Amortized Analysis
A Motivating Analogy
Doing the Dishes

- What do I do with a dirty dish or kitchen utensil?
 - **Option 1:** Wash it by hand.
 - **Option 2:** Put it in the dishwasher rack, then run the dishwasher if it’s full.
Doing the Dishes

- Washing every individual dish and utensil by hand is *way* slower than using the dishwasher, but I always have access to my plates and kitchen utensils.

- Running the dishwasher is faster in aggregate, but means I may have to wait a bit for dishes to be ready.

- (This is an example of a tradeoff between *throughput* and *latency.*)
Key Idea: Design data structures that trade *per-operation efficiency* for *overall efficiency*.
Where We’re Going

- **Amortized Analysis (Today)**
 - A little accounting trickery never hurt anyone, right?

- **Binomial Heaps (Thursday)**
 - A fast, flexible priority queue that’s a great building block for more complicated structures.

- **Fibonacci Heaps (Next Tuesday)**
 - A priority queue optimized for graph algorithms that, at least in theory, leads to optimal implementations.
Outline for Today

• **Amortized Analysis**
 • Trading worst-case efficiency for aggregate efficiency.

• **Examples of Amortization**
 • Three motivating data structures and algorithms.

• **Potential Functions**
 • Quantifying messiness and formalizing costs.

• **Performing Amortized Analyses**
 • How to show our examples are indeed fast.
Three Examples
Two-Stack Queues

Dynamic Arrays

Building B-Trees
The Two-Stack Queue

- Maintain an *In* stack and an *Out* stack.
- To enqueue an element, push it onto the *In* stack.
- To dequeue an element:
 - If the *Out* stack is nonempty, pop it.
 - If the *Out* stack is empty, pop elements from the *In* stack, pushing them into the *Out* stack. Then dequeue as usual.
The Two-Stack Queue

Our dirty dishes are piling up because we didn’t do any work to clean them when we added them in.
The Two-Stack Queue

We just cleaned up our entire mess and are back to a pristine state.
The Two-Stack Queue

We need to do some “cleanup” on this before it’ll be useful. It’s fast to add it here because we’re deferring that work.

1 2

Clean Dishes

3 4

Dirty Dishes

5
The Two-Stack Queue

- Each enqueue takes time $O(1)$.
 - Just push an item onto the In stack.
- Dequeues can vary in their runtime.
 - Could be $O(1)$ if the Out stack isn’t empty.
 - Could be $\Theta(n)$ if the Out stack is empty.
The Two-Stack Queue

- **Intuition:** We only do expensive dequeues after a long run of cheap enqueues.
- Think “dishwasher:” we very slowly introduce a lot of dirty dishes that get cleaned up all at once.
- Provided we clean up all the dirty dishes at once, and provided that dirty dishes accumulate slowly, this is a fast strategy!
The Two-Stack Queue

- **Key Fact:** Any series of \(n \) operations on an (initially empty) two-stack queue will take time \(O(n) \).

- **Why?**
 - Each item is pushed into at most two stacks and popped from at most two stacks.
 - Adding up the work done per element across all \(n \) operations, we can do at most \(O(n) \) work.
The Two-Stack Queue

• It’s correct but misleading to say the cost of a dequeue is $O(n)$.
 • This is comparatively rare.
• It’s wrong, but useful, to pretend the cost of a dequeue is $O(1)$.
 • Some operations take more time than this.
 • However, if we pretend each operation takes time $O(1)$, then the sum of all the costs never underestimates the total.
• **Question:** What’s an honest, accurate way to describe the runtime of the two-stack queue?
Building B-Trees

Two-Stack Queues

Dynamic Arrays
Dynamic Arrays

• A *dynamic array* is the most common way to implement a list of values.

