
  

Suffix and LCP Arrays



  

Recap from Last Time
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Suffix Trees
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Theorem: w is a 
substring of x if and 

only if w is a prefix of 
a suffix of x.



  

New Stuff!



  

Representing Suffix Trees



  

Representing a Suffix Tree
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● We know that a 
suffix tree has O(m) 
nodes, where m is 
the number of 
characters in the 
input string.

● This means that 
there are O(m) 
edges.

● Question: Why can’t 
we immediately 
claim that the space 
usage of the suffix 
tree is O(m)?



  

Representing a Suffix Tree
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● Claim: Writing out 
all suffixes of a string 
of length m requires 
Θ(m2) characters.

● Proof idea: Those 
suffixes have length 
1 + 2 + … + (m+1), 
factoring in the 
special $ character.

● Problem: It is 
indeed possible to 
build a suffix tree 
with Θ(m2) total 
letters on the edges.



  

Representing a Suffix Tree
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● By being clever with 
our representation, we 
can guarantee that a 
suffix tree uses only 
Θ(m) space, regardless 
of the input string.

● Observation: Each 
edge is labeled with a 
substring of the 
original input string.

● Idea: Don’t actually 
write out the labels on 
the edges. Just write 
down the start and end 
index!



  

Representing a Suffix Tree
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Representing a Suffix Tree
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● Space usage 
required for a 
suffix tree:
● O(m) space for 

all the nodes.
● O(m) space for 

a copy of the 
original string.

● O(m) space for  
the edges.

● Total space: O(m).



  

Suffix Tree Space Usage
● Suffix tree edges take up a lot of space.

● Two machine words per edge to denote the range of 
characters visited.

● One machine word per edge for the pointer itself.
● Number of edges ranges from m to 2m – 1, so this is between 

3m and 6m machine words for the whole string!
● Example: a human genome is about three billion 

characters long.
● With clever techniques, that can be packed into about 

800MB.
● On a 32-bit machine, the suffix tree needs about 48GB – too 

big to fit into memory!
● On a 64-bit machine, the suffix tree needs about 96GB – way 

more than a typical machine can hold!



  

Key Question: Can we get the benefits of 
a suffix tree without the space penalty?



  

What is it about suffix trees that make 
them so useful algorithmically?



  

Theorem: There is a node labeled ω in a suffix tree for T
if and only if

ω is a suffix of T$   or   ω is a branching word in T$.

n  

8

7

4

0

5

2

1
3

6

o   
n   
s   
e   
n   
s   
e   
$   

s
e

n
s
e
$

$   

 n 
 s 
 e 
 $ 

$   

         o
         n
         s
         e
         n
         s
         e
         $

              s
              e

$                e          

$   n
s
e
$



  

8

7

4

0

5

2

1
3

6

o   
n   
s   
e   
n   
s   
e   
$   

n
s
e
$

$   

 n 
 s 
 e 
 $ 

$   

         o
         n
         s
         e
         n
         s
         e
         $

$                

$   n
s
e
$

Theorem: There is a node labeled ω in a suffix tree for T
if and only if

ω is a suffix of T$   or   ω is a branching word in T$.
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A string ω is a 
branching word in 

T$ if there are distinct 
characters a and b 

where ωa and ωb are 
substrings of T$.



  

Key Intuition: The efficiency in a suffix tree is largely due to
1. keeping the suffixes in sorted order, and
2. exposing branching words.
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Where We’re Going
● Today, we’ll see two data structures that 

encode much of the same information as 
suffix trees, but in much less space.
● The suffix array stores information about the 

ordering of the suffixes of a string.
● The LCP array stores information about the 

branching words of a string.
● Together, they’ll provide algorithms that 

match or are comparable to the time 
bounds from last time.



  

Suffix Arrays



  

Theorem: There is a node labeled ω in a suffix tree for T
if and only if

ω is a suffix of T$   or   ω is a branching word in T$.
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Theorem: There is a node labeled ω in a suffix tree for T
if and only if

ω is a suffix of T$   or   ω is a branching word in T$.
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Suffix Arrays
● A suffix array for a string 

T is a sorted array of the 
suffixes of the string T$.

● Suffix arrays distill out 
just the first component of 
suffix trees: they store 
suffixes in sorted order.

● Non-obvious fact: Suffix 
arrays can be built in time 
O(m). We can cover this 
later in the quarter if 
you’re interested.
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Suffix Arrays
● The way we’ve 

drawn suffix 
arrays is terribly 
space-inefficient.
● It always uses 

space Θ(m2), since 
that’s how many 
total characters 
occur in all 
suffixes.

● Can we do better? ABANANABANDANA$
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Suffix Arrays
● We reduced the space 

usage of suffix trees by 
representing substrings, 
implicitly, as ranges 
within the original string.

