

Fibonacci Heaps

Outline for Today

● Review from Last Time
● Quick refresher on binomial heaps and lazy

binomial heaps.

● The Need for decrease-key
● An important operation in many graph algorithms.

● Fibonacci Heaps
● A data structure efficiently supporting decrease-

key.

● Representational Issues
● Some of the challenges in Fibonacci heaps.

Review: (Lazy) Binomial Heaps

Building a Priority Queue

● Group nodes into “packets” with the following
properties:

● Size must be a power of two.
● Can efficiently fuse packets of the same size.
● Can efficiently find the minimum element of

each packet.
● Can efficiently “fracture” a packet of 2k nodes

into packets of 1, 2, 4, 8, …, 2k-1 nodes.

Binomial Trees

● A binomial tree of order k is a type of tree
recursively defined as follows:

A binomial tree of order k is a single node whose
children are binomial trees of order 0, 1, 2, …, k – 1.

● Here are the first few binomial trees:

0

0

1

0

0

1

2

0

0

1

2

0

1 0

3

Binomial Trees

● A heap-ordered binomial tree is a binomial
tree whose nodes obey the heap property: all
nodes are less than or equal to their
descendants.

● We will use heap-ordered binomial trees to
implement our “packets.”

5

9

2

7

5

3

1

The Binomial Heap

● A binomial heap is a collection of heap-ordered
binomial trees stored in ascending order of size.

● Operations defined as follows:

● meld(pq₁, pq₂): Use addition to combine all the trees.

– Fuses O(log n) trees. Total time: O(log n).

● pq.enqueue(v, k): Meld pq and a singleton heap of (v, k).

– Total time: O(log n).

● pq.find-min(): Find the minimum of all tree roots.

– Total time: O(log n).

● pq.extract-min(): Find the min, delete the tree root,
then meld together the queue and the exposed children.

– Total time: O(log n).

Lazy Binomial Heaps

● A lazy binomial heap is a variation on a
standard binomial heap in which melds are
done lazily by concatenating tree lists
together.

● Tree roots are stored in a doubly-linked list.
● An extra pointer is required that points to

the minimum element.
● extract-min eagerly coalesces binomial

trees together and runs in amortized time
O(log n).

The Overall Analysis

● Set Φ(D) to be the number of trees in D.
● The amortized costs of the operations on a

lazy binomial heap are as follows:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(log n)

● Details are in the previous lecture.
● Let's quickly review extract-min's analysis.

Analyzing Extract-Min

● Initially, we expose the children of the minimum
element. This takes time O(log n).

● Suppose that at this point there are T trees. The
runtime for the coalesce is Θ(T).

● When we're done merging, there will be O(log n)
trees remaining, so ΔΦ = -T + O(log n).

● Amortized cost is

 = O(log n) + Θ(T) + O(1) · (-T + O(log n))

 = O(log n) + Θ(T) – O(1) · T + O(1) · O(log n)

 = O(log n).

A Detail in the Analysis

● The amortized cost of an extract-min is

O(log n) + Θ(T) + O(1) · (-T + O(log n))

● Where do these O(log n) terms come from?
● First O(log n): Removing the minimum element

might expose O(log n) children, since the maximum
order of a tree is O(log n).

● Second O(log n): Maximum number of trees after a
coalesce is O(log n).

● A different intuition: Let M(n) be the maximum
possible order of a tree in a lazy binomial heap.

● Amortized runtime is O(M(n)).

The Need for decrease-key

Review: Dijkstra's Algorithm

● Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.

0

5

8

7

6

5

2

10

4

1

1

 4

Dijkstra and Priority Queues

● At each step of Dijkstra's algorithm, we need
to do the following:
● Find the node at v minimum distance from s.
● Update the candidate distances of all the nodes

connected to v. (Distances only decrease in this
step.)

● This first step sounds like an extract-min on
a priority queue.

● How would we implement the second step?

Review: Prim's Algorithm

● Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.