• Maintain an array slightly bigger than the one you need. When you run out of space, double the array size and copy the elements over.
Dynamic Arrays

- A dynamic array is the most common way to implement a list of values.
- Maintain an array slightly bigger than the one you need. When you run out of space, double the array size and copy the elements over.
Dynamic Arrays

- A **dynamic array** is the most common way to implement a list of values.
- Maintain an array slightly bigger than the one you need. When you run out of space, double the array size and copy the elements over.
Dynamic Arrays

- Most appends to a dynamic array take time $O(1)$.
- Infrequently, we do $\Theta(n)$ work to copy all n elements from the old array to a new one.
- Think “dishwasher:”
 - We slowly accumulate “messes” (filled slots).
 - We periodically do a large “cleanup” (copying the array).
- **Claim:** The cost of doing n appends to an initially empty dynamic array is always $O(n)$.
Dynamic Arrays

- **Claim:** Appending n elements always takes time $O(n)$.
- The array doubles at sizes 2^0, 2^1, 2^2, ..., etc.
- The very last doubling is at the largest power of two less than n. This is at most $2^{\lfloor \log_2 n \rfloor}$. (Do you see why?)
- Total work done across all doubling is at most
 \[
 2^0 + 2^1 + \ldots + 2^{\lfloor \log_2 n \rfloor} = 2^{\lfloor \log_2 n \rfloor} + 1 - 1 \leq 2^{\log_2 n + 1} = 2n.
 \]
Dynamic Arrays

- It’s correct but misleading to say the cost of an append is $O(n)$.
 - This is comparatively rare.
- It’s wrong, but useful, to pretend that the cost of an append is $O(1)$.
 - Some operations take more time than this.
 - However, pretending each operation takes $O(1)$ time never underestimates the true total runtime.
- **Question:** What’s an honest, accurate way to describe the runtime of the dynamic array?
Two-Stack Queues

Dynamic Arrays

Building B-Trees
Building B-Trees

- You’re given a sorted list of \(n \) values and a value of \(b \).
- What’s the most efficient way to construct a B-tree of order \(b \) holding these \(n \) values?
- **One Option:** Think really hard, calculate the shape of a B-tree of order \(b \) with \(n \) elements in it, then place the items into that B-tree in sorted order.
- Is there an easier option?
Building B-Trees

- **Idea 1:** Insert the items into an empty B-tree in sorted order.
- Cost: $\Omega(n \log_b n)$, due to the top-down search.
- *Can we do better?*
Building B-Trees

- **Idea 2:** Since all insertions will happen at the rightmost leaf, store a pointer to that leaf. Add new values by appending to this leaf, then doing any necessary splits.

- **Question:** How fast is this?
Building B-Trees

- The cost of an insert varies based on the shape of the tree.
 - If no splits are required, the cost is $O(1)$.
 - If one split is required, the cost is $O(b)$.
 - If we have to split all the way up, the cost is $O(b \log_b n)$.
- Using our worst-case cost across n inserts gives a runtime bound of $O(nb \log_b n)$
- **Claim:** The cost of n inserts is always $O(n)$.
Building B-Trees

- Of all the \(n \) insertions into the tree, a roughly \(\frac{1}{b} \) fraction will split a node in the bottom layer of the tree (a leaf).
- Of those, roughly a \(\frac{1}{b} \) fraction will split a node in the layer above that.
- Of those, roughly a \(\frac{1}{b} \) fraction will split a node in the layer above that.
- (etc.)
Building B-Trees

- **Total number of splits:**

\[
\frac{n}{b} \cdot \left(1 + \frac{1}{b} \cdot \left(1 + \frac{1}{b} \cdot \left(1 + \frac{1}{b} \cdot (\ldots)\right)\right)\right)
\]

\[
= \frac{n}{b} \cdot \left(1 + \frac{1}{b} + \frac{1}{b^2} + \frac{1}{b^3} + \frac{1}{b^4} + \ldots\right)
\]

\[
= \frac{n}{b} \cdot \Theta(1)
\]

\[
= \Theta\left(\frac{n}{b}\right)
\]

- **Total cost of those splits:** \(\Theta(n)\).
Building B-Trees

• It is correct but misleading to say the cost of an insert is $O(b \log_b n)$.
 • This is comparatively rare.
• It is wrong, but useful, to pretend that the cost of an insert is $O(1)$.
 • Some operations take more time than this.
 • However, pretending each insert takes time $O(1)$ never underestimates the total amount of work done across all operations.
• **Question:** What’s an honest, accurate way to describe the cost of inserting one more value?
Amortized Analysis
The Setup

- We now have three examples of data structures where
 - individual operations may be slow, but
 - any series of operations is fast.
- Giving weak upper bounds on the cost of each operation is not useful for making predictions.
- How can we clearly communicate when a situation like this one exists?
Key Idea: Backcharge expensive operations to cheaper ones.
These are the *real* costs of the operations. Most operations are fast, but we can’t get a nice upper bound on any one operation cost.
These are the *amortized* costs of the operations. Each operation appears fast, and all costs are nicely bounded from above.
Amortized Analysis

