Balanced Trees
Part One
Balanced Trees

• Balanced search trees are among the most useful and versatile data structures.

• Many programming languages ship with a balanced tree library.
 • C++: std::map / std::set
 • Java: TreeMap / TreeSet
 • Python: OrderedDict

• Many advanced data structures are layered on top of balanced trees.
 • We'll see them used to build y-Fast Tries later in the quarter. (They’re really really cool, trust me!)
Where We're Going

- **B-Trees (Today)**
 - A simple type of balanced tree developed for block storage.

- **Red/Black Trees (Today)**
 - The canonical balanced binary search tree.

- **Augmented Search Trees (Tuesday)**
 - Adding extra information to balanced trees to supercharge the data structure.

- **Two Advanced Operations (Tuesday)**
 - Splitting and joining BSTs.
Outline for Today

• **BST Review**
 • Refresher on basic BST concepts and runtimes.

• **Overview of Red/Black Trees**
 • What we're building toward.

• **B-Trees and 2-3-4 Trees**
 • A simple balanced tree in depth.

• **Intuiting Red/Black Trees**
 • A much better feel for red/black trees.
A Quick BST Review
Binary Search Trees

- A **binary search tree** is a binary tree with the following properties:
 - Each node in the BST stores a **key**, and optionally, some auxiliary information.
 - The key of every node in a BST is strictly greater than all keys to its left and strictly smaller than all keys to its right.
- The **height** of a binary search tree is the length of the longest path from the root to a leaf, measured in the number of **edges**.
 - A tree with one node has height 0.
 - A tree with no nodes has height -1, by convention.
Searching a BST

- 137
- 73
- 42
- 60
- 271
- 161
- 314
Inserting into a BST
Inserting into a BST

137

73 271

42 161 314

60

166
Deleting from a BST

Case 1: If the node has just no children, just remove it.
Deleting from a BST

Case 2: If the node has just one child, remove it and replace it with its child.
Deleting from a BST

Case 3: If the node has two children, find its inorder successor (which has zero or one child), replace the node's key with its successor's key, then delete its successor.
Runtime Analysis

• The time complexity of all these operations is $O(h)$, where h is the height of the tree.
 • That’s the longest path we can take.
• In the best case, $h = O(\log n)$ and all operations take time $O(\log n)$.
• In the worst case, $h = \Theta(n)$ and some operations will take time $\Theta(n)$.
• **Challenge:** How do you efficiently keep the height of a tree low?
A Glimpse of Red/Black Trees
Red/Black Trees

- A **red/black tree** is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
Red/Black Trees

- A red/black tree is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
Red/Black Trees

- **Theorem**: Any red/black tree with \(n \) nodes has height \(O(\log n) \).
 - We could prove this now, but there's a much simpler proof of this we'll see later on.
- Given a fixed red/black tree, lookups can be done in time \(O(\log n) \).
Mutating Red/Black Trees

What are we supposed to do with this new node?
How do we fix up the black-height property?
Fixing Up Red/Black Trees

- **The Good News:** After doing an insertion or deletion, can locally modify a red/black tree in time $O(\log n)$ to fix up the red/black properties.

- **The Bad News:** There are a lot of cases to consider and they're not trivial.

- Some questions:
 - How do you memorize / remember all the different types of rotations?
 - How on earth did anyone come up with red/black trees in the first place?
B-Trees
Generalizing BSTs

- In a binary search tree, each node stores a single key.
- That key splits the “key space” into two pieces, and each subtree stores the keys in those halves.
Generalizing BSTs

• In a **multiway search tree**, each node stores an arbitrary number of keys in sorted order.

• A node with \(k \) keys splits the key space into \(k+1 \) regions, with subtrees for keys in each region.

\[(-\infty, 0) \rightarrow (0, 3) \rightarrow (3, 5) \rightarrow (5, \infty) \]
Generalizing BSTs

- In a *multiway search tree*, each node stores an arbitrary number of keys in sorted order.

- Surprisingly, it’s a bit easier to build a balanced multiway tree than it is to build a balanced BST. Let’s see how.
Balanced Multiway Trees

- In some sense, building a balanced multiway tree isn’t all that hard.

- We can always just cram more keys into a single node!

- At a certain point, this stops being a good idea – it’s basically just a sorted array.
Balanced Multiway Trees

• What could we do if our nodes get too big?
 • **Option 1:** Push keys down into new nodes.
 • **Option 2:** Split big nodes, kicking keys higher up.