7

 4
3

6

 1

 5

10

2

4

 9

8

 9

Review: Prim's Algorithm

● Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.

 4
3

 1

 5 2

4

8

 9

Prim and Priority Queues

● At each step of Prim's algorithm, we need to
do the following:
● Find the node v outside of the spanning tree with

the lowest-cost connection to the tree.
● Update the candidate distances from v to nodes

outside the set S.

● This first step sounds like an extract-min on
a priority queue.

● How would we implement the second step?

The decrease-key Operation

● Some priority queues support the operation
pq.decrease-key(v, k), which works as
follows:

Given a pointer to an element v in pq, lower
its key (priority) to k. It is assumed that k is

less than the current priority of v.
● This operation is crucial in efficient

implementations of Dijkstra's algorithm and
Prim's MST algorithm.

Dijkstra and decrease-key

● Dijkstra's algorithm can be implemented with a priority
queue using

● O(n) total enqueues,

● O(n) total extract-mins, and

● O(m) total decrease-keys.

● Dijkstra's algorithm runtime is

O(n Tenq + n Text + m Tdec)

Prim and decrease-key

● Prim's algorithm can be implemented with a priority
queue using

● O(n) total enqueues,

● O(n) total extract-mins, and

● O(m) total decrease-keys.

● Prim's algorithm runtime is

O(n Tenq + n Text + m Tdec)

Standard Approaches

● In a binary heap, enqueue, extract-min,
and decrease-key can be made to work
in time O(log n) time each.

● Cost of Dijkstra's / Prim's algorithm:

 = O(n Tenq + n Text + m Tdec)

 = O(n log n + n log n + m log n)

 = O(m log n)

Standard Approaches

● In a binomial heap, n enqueues takes
time O(n), each extract-min takes time
O(log n), and each decrease-key takes
time O(log n).

● Cost of Dijkstra's / Prim's algorithm:

 = O(n Tenq + n Text + m Tdec)

 = O(n + n log n + m log n)

 = O(m log n)

Where We're Going
● The Fibonacci heap has these runtimes:

● enqueue: O(1)

● meld: O(1)

● find-min: O(1)

● extract-min: O(log n), amortized.

● decrease-key: O(1), amortized.

● Cost of Prim's or Dijkstra's algorithm:

 = O(n Tenq + n Text + m Tdec)

 = O(n + n log n + m)

 = O(m + n log n)

● This is theoretically optimal for a comparison-based
priority queue in Dijkstra's or Prim's algorithms.

The Challenge of decrease-key

A Simple Implementation

● It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

● Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

2

5

8

5

7

4

3

1 6

7

4

8

9

9

7

min

A Simple Implementation

● It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

● Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

2

5

8

5

7

4

3

1 6

7

4

8

0

9

7

min

A Simple Implementation

● It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

● Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

2

5

8

5

7

4

3

1 6

7

4

7

8

9

0

min

The Challenge

● Goal: Implement decrease-key in
amortized time O(1).

● Why is this hard?
● Lowering a node's priority might break the

heap property.
● Correcting the imbalance O(log n) layers

deep in a tree might take time O(log n).

● We will need to change our approach.

A Crazy Idea

4

5

8

5

7

4

3

2 6

7

4

7

8

9

3

2

A Crazy Idea

4

5

8

5

7

4

0

2 6

7

4

7

8

9

3

2

A Crazy Idea

4

5

8

5

7

4

0

2 6

7

4

7

8

9

3

2

A Crazy Idea

● To implement decrease-key efficiently:
● Lower the key of the specified node.
● If its key is greater than or equal to its

parent's key, we're done.
● Otherwise, cut that node from its parent and

hoist it up to the root list, optionally updating
the min pointer.

● Time required: O(1).
● This requires some changes to the tree

representation; more details later.

Tree Sizes and Orders

● Recall: A binomial tree of order k has 2k
nodes and the root has k children.

● Going forward, we'll say that the order
of a node is the number of children it
has.

● Concern: If trees can be cut, a tree of
order k might have many fewer than 2k
nodes.