- **Key Idea:** Assign each operation a (fake!) cost called its *amortized cost* such that, for any series of operations performed, the following is true:

\[
\sum \text{amortized-cost} \geq \sum \text{real-cost}
\]

- Amortized costs shift work backwards from expensive operations onto cheaper ones.
 - Cheap operations are artificially made more expensive to pay for future cleanup work.
 - Expensive operations are artificially made cheaper by shifting the work backwards.
Where We’re Going

- The amortized cost of an enqueue or dequeue into a two-stack queue is $O(1)$.
- Any sequence of n operations on a two-stack queue will take time $n \cdot O(1) = O(n)$.
- However, each individual operation may take more than $O(1)$ time to complete.
Where We’re Going

• The *amortized* cost of appending to a dynamic array is $O(1)$.

• Any sequence of n appends to a dynamic array will take time $n \cdot O(1) = O(n)$.

• However, each individual operation may take more than $O(1)$ time to complete.
Where We’re Going

- The \textit{amortized} cost of inserting a new element at the end of a B-tree, assuming we have a pointer to the rightmost leaf, is $O(1)$.

- Any sequence of n appends will take time $n \cdot O(1) = O(n)$.

- However, each individual operation may take more than $O(1)$ time to complete.
Formalizing This Idea
Assigning Amortized Costs

• The approach we’ve taken so far for assigning amortized costs is called an aggregate analysis.
 • Directly compute the maximum possible work done across any sequence of operations, then divide that by the number of operations.
• This approach works well here, but it doesn’t scale well to more complex data structures.
 • What if different operations contribute to / clean up messes in different ways?
 • What if it’s not clear what sequence is the worst-case sequence of operations?
• In practice, we tend to use a different strategy called the potential method to assign amortized costs.
Potential Functions

- To assign amortized costs, we’ll need to measure how “messy” the data structure is.
- For each data structure, we define a potential function Φ that, in a sense, “quantifies messiness.”
 - Φ is small when the data structure is “clean,” and
 - Φ is large when the data structure is “messy.”
Potential Functions

- To assign amortized costs, we’ll need to measure how “messy” the data structure is.
- For each data structure, we define a potential function Φ that, in a sense, “quantifies messiness.”
 - Φ is small when the data structure is “clean,” and
 - Φ is large when the data structure is “messy.”
Potential Functions

• Once we have Φ, we can start looking, for each operation, at how Φ changes.
 • If an operation makes things “messier,” then Φ increases.
 • If an operation makes things “cleaner,” then Φ decreases.
• What we want to have happen:
 • If an operation increases Φ, we artificially raise its cost.
 • If an operation decreases Φ, we artificially lower its cost.
• Why?
Potential Functions

• Define the amortized cost of an operation to be

\[
\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi
\]

where \(k \) is a constant under our control and \(\Delta \Phi \) is the difference between \(\Phi \) just after the operation finishes and \(\Phi \) just before the operation started:

\[
\Delta \Phi = \Phi_{\text{after}} - \Phi_{\text{before}}
\]

• Intuitively:
 • If \(\Phi \) increases, the data structure got “messier,” and the amortized cost is \textit{higher} than the real cost to account for future cleanup costs.
 • If \(\Phi \) decreases, the data structure got “cleaner,” and the amortized cost is \textit{lower} than the real cost.
Why This Works

\[
\sum \text{amortized-cost} = \sum (\text{real-cost} + k \cdot \Delta \Phi)
\]

\[
= \sum \text{real-cost} + k \cdot \sum \Delta \Phi
\]

\[
= \sum \text{real-cost} + k \cdot (\Phi_{\text{end}} - \Phi_{\text{start}})
\]

Think “fundamental theorem of calculus,”
but for discrete derivatives!

\[
\int_{a}^{b} f'(x) \, dx = f(b) - f(a)
\]

\[
\sum_{x=a}^{b} \Delta f(x) = f(b+1) - f(a)
\]