• What are some advantages of each approach?
• What are some disadvantages?
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

```
10 50 99
```
```
20 30 40
```
```
31 35 39
```
```
32 33 34
```
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

• **Option 1**: Push keys down into new nodes.
 • Simple to implement.
 • Can lead to tree imbalances.

• **Option 2**: Split big nodes, kicking keys higher up.
 • Keeps the tree balanced.
 • Slightly trickier to implement.
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

- **Option 1**: Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- **Option 2**: Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

• **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

• **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

- **Option 1:** Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.

- **Option 2:** Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.
Balanced Multiway Trees

- **Option 1**: Push keys down into new nodes.
 - Simple to implement.
 - Can lead to tree imbalances.
- **Option 2**: Split big nodes, kicking keys higher up.
 - Keeps the tree balanced.
 - Slightly trickier to implement.

Each existing node’s depth just increased by one.
Balanced Multiway Trees

- **General idea:** Keep nodes holding roughly between b and $2b$ keys, for some parameter b.
 - (Exception: the root node can have fewer keys.)
- If a node gets too big, split it and kick a key higher up.

- **Advantage 1:** The tree is always balanced.
- **Advantage 2:** Insertions and lookups are pretty fast.
Balanced Multiway Trees

- We currently have a *mechanical definition* of how these balanced multiway trees work:
 - Nodes should have between roughly b and $2b$ keys in them.
 - Split nodes when they get too big and propagate the splits upward.
- We currently don’t have an *operational definition* of how these balanced multiway trees work.
 - e.g. “A Cartesian tree for an array is a binary tree that’s a min-heap and whose inorder traversal gives back the original array.”
 - e.g. “A suffix tree is a Patricia trie with one node for each suffix and branching word of T.”
B-Trees

A **B-tree of order** \(b \) is a multiway search tree where

- each node has (roughly) between \(b \) and \(2b \) keys, except the root, which may have between 1 and \(b \) keys;
- each node is either a leaf or has one more child than key; and
- all leaves are at the same depth.

Different authors give different bounds on how many keys can be in each node. The ranges are often \([b-1, 2b-1]\) or \([b, 2b]\). For the purposes of today’s lecture, we’ll use the range \([b-1, 2b-1]\) for the key limits, just for simplicity.
Analyzing Multiway Trees
The Height of a B-Tree

- What is the maximum possible height of a B-tree of order b?
The Height of a B-Tree

- **Theorem:** The maximum height of a B-tree of order b containing n keys is $\log_b \left(\frac{n + 1}{2}\right)$.

- **Proof:** Number of keys n in a B-tree of height h is guaranteed to be at least

 \[
 1 + 2(b - 1) + 2b(b - 1) + 2b^2(b - 1) + \ldots + 2b^{h-1}(b - 1)
 \]

 \[
 = 1 + 2(b - 1)(1 + b + b^2 + \ldots + b^{h-1})
 \]

 \[
 = 1 + 2(b - 1)((b^h - 1) / (b - 1))
 \]

 \[
 = 1 + 2(b^h - 1) = 2b^h - 1.
 \]

 Solving $n = 2b^h - 1$ yields $h = \log_b \left(\frac{n + 1}{2}\right)$. ■

- **Corollary:** B-trees of order b have height $\Theta(\log_b n)$.

Analyzing Efficiency

• Suppose we have a B-tree of order b.

• What is the worst-case runtime of looking up a key in the B-tree?

• **Answer:** It depends on how we do the search!
Analyzing Efficiency

- To do a lookup in a B-tree, we need to determine which child tree to descend into.
- This means we need to compare our query key against the keys in the node.
- **Question:** How should we do this?
Analyzing Efficiency

- **Option 1**: Use a linear search!
- Cost per node: $O(b)$.
- Nodes visited: $O(\log_b n)$.
- Total cost:
 \[
 O(b) \cdot O(\log_b n) = O(b \log_b n)
 \]
Analyzing Efficiency

- **Option 2:** Use a binary search!
- Cost per node: $O(\log b)$.
- Nodes visited: $O(\log_b n)$.
- Total cost:

 $O(\log b) \cdot O(\log_b n)$

 $= O(\log b \cdot \log_b n)$

 $= O(\log b \cdot (\log n) / (\log b))$

 $= O(\log n)$.