The Problem

4

585 4

3

2 8 43

2

9

2 6

3

The Problem

123k+1 ... 4

Number of nodes: Θ(k2)

Number of trees: Θ(n1/2)

Number of nodes: Θ(k2)

Number of trees: Θ(n1/2)

The Problem

● Recall: The amortized cost of an
extract-min is O(M(n)), where M(n) is
the maximum order of a tree in the heap.

● With true binomial trees, this is O(log n).
● With our “damaged” binomial trees, this

can be Θ(n1/2).
● We've lost our runtime bounds!

Time-Out for Announcements!

Problem Sets

● Problem Set Three was due at the start
of class today.
● Want to use late days? Feel free to submit it

by Saturday at 3:00PM.

● The next problem set goes out on
Tuesday. Enjoy a little break from the
problem sets!

Back to CS166!

The Problem

● This problem arises because we have lost
one of the guarantees of binomial trees:

A binomial tree of order k has 2k nodes.
● When we cut low-hanging trees, the root

node won't learn that these trees are
missing.

● However, communicating this
information up from the leaves to the
root might take time O(log n)!

The Tradeoff

● If we don't impose any structural
constraints on our trees, then trees of
large order may have too few nodes.
● Leads to M(n) getting too high, wrecking our

runtime bounds for extract-min.

● If we impose too many structural
constraints on our trees, then we have to
spend too much time fixing up trees.
● Leads to decrease-key taking too long.

● How can we strike a balance?

The Compromise

● Every non-root node is allowed to lose at most one child.
● If a non-root node loses two children, we cut it from its

parent. (This might trigger more cuts.)
● We will mark nodes in the heap that have lost children

to keep track of this fact.

4

5

8

5

7

4

3

2 6

7

4

7

8

9

3

2

The Compromise

● Every non-root node is allowed to lose at most one child.
● If a non-root node loses two children, we cut it from its

parent. (This might trigger more cuts.)
● We will mark nodes in the heap that have lost children

to keep track of this fact.

4

5

1

5

7

4

3

2 6

7

4

7

8

9

3

2

The Compromise

● Every non-root node is allowed to lose at most one child.
● If a non-root node loses two children, we cut it from its

parent. (This might trigger more cuts.)
● We will mark nodes in the heap that have lost children

to keep track of this fact.

4

5

1

5

7

4

3

2 6

7

4

7

8

9

3

2

The Compromise

● Every non-root node is allowed to lose at most one child.
● If a non-root node loses two children, we cut it from its

parent. (This might trigger more cuts.)
● We will mark nodes in the heap that have lost children

to keep track of this fact.

4

5

1

5

7

4

3

2 6

7

4

7

8

9

3

2

The Compromise

● Every non-root node is allowed to lose at most one child.
● If a non-root node loses two children, we cut it from its

parent. (This might trigger more cuts.)
● We will mark nodes in the heap that have lost children

to keep track of this fact.

4

5

1

2

7

4

3

2 6

7

4

7

8

9

3

2

The Compromise

● Every non-root node is allowed to lose at most one child.
● If a non-root node loses two children, we cut it from its

parent. (This might trigger more cuts.)
● We will mark nodes in the heap that have lost children

to keep track of this fact.

4

5

1 2

7

4

3

2 6

7

4

7

8

9

3

2

The Compromise

● Every non-root node is allowed to lose at most one child.
● If a non-root node loses two children, we cut it from its

parent. (This might trigger more cuts.)
● We will mark nodes in the heap that have lost children

to keep track of this fact.

4

5

1 2

7

4

3

2 6

7

4

7

8

9

3

2

The Compromise

● Every non-root node is allowed to lose at most one child.
● If a non-root node loses two children, we cut it from its

parent. (This might trigger more cuts.)
● We will mark nodes in the heap that have lost children

to keep track of this fact.