● Idea: Don’t store the 
suffixes themselves. Just 
store the starting 
positions of the suffixes.

● Space: Θ(m), and with 
only one machine word 
used per character of 
input. ABANANABANDANA$
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Suffix Arrays
● Although the picture 

to the right is how 
we’d represent the 
suffix array in 
memory, for this 
lecture we’ll draw 
things out the longer 
way.

● This is just to build 
intuition; we 
wouldn’t actually do 
that in practice. ABANANABANDANA$
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Using Suffix Arrays
● Last time, we saw 

how to find all 
instances of a 
pattern P in a text 
T using suffix 
trees.

● How could we do 
that with suffix 
arrays?
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Using Suffix Arrays
● Reminder: Our text string T 

has length m. Our pattern 
string P has length n.

● Claim: With a suffix array, we 
can determine whether P 
appears in T in time O(n log m).

Binary search has O(log m) 
rounds.
Each probe takes time O(n).

This bound can be made tight. 
(How?)
Figure that m is often much 
bigger than n, so this is a huge 
win over a raw scan.
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How?
Answer at

https://pollev.com/cs166spr23

https://pollev.com/cs166spr23


  

Using Suffix Arrays
● Reminder: Our text string T 

has length m. Our pattern 
string P has length n.

● Claim: With a suffix array, we 
can determine whether P 
appears in T in time O(n log m).
● Binary search has O(log m) 

rounds.
● Each probe takes time O(n).

● This bound can be made tight. 
(How?)

● Figure that m is often much 
bigger than n, so this is a huge 
win over a raw scan.
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Using Suffix Arrays
$
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● Claim: With a suffix 
array, we can find all 
matches of a pattern P in 
T in time O(n log m + z), 
where z is the number of 
matches.

● Idea: Binary search can 
be used to find a range of 
values equal to some key. 
Adapt that idea to find all 
suffixes beginning with 
the same prefix.



  

The Story So Far
● Suffix arrays store all the suffixes of a string in 

sorted order.
● They provide an

⟨O(m), O(n log m + z)⟩
solution to the substring search problem.

● Intuition: Suffix trees are valuable in large 
part because they just keep the suffixes sorted.

● What else are suffix trees doing?



  

Theorem: There is a node labeled ω in a suffix tree for T
if and only if

ω is a suffix of T$   or   ω is a branching word in T$.

n  

8

7

4

0

5

2

1
3

6

o   
n   
s   
e   
n   
s   
e   
$   

s
e

n
s
e
$

$   

 n 
 s 
 e 
 $ 

$   

         o
         n
         s
         e
         n
         s
         e
         $

              s
              e

$                e          

$   n
s
e
$

nonsense$
012345678



  

8

7

4

0

5

2

1
3

6

o   
n   
s   
e   
n   
s   
e   
$   

n
s
e
$

$   

 n 
 s 
 e 
 $ 

$   

         o
         n
         s
         e
         n
         s
         e
         $

$                

$   n
s
e
$

Theorem: There is a node labeled ω in a suffix tree for T
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Branching Words
● Recall: If T is a 

string, then ω is a 
branching word 
in T$ if there are 
characters a ≠ b 
such that ωa and 
ωb are substrings 
of T$.

ABANANABANDANA$



  

Branching Words
● Recall: If T is a 

string, then ω is a 
branching word 
in T$ if there are 
characters a ≠ b 
such that ωa and 
ωb are substrings 
of T$.

ABANANABANDANA$

Although ABA is a 
repeated substring, it is 
not a branching word 

because all appearances 
are followed by N.



  

Branching Words
● Recall: If T is a 

string, then ω is a 
branching word 
in T$ if there are 
characters a ≠ b 
such that ωa and 
ωb are substrings 
of T$.

ABANANABANDANA$

The substring ANANA only 
appears once, so it’s not 

a branching word.



  

Branching Words
$
A$
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● Notice that, by sorting 
suffixes, we’ve made it 
easier to spot branching 
words.

● Specifically, all suffixes 
starting with a 
branching word will be 
adjacent in the suffix 
array.

● The branching word will 
be the longest common 
prefix (or LCP) of those 
adjacent suffixes.



  

Branching Words
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● Notice that, by sorting 
suffixes, we’ve made it 
easier to spot branching 
words.

● Specifically, all suffixes 
starting with a 
branching word will be 
adjacent in the suffix 
array.

● The branching word will 
be the longest common 
prefix (or LCP) of those 
adjacent suffixes.



  

Branching Words
● Theorem: A string ω is a 

branching word in string T$ if 
and only if it’s the longest 
common prefix of two adjacent 
suffixes in T’s suffix array.