Intuition: We can’t do better than $O(\log n)$ for arbitrary data, because it’s the information-theoretic minimum number of comparisons needed to find something in a sorted collection!
Analyzing Efficiency

• Suppose we have a B-tree of order b.

• What is the worst-case runtime of inserting a key into the B-tree?

• Each insertion visits $O(\log_b n)$ nodes, and in the worst case we have to split every node we see.

• **Answer:** $O(b \log_b n)$.
Analyzing Efficiency

• The cost of an insertion in a B-tree of order \(b \) is \(O(b \log_b n) \).

• What’s the best choice of \(b \) to use here?

• Note that

\[
\begin{align*}
 b \log_b n &= b (\log n / \log b) \\
 &= (b / \log b) \log n.
\end{align*}
\]

• What choice of \(b \) minimizes \(b / \log b \)?

• **Answer:** Pick \(b = e \).
2-3-4 Trees

- A **2-3-4 tree** is a B-tree of order 2. Specifically:
 - each node has between 1 and 3 keys;
 - each node is either a leaf or has one more child than key; and
 - all leaves are at the same depth.
- You actually saw this B-tree earlier! It’s the type of tree from our insertion example.
The Story So Far

• A B-tree supports
 • lookups in time $O(\log n)$, and
 • insertions in time $O(b \log_b n)$.

• Picking b to be around 2 or 3 makes this optimal in Theoryland.
 • The 2-3-4 tree is great for that reason.

• *Plot Twist:* In practice, you most often see choices of b like 1,024 or 4,096.

• *Question:* Why would anyone do that?
The Memory Hierarchy
Memory Tradeoffs

- There is an enormous tradeoff between speed and size in memory.
- SRAM (the stuff registers are made of) is fast but very expensive:
 - Can keep up with processor speeds in the GHz.
 - As of 2010, cost is $5/MB. (Anyone know a good source for a more recent price?)
 - Good luck buying 1TB of the stuff!
- Hard disks are cheap but very slow:
 - As of 2019, you can buy a 4TB hard drive for about $70.
 - As of 2019, good disk seek times for magnetic drives are measured in ms (about two to four million times slower than a processor cycle!)
The Memory Hierarchy

- **Idea:** Try to get the best of all worlds by using multiple types of memory.
External Data Structures

- Suppose you have a data set that’s *way* too big to fit in RAM.
- The data structure is on disk and read into RAM as needed.
- Data from disk doesn’t come back one *byte* at a time, but rather one *page* at a time.
- **Goal:** Minimize the number of disk reads and writes, not the number of instructions executed.

"Please give me 4KB starting at location *addr1*"

1101110010111011110001...
External Data Structures

- Because B-trees have a huge branching factor, they're great for on-disk storage.
 - Disk block reads/writes are glacially slow.
 - The high branching factor minimizes the number of blocks to read during a lookup.
 - Extra work scanning inside a block offset by these savings.
- Major use cases for B-trees and their variants (B+-trees, H-trees, etc.) include
 - databases (huge amount of data stored on disk);
 - file systems (ext4, NTFS, ReFS); and, recently,
 - in-memory data structures (due to cache effects).
Analyzing B-Trees

- Suppose we tune b so that each node in the B-tree fits inside a single disk page.
- We *only* care about the number of disk pages read or written.
 - It’s so much slower than RAM that it’ll dominate the runtime.
- **Question:** What is the cost of a lookup in a B-tree in this model?
 - Answer: The height of the tree, $O(\log_b n)$.
- **Question:** What is the cost of inserting into a B-tree in this model?
 - Answer: The height of the tree, $O(\log_b n)$.
Analyzing B-Trees

- The cost model we use will change our overall analysis.
- Cost is number of operations:
 \[O(\log n) / \text{lookup}, O(b \log_b n) / \text{insertion}. \]
- Cost is number of blocks accessed:
 \[O(\log_b n) / \text{lookup}, O(\log_b n) / \text{insertion}. \]
- Going forward, we’ll use operation counts as our cost model, though looking at caching effects of data structures would make for an awesome final project!
The Story So Far

• We’ve just built a simple, elegant, balanced multiway tree structure.

• We can use them as balanced trees in main memory (2-3-4 trees).

• We can use them to store huge quantities of information on disk (B-trees).