4

5

1 2

7

0

3

2 6

7

4

7

8

9

3

2

The Compromise

● Every non-root node is allowed to lose at most one child.
● If a non-root node loses two children, we cut it from its

parent. (This might trigger more cuts.)
● We will mark nodes in the heap that have lost children

to keep track of this fact.

4

5

1 2

7

032

6

7

4

7

8

9

3

2

The Compromise

● To cut node v from its parent p:
● Unmark v.
● Cut v from p.
● If p is not already marked and is not the root

of a tree, mark it.
● If p was already marked, recursively cut p

from its parent.

The Compromise

● If we do a few
decrease-keys, then
the tree won't lose
“too many” nodes.

● If we do many
decrease-keys, the
information slowly
propagates to the
root.

6

7

4

7

8

9

3

2

Assessing the Impact

● The amortized cost of an extract-min is
O(M(n)), where M(n) is the maximum
possible order of a tree.

● This used to be O(log n) because our
trees had exponentially many nodes in
them.

● What is it now?

Two Extremes

● If we never do any decrease-keys, then the
trees in our data structure are all binomial
trees.

● Each tree of order k has 2k nodes in it, the
maximum possible order is O(log n).

● On the other hand, suppose that all trees in the
binomial heap have lost the maximum possible
number of nodes.

● In that case, how many nodes will each tree
have?

Maximally-Damaged Trees

A maximally-damaged tree of
order k is a node whose children
are maximally-damaged trees of
orders

0, 0, 1, 2, 3, …, k – 2.

A maximally-damaged tree of
order k is a node whose children
are maximally-damaged trees of
orders

0, 0, 1, 2, 3, …, k – 2.

k

0 0 k-21
…

0 0 1

0 0 0

2

4

0 0 1

0

32

00

0 1

0

Maximally-Damaged Trees

0 0 1

0 0 0

2

4

0 0 1

0

32

00

0 1

0

1 2 3 5 8

Claim: The minimum
number of nodes in a
tree of order k is Fₖ₊₂

Claim: The minimum
number of nodes in a
tree of order k is Fₖ₊₂

Maximally-Damaged Trees

● Theorem: The number of nodes in a maximally-
damaged tree of order k is Fₖ₊₂.

● Proof: Induction.

0 1

0 0 k-2

k + 1

1
…

k-1

Fₖ₊₂ Fₖ₊₁+F₂ F₃

φ-bonacci Numbers

● Fact: For n ≥ 2, we have Fₙ ≥ φn-2, where φ is
the golden ratio:

 φ ≈ 1.61803398875...

● Claim: In our modified data structure, we have
M(n) = O(log n).

● Proof: In a tree of order k, there are at least
Fₖ₊₂ ≥ φk nodes. Therefore, the maximum
order of a tree in our data structure is
logφ n = O(log n). ■

Fibonacci Heaps

● A Fibonacci heap is a lazy binomial heap
where decrease-key is implemented using
the earlier cutting-and-marking scheme.

● Operation runtimes:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(log n) amortized
● decrease-key: Up next!

Analyzing decrease-key

● In the best case, decrease-key takes
time O(1) when no cuts are made.

● In the worst case, decrease-key takes
time O(C), where C is the number of cuts
made.

● What is the amortized cost of a
decrease-key?

Refresher: Our Choice of Φ

● In our amortized analysis of lazy binomial
heaps, we set Φ to be the number of trees in
the heap.

● With this choice of Φ, we obtained these
amortized time bounds:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(log n)

Rethinking our Potential

● Intuitively, a cascading cut only occurs if we have a
long chain of marked nodes.

● Those nodes were only marked because of previous
decrease-key operations.

● Idea: Backcharge the work required to do the
cascading cut to each preceding decrease-key that
contributed to it.

● Specifically, change Φ as follows:

Φ = #trees + #marked
● Note: Since only decrease-key interacts with marked

nodes, our amortized analysis of all previous
operations is still the same.

The (New) Amortized Cost

● Using our new Φ, a decrease-key makes C cuts, it
● Marks one new node (+1),
● Unmarks C nodes (-C), and
● Adds C trees to the root list (+C).

