Fibonacci Heaps



Outline for Today

* Review from Last Time

* Quick refresher on binomial heaps and lazy
binomial heaps.

« The Need for decrease-key
 An important operation in many graph algorithms.
 Fibonacci Heaps

« A data structure efficiently supporting decrease-
Key.

 Representational Issues

 Some of the challenges in Fibonacci heaps.



Review: (Lazy) Binomial Heaps



Building a Priority Queue

 Group nodes into “packets” with the following
properties:

Size must be a power of two.
Can efficiently fuse packets of the same size.

Can efficiently find the minimum element of
each packet.

Can efficiently “fracture” a packet of 2% nodes
into packets of 1, 2, 4, 8, ..., 2¥! nodes.



Binomial Trees

A binomial tree of order k is a type of tree
recursively defined as follows:

A binomial tree of order k is a single node whose
children are binomial trees of order O, 1, 2, ..., k - 1.

e Here are the first few binomial trees:

@



Binomial Trees

A heap-ordered binomial tree is a binomial
tree whose nodes obey the heap property: all
nodes are less than or equal to their
descendants.

 We will use heap-ordered binomial trees to
implement our “packets.”

@



The Binomial Heap

A binomial heap is a collection of heap-ordered
binomial trees stored in ascending order of size.

 Operations defined as follows:

« meld(pqi, pqgz): Use addition to combine all the trees.
- Fuses O(log n) trees. Total time: O(log n).

« pg.enqueue(v, k): Meld pg and a singleton heap of (v, k).
- Total time: O(log n).

* pq.find-min(): Find the minimum of all tree roots.
- Total time: O(log n).

 pqg.extract-min(): Find the min, delete the tree root,
then meld together the queue and the exposed children.

- Total time: O(log n).



Lazy Binomial Heaps

A lazy binomial heap is a variation on a
standard binomial heap in which melds are
done lazily by concatenating tree lists
together.

» Tree roots are stored in a doubly-linked list.

« An extra pointer is required that points to
the minimum element.

« extract-min eagerly coalesces binomial
trees together and runs in amortized time

O(log n).



The Overall Analysis

e Set ®(D) to be the number of trees in D.

« The amortized costs of the operations on a
lazy binomial heap are as follows:

« enqueue: O(1)
« meld: O(1)
e find-min: O(1)
o extract-min: O(log n)
« Details are in the previous lecture.

« Let's quickly review extract-min's analysis.



Analyzing Extract-Min

Initially, we expose the children of the minimum
element. This takes time O(log n).

Suppose that at this point there are T trees. The
runtime for the coalesce is O(T).

When we're done merging, there will be O(log n)
trees remaining, so A® = -T + O(log n).

Amortized cost is
O(logn) + ©(T) + O(1) - (-T + O(log n))
= O(logn) +O6(T)-0(1) - T+ O(1) - O(log n)
= O(log n).



A Detail in the Analysis

« The amortized cost of an extract-min is
O(logn) + 6(T) + O(1) - (-T + O(log n))

Where do these O(log n) terms come from?

« First O(log n): Removing the minimum element
might expose O(log n) children, since the maximum
order of a tree is O(log n).

« Second O(log n): Maximum number of trees after a
coalesce is O(log n).

A different intuition: Let M(n) be the maximum
possible order of a tree in a lazy binomial heap.

« Amortized runtime is O(M(n)).



The Need for decrease-key



Review: Dijkstra's Algorithm

« Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Dijkstra and Priority Queues

« At each step of Dijkstra's algorithm, we need
to do the following:

e Find the node at v minimum distance from s.

« Update the candidate distances of all the nodes
connected to v. (Distances only decrease in this
step.)

« This first step sounds like an extract-min on
a priority queue.

« How would we implement the second step?



Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.
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Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Prim and Priority Queues

« At each step of Prim's algorithm, we need to
do the following:

« Find the node v outside of the spanning tree with
the lowest-cost connection to the tree.