• We’ve seen that different cost models are appropriate in different situations.
Time-Out for Announcements!
CS Townhall

• John Mitchell (CS Department Chair) and Mehran Sahami (CS Associate Chair for Education) are holding a CS townhall event next month.

• What are we doing well? What can we improve on? This is your chance to provide input!

• Held in Gates 104 from 4:30PM – 6:00PM on Tuesday, May 14th.
Problem Sets

• Problem Set One solutions are now available up on the course website.
 • We’re working on getting them graded – stay tuned!

• Problem Set Two is due next Thursday.
 • Have questions? Ask them on Piazza or stop by our office hours!
Back to CS166!
So... red/black trees?
Red/Black Trees

- A red/black tree is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.

![Red/Black Tree Diagram]
Red/Black Trees

- A **red/black tree** is a BST with the following properties:
 - Every node is either red or black.
 - The root is black.
 - No red node has a red child.
 - Every root-null path in the tree passes through the same number of black nodes.
- After we hoist red nodes into their parents:
 - Each “meta node” has 1, 2, or 3 keys in it. (No red node has a red child.)
 - Each “meta node” is either a leaf or has one more key than node. (Root-null path property.)
 - Each “meta leaf” is at the same depth. (Root-null path property.)
Data Structure Isometries

- Red/black trees are an isometry of 2-3-4 trees; they represent the structure of 2-3-4 trees in a different way.
- Many data structures can be designed and analyzed in the same way.
- **Huge advantage:** Rather than memorizing a complex list of red/black tree rules, just think about what the equivalent operation on the corresponding 2-3-4 tree would be and simulate it with BST operations.
Theorem: Any red/black tree with n nodes has height $O(\log n)$.

Proof: Contract all red nodes into their parent nodes to convert the red/black tree into a 2-3-4 tree. This decreases the height of the tree by at most a factor of two. The resulting 2-3-4 tree has height $O(\log n)$, so the original red/black tree has height $2 \cdot O(\log n) = O(\log n)$. ■
Exploring the Isometry

- Nodes in a 2-3-4 tree are classified into types based on the number of children they can have.
 - **2-nodes** have one key (two children).
 - **3-nodes** have two keys (three children).
 - **4-nodes** have three keys (four children).
- How might these nodes be represented?
Exploring the Isometry
Red/Black Tree Insertion

• **Rule #1**: When inserting a node, if its parent is black, make the node red and stop.

• **Justification**: This simulates inserting a key into an existing 2-node or 3-node.
Tree Rotations

Diagram showing different configurations of tree rotations involving nodes A and B.
This applies any time we're inserting a new node into the middle of a “3-node.”

By making observations like these, we can determine how to update a red/black tree after an insertion.
Building Up Rules

• All of the crazy insertion rules on red/black trees make perfect sense if you connect it back to 2-3-4 trees.

• There are lots of cases to consider because there are many different ways you can insert into a red/black tree.

• **Main point:** Simulating the insertion of a key into a node takes time $O(1)$ in all cases. Therefore, since 2-3-4 trees support $O(\log n)$ insertions, red/black trees support $O(\log n)$ insertions.

• The same is true of deletions.
My Advice

- **Do** know how to do B-tree insertions and searches.
 - You can derive these easily if you remember to split nodes.
- **Do** remember the rules for red/black trees and B-trees.
 - These are useful for proving bounds and deriving results.
- **Do** remember the isometry between red/black trees and 2-3-4 trees.
 - Gives immediate intuition for all the red/black tree operations.
- **Don't** memorize the red/black rotations and color flips.
 - This is rarely useful. If you're coding up a red/black tree, just flip open CLRS and translate the pseudocode. 😊
More to Explore

- The **2-3 tree** is another simple B-tree that’s often used in place of 2-3-4 trees.
 - It gives rise to the **AA-tree**, another balanced tree data structure.
- The **left-leaning red/black tree** is a simplification of red/black trees that forces 3-nodes to be encoded in only one way.
- **Cache-oblivious data structures** get the benefit of good cache performance, but without having advance knowledge of the cache size.
- B-tree variants are used in many contexts:
 - The **B⁺-Tree** are used in databases.
 - The **R-tree** is used for spatial indexing.
- These might be interesting topics to look into for a final project!
Next Time

• **Augmented Trees**
 • Building data structures on top of balanced BSTs.

• **Splitting and Joining Trees**
 • Two powerful operations on balanced trees.