Look up \textit{finite calculus} if you’re curious to learn more!
Why This Works

\[
\sum \text{amortized-cost} = \sum (\text{real-cost} + k \cdot \Delta \Phi)
\]

\[
= \sum \text{real-cost} + k \cdot \sum \Delta \Phi
\]

\[
= \sum \text{real-cost} + k \cdot (\Phi_{\text{end}} - \Phi_{\text{start}})
\]

\[
\geq \sum \text{real-cost}
\]

Let’s make two assumptions:

\[
\Phi \geq 0.
\]

\[
\Phi_{\text{start}} = 0.
\]
Why This Works

\[\sum \text{amortized-cost} = \sum (\text{real-cost} + k \cdot \Delta \Phi) \]

\[= \sum \text{real-cost} + k \cdot \sum \Delta \Phi \]

\[= \sum \text{real-cost} + k \cdot (\Phi_{\text{end}} - \Phi_{\text{start}}) \]

\[\geq \sum \text{real-cost} \]

Assigning costs this way will never, in any circumstance, overestimate the total amount of work done.
The Story So Far

- We will assign amortized costs to each operation such that

\[\sum \text{amortized-cost} \geq \sum \text{real-cost} \]

- To do so, define a potential function \(\Phi \) such that
 - \(\Phi \) measures how “messy” the data structure is,
 - \(\Phi_{\text{start}} = 0 \), and
 - \(\Phi \geq 0 \).

- Then, define amortized costs of operations as

\[\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi \]

for a choice of \(k \) under our control.
Two-Stack Queues

Dynamic Arrays

Building B-Trees
The Two-Stack Queue

\[\Phi = \text{height of } In \text{ stack} \]

Amortized cost:

\[\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi \]

\[= O(1) + k \cdot 1 \]

\[= O(1) \]
The Two-Stack Queue

\[\Phi = \text{height of } \text{In} \text{ stack} \]

Amortized-cost = Real-cost + \(k \cdot \Delta \Phi \)

\[= O(1) + k \cdot 1 \]

\[= O(1) \]
The Two-Stack Queue

Φ = height of \textit{In} stack

amortized-cost = real-cost + k \cdot ΔΦ
= O(1) + k \cdot 1
= O(1)
The Two-Stack Queue

\[\Phi = \text{height of } \textbf{In} \text{ stack} \]

\[\text{amortized-cost} = \text{real-cost} + k \cdot \Delta\Phi \]
\[= \mathcal{O}(1) + k \cdot 1 \]
\[= \mathcal{O}(1) \]
The Two-Stack Queue

\[\Phi = \text{height of } \textit{In} \text{ stack} \]

 amortized-cost = real-cost + \(k \cdot \Delta \Phi \)
= \(O(h) + k \cdot -h \) // \(h \) = height of \textit{In} stack
= \(O(1) \) // Choose \(k \) strategically
The Two-Stack Queue

\[\Phi = \text{height of } \textbf{In} \text{ stack} \]

Amortized cost:

\[
\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi \\
= O(1) + k \cdot 0 \\
= O(1)
\]
Theorem: The amortized cost of any enqueue or dequeue operation on a two-stack queue is $O(1)$.

Proof: Let Φ be the height of the In stack in the two-stack queue. Each enqueue operation does a single push and increases the height of the In stack by one. Therefore, its amortized cost is

$$O(1) + k \cdot \Delta \Phi = O(1) + k \cdot 1 = O(1).$$

Now, consider a dequeue operation. If the Out stack is nonempty, then the dequeue does $O(1)$ work and does not change Φ. Its cost is therefore

$$O(1) + k \cdot \Delta \Phi = O(1) + k \cdot 0 = O(1).$$

Otherwise, the Out stack is empty. Suppose the In stack has height h. The dequeue does $O(h)$ work to pop the elements from the In stack and push them onto the Out stack, followed by one additional pop for the dequeue. This is $O(h)$ total work.

At the beginning of this operation, we have $\Phi = h$. At the end of this operation, we have $\Phi = 0$. Therefore, $\Delta \Phi = -h$, so the amortized cost of the operation is

$$O(h) + k \cdot -h = O(1),$$

assuming we pick k to cancel out the constant factor hidden in the $O(h)$ term. ■
Analyzing Dynamic Arrays

- **Goal:** Choose a potential function Φ such that the amortized cost of an append is $O(1)$.

