? ABANANABANDANA$

$

$

A
N
A
B
A
N
D
A
N
A
$

 D
 A
 N
 A
 $

B
A
N

A
N
A
B
A
N
D
A
N
A
$

 D
 A
 N
 A
 $

 D
 A
 N
 A
 $

$ B
A
N
D
A
N
A
$

 N
 A
 B
 A
 N
 D
 A
 N
 A
 $

 D
 A
 N
 A
 $

$ B
A
N
D
A
N
A
$

 N
 A
 B
 A
 N
 D
 A
 N
 A
 $

 D
 A
 N
 A
 $

B
A
N

 N

 A N

 A

A

Longest Repeated Substring
● We can list all branching

words from a suffix array
in time O(m2).

● O(m) pairs; each pair
takes time O(m) to
process.

● This worst-case bound
can be realized.

● Contrast this with O(m)
for a suffix tree.

● Can we do better?

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$

Longest Repeated Substring
● Observation: We don’t

actually need to know
what all the branching
words are to find the
longest repeated
substring.

● We just need to know
how long they are.

● That way, we can figure
out which is longest.

● Is there some nice way
to do this?

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$

LCP Arrays

LCP Arrays
● The LCP array,

often denoted H, is
an array where H[i]
is the length of the
LCP of the ith and
(i+1)st suffixes in
the suffix array.

● (The letter H comes
from “height.”)

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$

0
1
4
1
3
3
2
0
3
0
0
2
2
1

$ A

$ B
A
N

A
N
A
B
A
N
D
A
N
A
$

 D
 A
 N
 A
 $

B
A
N

A
N
A
B
A
N
D
A
N
A
$

 D
 A
 N
 A
 $

 D
 A
 N
 A
 $

 N

$ B
A
N
D
A
N
A
$

 N
 A
 B
 A
 N
 D
 A
 N
 A
 $

 A D
 A
 N
 A
 $

 N

$ B
A
N
D
A
N
A
$

 N
 A
 B
 A
 N
 D
 A
 N
 A
 $

 A D
 A
 N
 A
 $

ABANANABANDANA$

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

0
1
4
1
3
3
2
0
3
0
0
2
2
1

Key intuition: The suffix array gives the leaves of the suffix tree.
The LCP array gives the internal nodes of the suffix tree.

Using LCP Arrays
● If you already have a

suffix array and LCP
array, you can solve
longest repeated
substring in time O(m):
● Find the largest element

in the LCP array.
● Return the string it

corresponds to.
● Question: How fast can

we construct an LCP
array?

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

0
1
4
1
3
3
2
0
3
0
0
2
2
1

ABANANABANDANA$

Building LCP Arrays

Building LCP Arrays
● It never hurts to start with

the naive algorithm and see
what happens!

● Algorithm: For each
consecutive pair of strings
in the suffix array, compute
the length of their longest
common prefix.

● We can upper-bound the
runtime at O(m2).

● Question: Can we realize
this upper bound?

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

0
1
4
1
3
3
2
0
3
0
0
2
2
1

ABANANABANDANA$

Building LCP Arrays
● Why is our naive

algorithm slow?
● Intuition: We

aren’t able to carry
work from one
suffix over to the
next.

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

0
1
4
1
3
3
2
0
3
0
0
2
2
1

ABANANABANDANA$

Building LCP Arrays
● Key intuition: Suffixes

overlap one another! It
should be possible to
share LCP information
across suffixes.

● For example, suppose we
compute the LCP entry
shown here.

● Look at the suffixes
formed by dropping the
first letter of these two
suffixes.

● What do we know about
their LCP?

$
A$

ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$

DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$
ABANDANA$

BANANABANDANA$
BANDANA$

4

ABANANABANDANA$
ABANDANA$

3

Building LCP Arrays
$
A$
ABANANABANDANA$
ABANDANA$

ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$

NANABANDANA$
NDANA$

ANA$
ANABANDANA$

NA$
NABANDANA$

● Let’s do another
example. Suppose
we know the LCP of
these suffixes.

● As before, drop the
first letter from
each suffix.

● What can we say
about the LCP of
the resulting
suffixes?

3

ANA$
ANABANDANA$

2

Building LCP Arrays
$
A$
ABANANABANDANA$

ANA$

ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$

NDANA$

NABANDANA$
NANABANDANA$

ABANDANA$

ANABANDANA$

2

NABANDANA$
NANABANDANA$

● Sometimes, in dropping
the first letter, two
adjacent suffixes get
spread out.
Claim: Look at the second
suffix in the pair. Its LCP
with the suffix before it is
at least the previous LCP
minus one.
Think about the suffix tree.
The two shorter suffixes
are in the same subtree, so
everything between them
is also in that subtree.are
in sorted order!

Building LCP Arrays
● Sometimes, in dropping

the first letter, two
adjacent suffixes get
spread out.