● Proof idea: If ω is the longest 
common prefix of two adjacent 
suffixes, let a and b be the 
characters immediately following 
ω in those two suffixes. Then ωa 
and ωb are substrings of T$.
If ω is branching, choose the 
lexicographically smallest a and 
b making the definition work. 
Then the last suffix starting with 
ωa and the first suffix starting 
with ωb are adjacent in the suffix 
array. ■ ABANANABANDANA$
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ω is an internal node in the suffix tree for T
 

if and only if
 

ω is a branching word in T$
 

if and only if
 

ω is the LCP of two adjacent suffixes in the suffix array for T
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Key Intuition: Adjacent suffixes with long 
shared prefixes correspond to subtrees of 

the suffix tree.



  

Harnessing this Connection



  

Longest Repeated Substring
● Last time, we 

saw how to solve 
the longest 
repeated 
substring 
problem by 
using suffix 
trees.

● Algorithm: Find 
the internal node 
in the suffix tree 
with the longest 
label.

● Question: Can 
we do this with 
just a suffix 
array? ABANANABANDANA$
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Longest Repeated Substring
● We can list all branching 

words from a suffix array 
in time O(m2).

● O(m) pairs; each pair 
takes time O(m) to 
process.

● This worst-case bound 
can be realized.

● Contrast this with O(m) 
for a suffix tree.

● Can we do better?
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Longest Repeated Substring
● Observation: We don’t 

actually need to know 
what all the branching 
words are to find the 
longest repeated 
substring.

● We just need to know 
how long they are.

● That way, we can figure 
out which is longest.

● Is there some nice way 
to do this?
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LCP Arrays



  

LCP Arrays
● The LCP array, 

often denoted H, is 
an array where H[i] 
is the length of the 
LCP of the ith and 
(i+1)st suffixes in 
the suffix array.

● (The letter H comes 
from “height.”)
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Key intuition: The suffix array gives the leaves of the suffix tree. 
The LCP array gives the internal nodes of the suffix tree.



  

Using LCP Arrays
● If you already have a 

suffix array and LCP 
array, you can solve 
longest repeated 
substring in time O(m):
● Find the largest element 

in the LCP array.
● Return the string it 

corresponds to.
● Question: How fast can 

we construct an LCP 
array?
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Building LCP Arrays



  

Building LCP Arrays
● It never hurts to start with 

the naive algorithm and see 
what happens!

● Algorithm: For each 
consecutive pair of strings 
in the suffix array, compute 
the length of their longest 
common prefix.

● We can upper-bound the 
runtime at O(m2).

● Question: Can we realize 
this upper bound?
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Building LCP Arrays
● Why is our naive 

algorithm slow?
● Intuition: We 

aren’t able to carry 
work from one 
suffix over to the 
next.
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Building LCP Arrays
● Key intuition: Suffixes 

overlap one another! It 
should be possible to 
share LCP information 
across suffixes.

● For example, suppose we 
compute the LCP entry 
shown here.

● Look at the suffixes 
formed by dropping the 
first letter of these two 
suffixes.

● What do we know about 
their LCP?

$
A$

ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$

DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$
ABANDANA$

BANANABANDANA$
BANDANA$

4

ABANANABANDANA$
ABANDANA$

3



  

Building LCP Arrays
$
A$
ABANANABANDANA$
ABANDANA$

ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$

NANABANDANA$
NDANA$

ANA$
ANABANDANA$

NA$
NABANDANA$

● Let’s do another 
example. Suppose 
we know the LCP of 
these suffixes.

● As before, drop the 
first letter from 
each suffix.

● What can we say 
about the LCP of 
the resulting 
suffixes?

3

ANA$
ANABANDANA$

2



  

Building LCP Arrays
$
A$
ABANANABANDANA$

ANA$

ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$

NDANA$

NABANDANA$
NANABANDANA$

ABANDANA$

ANABANDANA$

2

NABANDANA$
NANABANDANA$

● Sometimes, in dropping 
the first letter, two 
adjacent suffixes get 
spread out.
Claim: Look at the second 
suffix in the pair. Its LCP 
with the suffix before it is 
at least the previous LCP 
minus one.
Think about the suffix tree. 
The two shorter suffixes 
are in the same subtree, so 
everything between them 
is also in that subtree.are 
in sorted order!



  

Building LCP Arrays
● Sometimes, in dropping 

the first letter, two 
adjacent suffixes get 
spread out.

● Claim: Look at the second 
suffix in the pair. Its LCP 
with the suffix before it is 
at least the previous LCP 
minus one.

● Think about the suffix 
tree. The two shorter 
suffixes are in the same 
subtree, so everything 
between them is also in 
that subtree.

$
A$
ABANANABANDANA$

ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$

NDANA$

NABANDANA$
NANABANDANA$

ABANDANA$
ANA$
ANABANDANA$

2

NABANDANA$
NANABANDANA$



  

Building LCP Arrays
● We know that these two 

new suffixes must have 
an LCP of at least 1, 
because the two old 
suffixes have an LCP of 2.