- **Initial (wrong!) guess:** Set Φ to be the number of free slots left in the array.
Dynamic Arrays

\[\Phi = \text{number of free slots} \]

\[\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi \]
\[= O(1) + k \cdot -1 \]
\[= O(1) \]
Dynamic Arrays

\(\Phi = \text{number of free slots} \)

\[
\text{amortized-cost} = \text{real-cost} + k \cdot \Delta\Phi \\
= O(1) + k \cdot -1 \\
= O(1)
\]
Dynamic Arrays

\[\Phi = \text{number of free slots} \]

\[\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi \]
\[= O(1) + k \cdot -1 \]
\[= O(1) \]
\[\Phi = \text{number of free slots} \]

\[\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi \]
\[= O(1) + k \cdot -1 \]
\[= O(1) \]
Dynamic Arrays

\[\Phi = \text{number of free slots} \]
Dynamic Arrays

\[\Phi = \text{number of free slots} \]

\[\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi \]
\[= O(n) + k \cdot \Theta(n) \]
\[= O(n) \]
Analyzing Dynamic Arrays

- **Intuition:** Φ should measure how “messy” the data structure is.
 - Having lots of free slots means there’s very little mess.
 - Having few free slots means there’s a lot of mess.
- We basically got our potential function backwards. Oops.
- **Question:** What should Φ be?
Analyzing Dynamic Arrays

- The amortized cost of an append is
 \[\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi. \]

- When we double the array size, our real cost is \(\Theta(n) \). We need \(\Delta \Phi \) to be something like \(-n\).

- **Goal:** Pick \(\Phi \) so that
 - when there are no slots left, \(\Phi \approx n \), and
 - right after we double the array size, \(\Phi \approx 0 \).

- With some trial and error, we can come up with
 \[\Phi = \#\text{elems} - \#\text{free-slots} \]
Dynamic Arrays

$\Phi = \#\text{elems} - \#\text{free-slots}$

amortized-cost = real-cost + $k \cdot \Delta \Phi$

= $O(1) + k \cdot 2$

= $O(1)$
Dynamic Arrays

\[\Phi = \#\text{elems} - \#\text{free-slots} \]

\[
\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi \\
= O(1) + k \cdot 2 \\
= O(1)
\]
Dynamic Arrays

\[\Phi = \#\text{elems} - \#\text{free-slots} \]

 amortized-cost = real-cost + k \cdot \Delta \Phi
= O(1) + k \cdot 2
= O(1)
Dynamic Arrays

\[\Phi = \#\text{elems} - \#\text{free-slots} \]

\[\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi \]
\[= O(1) + k \cdot 2 \]
\[= O(1) \]
Dynamic Arrays

\[\Phi = \#\text{elems} - \#\text{free-slots} \]
Dynamic Arrays

\[\Phi = \#\text{elems} - \#\text{free-slots} \]

\[\text{amortized-cost} = \text{real-cost} + k \cdot \Delta \Phi \]
\[= O(n) + k \cdot -\Theta(n) \]
\[= O(1) \quad \text{// Pick } k \text{ well} \]
A Caveat

- We require that $\Phi_{\text{start}} = 0$ and that $\Phi \geq 0$.
- What happens when we have a newly-created dynamic array?

Quick fix: This is an edge case, so set

$$\Phi = \max\{ \ 0, \ #\text{elems} - #\text{free-slots} \ \}$$
Theorem: The amortized cost of an append to a dynamic array is O(1).

Proof: Suppose the dynamic array has initial capacity $2C = O(1)$. Then, define $\Phi = \max\{0, n - \text{#free-slots}\}$, where n is the number of elements stored in the dynamic array. Note that for $n < C$ that an append simply fills in a free slot and leaves $\Phi = 0$, so the amortized cost of such an append is O(1). Otherwise, we have $n > C$ and $\Phi = n - \text{#free-slots}$.

Consider any append. If the append does not trigger a resize, it does O(1) work, increases n by one, and decreases \#free-slots by one, so the amortized cost is

$$O(1) + k \cdot \Delta \Phi = O(1) + k \cdot 2 = O(1).$$

Otherwise, the operation copies n elements into a new array twice as large as before, increasing the number of free slots to n, then fills one of those slots. Just before the operation we had $\Phi = n$, and just after the operation we have $\Phi = 2$. Therefore, the amortized cost is

$$O(n) + k \cdot \Delta \Phi = O(n) + k \cdot (2 - n) = O(n) - nk + 2k,$$

which can be made to equal O(1) by choosing the the k term to match the constant hidden in the $O(n)$ term. ■
Some Exercises

• Suppose we grow the array not by a factor of two, but by a fixed constant $\alpha > 1$. Find a choice of Φ so that the amortized cost of an append is $O(1)$.