● Claim: Look at the second
suffix in the pair. Its LCP
with the suffix before it is
at least the previous LCP
minus one.

● Think about the suffix
tree. The two shorter
suffixes are in the same
subtree, so everything
between them is also in
that subtree.

$
A$
ABANANABANDANA$

ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$

NDANA$

NABANDANA$
NANABANDANA$

ABANDANA$
ANA$
ANABANDANA$

2

NABANDANA$
NANABANDANA$

Building LCP Arrays
● We know that these two

new suffixes must have
an LCP of at least 1,
because the two old
suffixes have an LCP of 2.

● However, the LCP may be
longer than 1, since
we’ve never seen one of
these two suffixes.

● We still need to some
some scanning, but we
won’t necessarily have to
rescan the entire suffix.

$
A$
ABANANABANDANA$

ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$

NDANA$

NABANDANA$
NANABANDANA$

ABANDANA$
ANA$
ANABANDANA$

2

NABANDANA$
NANABANDANA$

3

Kasai’s Algorithm
● For each suffix of the

original string, except the
last:
● Find that suffix in the suffix

array.
● Look at the suffix that

comes before it.
● () Find the length of the ★

longest common prefix of
those suffixes.

● Write that down in the H
array.

● Use the insight from the
previous slides to speed
up step ().★

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$

Kasai’s Algorithm
● For each suffix of the

original string, except the
last:
● Find that suffix in the suffix

array.
● Look at the suffix that

comes before it.
● () Find the length of the ★

longest common prefix of
those suffixes.

● Write that down in the H
array.

● Use the insight from the
previous slides to speed
up step ().★

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$

0
1
4
1
3
3
2
0
3
0
0
2
2
1

Kasai’s Algorithm
● For each suffix of the

original string, except the
last:
● Find that suffix in the suffix

array.
● Look at the suffix that

comes before it.
● () Find the length of the ★

longest common prefix of
those suffixes.

● Write that down in the H
array.

● Use the insight from the
previous slides to speed
up step ().★

With O(m) preprocessing
time, can be done in time

O(1).

Question to Ponder:
How would you do this?

Kasai’s Algorithm
● For each suffix of the

original string, except the
last:
● Find that suffix in the suffix

array.
● Look at the suffix that

comes before it.
● () Find the length of the ★

longest common prefix of
those suffixes.

● Write that down in the H
array.

● Use the insight from the
previous slides to speed
up step ().★

With O(m) preprocessing
time, can be done in time

O(1).

Question to Ponder:
How would you do this?

The runtime of this step is
proportional to how much the LCP

increases on that step.

The LCP value decreases by at most
one per suffix. (We saw this earlier.)

The LCP value maxes out at m. (Can’t
match more than all the characters.)

Therefore, the LCP value can grow at
most 2m times. (Prove this!)

Claim: Across all iterations, this step
takes a total of O(m) time.

ABANANABANDANA$
ABANDANA$

Already known
to match

Had to scan
these characters

Kasai’s Algorithm
● For each suffix of the

original string, except the
last:
● Find that suffix in the suffix

array.
● Look at the suffix that

comes before it.
● () Find the length of the ★

longest common prefix of
those suffixes.

● Write that down in the H
array.

● Use the insight from the
previous slides to speed
up step ().★

With O(m) preprocessing
time, can be done in time

O(1).

Question to Ponder:
How would you do this?

The runtime of this step is
proportional to how much the LCP

increases on that step.

The LCP value decreases by at most
one per suffix. (We saw this earlier.)

The LCP value maxes out at m. (Can’t
match more than all the characters.)

Therefore, the LCP value can grow at
most 2m times. (Prove this!)

Claim: Across all iterations, this step
takes a total of O(m) time.

Kasai’s Algorithm
● For each suffix of the

original string, except the
last:
● Find that suffix in the suffix

array.
● Look at the suffix that

comes before it.
● () Find the length of the ★

longest common prefix of
those suffixes.

● Write that down in the H
array.

● Use the insight from the
previous slides to speed
up step ().★

Total
runtime:

O(m).

More to Explore
● We could easily spend a whole quarter talking

about suffix arrays. Here’s what we didn’t cover:
● Bottom-up tree simulations: Using LCP arrays,

you can simulate any O(m)-time suffix tree algorithm
that works with a bottom-up DFS in time O(m).

● Faster substring searching: Using LCP arrays,
plus RMQ, you can improve the cost of a substring
search to O(n + z + log m).

● Burrows-Wheeler transforms: Suffix arrays, plus
LCP arrays, can be used to significantly improve the
performance of text compressors.

● Check these out – they’re super interesting!

Next Time
● Amortized Analysis

● Lying in a runtime analysis.
● The Potential Method

● Physics meets data structure design.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