 Update the candidate distances from v to nodes
outside the set S.

« This first step sounds like an extract-min on
a priority queue.

« How would we implement the second step?



The decrease-key Operation

 Some priority queues support the operation
pq.decrease-key(v, k), which works as
follows:

Given a pointer to an element v in pq, lower
its key (priority) to k. It is assumed that k is
less than the current priority of v.

« This operation is crucial in efficient
implementations of Dijkstra's algorithm and
Prim's MST algorithm.



Dijkstra and decrease-key

» Dijkstra's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and
« O(m) total decrease-keys.

» Dijkstra's algorithm runtime is
onT, +nT_ +mT, )



Prim and decrease-key

« Prim's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and
« O(m) total decrease-keys.

 Prim's algorithm runtime is

O(n Tenq +nT +mT, )



Standard Approaches

* In a binary heap, enqueue, extract-min,
and decrease-key can be made to work
in time O(log n) time each.

» Cost of Dijkstra's / Prim's algorithm:
OonT,  +nT  +mT,)

= O(nlogn + nlogn+ mlog n)
= O(m log n)



Standard Approaches

* In a binomial heap, n enqueues takes
time O(n), each extract-min takes time
O(log n), and each decrease-key takes
time O(log n).

« Cost of Dijkstra's / Prim's algorithm:

O(n TerlCI +nT__+m Tdec)

= O(n + nlogn + m log n)
= O(m log n)



Where We're Going

« The Fibonacci heap has these runtimes:

enqueue: O(1)
meld: O(1)
find-min: O(1)

extract-min: O(log n), amortized.

decrease-key: O(1), amortized.

« Cost of Prim's or Dijkstra's algorithm:

O(n Tenq +nT_ +m Tdec)

= 0O(n+nlogn+ m)
= O0O(m + n log n)

« This is theoretically optimal for a comparison-based
priority queue in Dijkstra's or Prim's algorithms.



The Challenge of decrease-key



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

e Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min
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A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.
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The Challenge

 Goal: Implement decrease-key in
amortized time O(1).

« Why is this hard?

 Lowering a node's priority might break the
heap property.

« Correcting the imbalance O(log n) layers
deep in a tree might take time O(log n).

« We will need to change our approach.



A Crazy Idea
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A Crazy Idea

 To implement decrease-key efficiently:

 Lower the key of the specified node.

 If its key is greater than or equal to its
parent's key, we're done.

« Otherwise, cut that node from its parent and
hoist it up to the root list, optionally updating
the min pointer.

e Time required: O(1).

« This requires some changes to the tree
representation; more details later.



Tree Sizes and Orders

e Recall: A binomial tree of order k has 2k
nodes and the root has k children.

 Going forward, we'll say that the order
of a node is the number of children it
has.

« Concern: If trees can be cut, a tree of
order k might have many fewer than 2*
nodes.



The Problem
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The Problem

k+1 4 3

Number of nodes: ©(k?)
Number of trees: @(n'/?)



The Problem

e Recall: The amortized cost of an
extract-min is O(M(n)), where M(n) is
the maximum order of a tree in the heap.

« With true binomial trees, this is O(log n).

« With our “damaged” binomial trees, this
can be O(n'?).

e We've lost our runtime bounds!



Time-Out for Announcements!



Problem Sets

« Problem Set Three was due at the start
of class today.

 Want to use late days? Feel tree to submit it
by Saturday at 3:00PM.

 The next problem set goes out on
Tuesday. Enjoy a little break from the
problem sets!



~
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HUNTINGTON’S OUTREACH PROJECT
FOR EDUCATION, AT STANFORD

The Huntington's Qutreach Project for Education, at Stanford (HOPES) is an educational service project
working to build a web resource on Huntington’s disease (HD). Qur mission is to make scientific information
about HD more readily accessible to patients, their families, and the general public. We are currently hiring
student researchers (writers), graphic designers, and web developers for the 2016-2017 school year.