● Amortized cost is

 = Θ(C) + O(1) · ΔΦ

 = Θ(C) + O(1) · (1 – C + C)

 = Θ(C) + O(1) · 1

 = Θ(C) + O(1)

 = Θ(C)
● Hmmm... that didn't work.

The Trick

● Each decrease-key makes extra work
for two future operations:
● Future extract-mins that now have more

trees to coalesce, and
● Future decrease-keys that might have to do

cascading cuts.

● We can make this explicit in our potential
function:

Φ = #trees + 2·#marked

The (Final) Amortized Cost

● Using our new Φ, a decrease-key makes C cuts, it
● Marks one new node (+2),
● Unmarks C nodes (-2C), and
● Adds C trees to the root list (+C).

● Amortized cost is

 = Θ(C) + O(1) · ΔΦ

 = Θ(C) + O(1) · (2 – 2C + C)

 = Θ(C) + O(1) · (2 – C)

 = Θ(C) – O(C) + O(1)

 = Θ(1)
● We now have amortized O(1) decrease-key!

The Story So Far

● The Fibonacci heap has the following
amortized time bounds:
● enqueue: O(1)
● find-min: O(1)
● meld: O(1)
● decrease-key: O(1) amortized
● extract-min: O(log n) amortized

● This is about as good as it gets!

The Catch: Representation Issues

Representing Trees

● The trees in a Fibonacci heap must be
able to do the following:
● During a merge: Add one tree as a child of

the root of another tree.
● During a cut: Cut a node from its parent in

time O(1).

● Claim: This is trickier than it looks.

Representing Trees

A

B C

D

E

A

B C D E

Representing Trees

A

B C

D

E

A

B C D E

Finding this
pointer might take

time Θ(log n)!

Finding this
pointer might take

time Θ(log n)!

The Solution

B C D E

A
Each node stores a

pointer to its parent.

Each node stores a
pointer to its parent.

The parent
stores a pointer
to an arbitrary

child.

The parent
stores a pointer
to an arbitrary

child.

The children of each
node are in a circularly,

doubly-linked list.

The children of each
node are in a circularly,

doubly-linked list.

Awful Linked Lists

● Trees are stored as follows:
● Each node stores a pointer to some child.
● Each node stores a pointer to its parent.
● Each node is in a circularly-linked list of its siblings.

● Awful, but the following possible are now
possible in time O(1):
● Cut a node from its parent.
● Add another child node to a node.

● This is the main reason Fibonacci heaps are so
complex.

Fibonacci Heap Nodes

● Each node in a Fibonacci heap stores
● A pointer to its parent.
● A pointer to the next sibling.
● A pointer to the previous sibling.
● A pointer to an arbitrary child.
● A bit for whether it's marked.
● Its order.
● Its key.
● Its element.

In Practice

● In practice, Fibonacci heaps are slower
than other heaps with worse asymptotic
performance.

● Why?
● Huge memory requirements per node.
● High constant factors on all operations.
● Poor locality of reference and caching.

In Theory

● That said, Fibonacci heaps are worth
knowing about for several reasons:
● Clever use of a two-tiered potential function

shows up in lots of data structures.
● Implementation of decrease-key forms the

basis for many other advanced priority
queues.

● Gives the theoretically optimal comparison-
based implementation of Prim's and
Dijkstra's algorithms.

Summary

● decrease-key is a useful operation in many
graph algorithms.

● Implement decrease-key by cutting a node from
its parent and hoisting it up to the root list.

● To make sure trees of high order have lots of
nodes, add a marking scheme and cut nodes that
lose two or more children.

● Represent the data structure using Awful Linked
Lists.

● Can prove that the number of trees is O(log n)
by most maximally damaged trees in the heap.

Next Time

● Splay Trees
● Amortized-efficient balanced trees.

● Static Optimality
● Is there a single best BST for a set of data?

● Dynamic Optimality
● Is there a single best BST for a set of data if

that BST can change over time?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