• Suppose we also allow elements to be removed from the array, and when it’s $\frac{1}{4}$ full we shrink it by a factor of two. Find a choice of Φ so the amortized cost of appending or removing the last element is $O(1)$.
Two-Stack Queues

Dynamic Arrays

Building B-Trees
Building B-Trees

- **Algorithm:** Store a pointer to the rightmost leaf. To add an item, append it to the rightmost leaf, splitting and kicking the median key up if we are out of space.
Building B-Trees

- What is the actual cost of appending an element?
 - Suppose that we perform splits at L layers in the tree.
 - Each split takes time $\Theta(b)$ to copy and move keys around.
 - Total cost: $\Theta(bL)$.

- **Goal:** Pick a potential function Φ so that we can offset this cost and make each append cost amortized $O(1)$.

![B-Tree diagram]
Building B-Trees

• Our potential function should, intuitively, quantify how “messy” our data structure is.

• Some observations:
 • We only care about nodes in the right spine of the tree.
 • Nodes in the right spine slowly have keys added to them. When they split, they lose (about) half of their keys.

• Idea: Set Φ to be the number of keys in the right spine of the tree.
Building B-Trees

- Let Φ be the number of keys on the right spine.
- Each split moves (roughly) half the keys from the split node into a node off the right spine.
- Change in potential per split: $-\Theta(b)$.
- Net $\Delta\Phi$: $-\Theta(bL)$.

![Diagram](image-url)
Building B-Trees

- Actual cost of an append that does L splits: $O(bL)$.
- $\Delta \Phi$ for that operation: $-\Theta(bL)$.
- Amortized cost: $O(1)$.

```
0  1  2  4  6  8  10  12  13
  |   |   |   |   |   |   |
  3  5   9 11
      |   |
    7
```
Theorem: The amortized cost of appending to a B-tree by inserting it into the rightmost leaf node and applying fixup rules is $O(1)$.

Proof: Assume we are working with a B-tree of order b. Let Φ be the number of nodes on the right spine of the B-tree.

Suppose we insert a value into the tree using the algorithm described above. Suppose this causes L nodes to be split. Each of those splits requires $\Theta(b)$ work for a net total of $\Theta(bL)$ work.

Each of those L splits moves $\Theta(b)$ keys off of the right spine of the tree, decreasing Φ by $\Theta(b)$ for a net drop in potential of $-\Theta(bL)$. In the layer just above the last split, we add one more key into a node, increasing Φ by one. Therefore, $\Delta \Phi = -\Theta(bL)$.

Overall, this tells us that the amortized cost of inserting a key this way is

$$\Theta(bL) + k \cdot \Delta \Phi = \Theta(bL) - k \cdot \Theta(bL),$$

which can be made to be $O(1)$ by choosing k to equate the constants hidden in the O and Θ terms. ■
More to Explore

- You can implement a **deque** (a doubly-ended queue) using a B-tree with pointers to the first and last leaves.
 - This is sometimes called a **finger tree**.
 - Finger trees are used extensively in purely functional programming languages.
 - By extending the analysis from here, you can show the amortized cost of appending or removing from each end of the finger tree is $O(1)$.

- Red/black trees are modeled on 2-3-4 trees. You can build a red/black tree from n sorted keys in time $O(n)$ this way.
 - **Great exercise:** Explore how to do this, and work out what choice of Φ to make.
To Summarize
Amortized Analysis

- Some data structures accumulate messes slowly, then clean up those messes in single, large steps.
- We can assign *amortized* costs to operations. These are fake costs such that summing up the amortized costs never underestimates the sum of the real costs.
- To do so, we define a potential function Φ that, intuitively, measures how “messy” the data structure is. We then set

$$amortized\text{-}cost = real\text{-}cost + k \cdot \Delta \Phi.$$

- For simplicity, we assume that Φ is nonnegative and that Φ for an empty data structure is zero.
Next Time

- **Binomial Heaps**
 - A very clever way to build a priority queue.
- **Lazy Binomial Heaps**
 - Designing for amortization.