Student researcher positions:

As aresearcher, you will be responsible for researching
a specific HD-related topic, writing articles based on
your research, and planning the graphics to go along
with your article. You are also expected to play a big
role in the editcrial process for both your own work and
the work of other group members. Applicants should
have a strong background in biclogy, human biclogy,
or anthropological sciences, including a good working
knowledge of genetics. Strong writing, editing, and
communication skills are also necessary.

Graphic designer positions:

Graphic designers work on the most popular parts of
the site including illustrated books, articles and interac-
tive tutorials. Responsibilities include collaborating with
researchers to visually enhance the educational text,
creating interactive tutorials, and brainstorming new
projects for the HOPES website. Although not required,
college-level biology background is a strong asset.
Other skills we are looking for include: experience with
Adobe Photoshop or another graphics editing program,
llustrator, Flash, vector or 3D graphics, digital video edit-
ing, and web design.

Web developer positions:

We are hiring a web designer to improve our Wordpress
site. This is a great opportunity for someone with an in-
terest in web design to learn and improve as a web de-
signer, and develop a competitive portfolio. Experience
preferred, but not necessary.

Compensation:
Units or pay (units through Anthropology or HumBio;
starting salary of $16 per hour)

Commitment:

Full time or part-time during the summer and
part-time throughout the school year. During
the school year, weekly hours are flexible and
most work is independent, but you must be
able to average 6-10 hours of work per week.
There will also be group workshops, outreach
events, and weekly meetings, all of which will
be scheduled according to the availability of
the team.

Faculty Coordinator:
Prof. Bill Durham

HOW TO APPLY:

Applications for all positions are due on
Sunday, May 1 at 11:59pm

Please send a current resume, letter of
application, and unofficial transcript to HOPES
Project Leader Kristen Powers
(kapowers@stanford.edu) with the subject line
"YOUR LAST NAME - HOPES Application". The
letter should include a candid discussion of
your qualifications for the position, your other
time commitments, your leadership skills, and
your reasons for interest in the position.

Student researchers: Please attach two writing
samples, science-related and/or research-
based in nature.

Graphic designers: Please send in 3 recent
design samples with a brief description about
each (fools used, time spent, purpose/client,
etc).

Web developers: Please send links o any
web-design work you may have done.

For more information, please visit our website at http://hopes.stanford.edu and/or email the Project Leader.



Back to CS1606!



The Problem

e This problem arises because we have lost
one of the guarantees of binomial trees:

A binomial tree of order k has 2* nodes.

« When we cut low-hanging trees, the root
node won't learn that these trees are
missing.

« However, communicating this
information up from the leaves to the
root might take time O(log n)!



The Tradeoff

 If we don't impose any structural
constraints on our trees, then trees of
large order may have too few nodes.

« Leads to M(n) getting too high, wrecking our
runtime bounds for extract-min.

 If we impose too many structural
constraints on our trees, then we have to
spend too much time fixing up trees.

 Leads to decrease-key taking too long.
« How can we strike a balance?



The Compromise

« Every non-root node is allowed to lose at most one child.

e [f a non-root node loses two children, we cut it from its
parent. (This might trigger more cuts.)

« We will mark nodes in the heap that have lost children
to keep track of this fact.

2
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« Every non-root node is allowed to lose at most one child.

e [f a non-root node loses two children, we cut it from its
parent. (This might trigger more cuts.)

« We will mark nodes in the heap that have lost children
to keep track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

e [f a non-root node loses two children, we cut it from its
parent. (This might trigger more cuts.)

« We will mark nodes in the heap that have lost children
to keep track of this fact.

AR



The Compromise

 To cut node v from its parent p:

e Unmark v.
« Cut v from p.

« If pis not already marked and is not the root
of a tree, mark it.

» If p was already marked, recursively cut p
from its parent.



The Compromise

« If we do a few
decrease-keys, then
the tree won't lose @

“too many” nodes.
3 6 4

* If we do many
decrease-keys, the 709 (7
information slowly
propagates to the @
root.