● However, the LCP may be 
longer than 1, since 
we’ve never seen one of 
these two suffixes.

● We still need to some 
some scanning, but we 
won’t necessarily have to 
rescan the entire suffix.

$
A$
ABANANABANDANA$

ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$

NDANA$

NABANDANA$
NANABANDANA$

ABANDANA$
ANA$
ANABANDANA$

2

NABANDANA$
NANABANDANA$

3



  

Kasai’s Algorithm
● For each suffix of the 

original string, except the 
last:
● Find that suffix in the suffix 

array.
● Look at the suffix that 

comes before it.
● ( ) Find the length of the ★

longest common prefix of 
those suffixes.

● Write that down in the H 
array.

● Use the insight from the 
previous slides to speed 
up step ( ).★

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$



  

Kasai’s Algorithm
● For each suffix of the 

original string, except the 
last:
● Find that suffix in the suffix 

array.
● Look at the suffix that 

comes before it.
● ( ) Find the length of the ★

longest common prefix of 
those suffixes.

● Write that down in the H 
array.

● Use the insight from the 
previous slides to speed 
up step ( ).★

$
A$
ABANANABANDANA$
ABANDANA$
ANA$
ANABANDANA$
ANANABANDANA$
ANDANA$
BANANABANDANA$
BANDANA$
DANA$
NA$
NABANDANA$
NANABANDANA$
NDANA$

ABANANABANDANA$

0
1
4
1
3
3
2
0
3
0
0
2
2
1



  

Kasai’s Algorithm
● For each suffix of the 

original string, except the 
last:
● Find that suffix in the suffix 

array.
● Look at the suffix that 

comes before it.
● ( ) Find the length of the ★

longest common prefix of 
those suffixes.

● Write that down in the H 
array.

● Use the insight from the 
previous slides to speed 
up step ( ).★

With O(m) preprocessing 
time, can be done in time 

O(1). 
 

Question to Ponder: 
How would you do this?



  

Kasai’s Algorithm
● For each suffix of the 

original string, except the 
last:
● Find that suffix in the suffix 

array.
● Look at the suffix that 

comes before it.
● ( ) Find the length of the ★

longest common prefix of 
those suffixes.

● Write that down in the H 
array.

● Use the insight from the 
previous slides to speed 
up step ( ).★

With O(m) preprocessing 
time, can be done in time 

O(1). 
 

Question to Ponder: 
How would you do this?

The runtime of this step is 
proportional to how much the LCP 

increases on that step.
 

The LCP value decreases by at most 
one per suffix. (We saw this earlier.)

 

The LCP value maxes out at m. (Can’t 
match more than all the characters.)

 

Therefore, the LCP value can grow at 
most 2m times. (Prove this!)

 

Claim: Across all iterations, this step 
takes a total of O(m) time.

ABANANABANDANA$
ABANDANA$      

Already known 
to match

Had to scan 
these characters



  

Kasai’s Algorithm
● For each suffix of the 

original string, except the 
last:
● Find that suffix in the suffix 

array.
● Look at the suffix that 

comes before it.
● ( ) Find the length of the ★

longest common prefix of 
those suffixes.

● Write that down in the H 
array.

● Use the insight from the 
previous slides to speed 
up step ( ).★

With O(m) preprocessing 
time, can be done in time 

O(1). 
 

Question to Ponder: 
How would you do this?

The runtime of this step is 
proportional to how much the LCP 

increases on that step.
 

The LCP value decreases by at most 
one per suffix. (We saw this earlier.)

 

The LCP value maxes out at m. (Can’t 
match more than all the characters.)

 

Therefore, the LCP value can grow at 
most 2m times. (Prove this!)

 

Claim: Across all iterations, this step 
takes a total of O(m) time.



  

Kasai’s Algorithm
● For each suffix of the 

original string, except the 
last:
● Find that suffix in the suffix 

array.
● Look at the suffix that 

comes before it.
● ( ) Find the length of the ★

longest common prefix of 
those suffixes.

● Write that down in the H 
array.

● Use the insight from the 
previous slides to speed 
up step ( ).★

Total 
runtime: 

O(m).



  

More to Explore
● We could easily spend a whole quarter talking 

about suffix arrays. Here’s what we didn’t cover:
● Bottom-up tree simulations: Using LCP arrays, 

you can simulate any O(m)-time suffix tree algorithm 
that works with a bottom-up DFS in time O(m).

● Faster substring searching: Using LCP arrays, 
plus RMQ, you can improve the cost of a substring 
search to O(n + z + log m).

● Burrows-Wheeler transforms: Suffix arrays, plus 
LCP arrays, can be used to significantly improve the 
performance of text compressors.

● Check these out – they’re super interesting!



  

Next Time
● Amortized Analysis

● Lying in a runtime analysis.
● The Potential Method

● Physics meets data structure design.
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