Assessing the Impact

« The amortized cost of an extract-min is
O(M(n)), where M(n) is the maximum
possible order of a tree.

e This used to be O(log n) because our
trees had exponentially many nodes in
them.

« What is it now?



Two Extremes

If we never do any decrease-keys, then the
trees in our data structure are all binomial
trees.

Each tree of order k has 2% nodes in it, the
maximum possible order is O(log n).

On the other hand, suppose that all trees in the
binomial heap have lost the maximum possible
number of nodes.

In that case, how many nodes will each tree
have?



Maximally-Damaged Trees

"diide ol
N 0 U QOZ
o C

A maximally-damaged tree of
order k is a node whose children

are maximally-damaged trees of
orders

0 ¢

0,0,1,2,3, .. k-2.




Maximally-Damaged Trees

Claim: The minimum
number of nodes in a
tree of order k is Fx+2




Maximally-Damaged Trees

« Theorem: The number of nodes in a maximally-
damaged tree of order k is Fk+z2.

 Proof: Induction.

0 1 S k+1 .
O g g 9
0 0 1 k-2 k-1

----------------------------------------



(p-bonacci Numbers

 Fact: For n = 2, we have Fn = ™4, where @ is
the golden ratio:

@ =~ 1.61803398875...

e Claim: In our modified data structure, we have
M(n) = O(log n).

 Proof: In a tree of order k, there are at least
Fx+2 = @* nodes. Therefore, the maximum
order of a tree in our data structure is
10g(p n=0logn). N



Fibonacci Heaps

A Fibonacci heap is a lazy binomial heap
where decrease-key is implemented using
the earlier cutting-and-marking scheme.

e Operation runtimes:
« enqueue: O(1)
« meld: O(1)
e find-min: O(1)
« extract-min: O(log n) amortized
 decrease-key: Up next!



Analyzing decrease-key

* In the best case, decrease-key takes
time O(1) when no cuts are made.

* In the worst case, decrease-key takes
time O(C), where C is the number of cuts
made.

« What is the amortized cost of a
decrease-key?



Refresher: Our Choice of ®

* In our amortized analysis of lazy binomial
heaps, we set ® to be the number of trees in
the heap.

« With this choice of ®, we obtained these
amortized time bounds:

« enqueue: O(1)

« meld: O(1)

e find-min: O(1)

« extract-min: O(log n)



Rethinking our Potential

 Intuitively, a cascading cut only occurs if we have a
long chain of marked nodes.

 Those nodes were only marked because of previous
decrease-key operations.

» Idea: Backcharge the work required to do the
cascading cut to each preceding decrease-key that
contributed to it.

» Specifically, change ® as follows:
® = #trees + #marked

 Note: Since only decrease-key interacts with marked
nodes, our amortized analysis of all previous
operations is still the same.



The (New) Amortized Cost

« Using our new @, a decrease-key makes C cuts, it

« Marks one new node (+1),
e Unmarks C nodes (-C), and
« Adds C trees to the root list (+C).

« Amortized cost is
OC) +0(1) - AD
=0(C)+0(1)-(1-C+ C)
=0(C)+0(1) -1
= O(C) + 0(1)
= 0(0)
« Hmmm... that didn't work.




The Trick

 Each decrease-key makes extra work
for two future operations:

e Future extract-mins that now have more
trees to coalesce, and

 Future decrease-keys that might have to do
cascading cuts.

« We can make this explicit in our potential
function:

® = #trees + 2-#marked



The (Final) Amortized Cost

« Using our new @, a decrease-key makes C cuts, it

« Marks one new node (+2),
e Unmarks C nodes (-2C), and
« Adds C trees to the root list (+C).

« Amortized cost is
OC) +0(1) - AD
=0(C)+0(1)-2-2C+0C)
=0(C)+0(1)-2-0)
= O(C) - O(C) + 0O(1)
= 0(1)
« We now have amortized O(1) decrease-key!



The Story So Far

« The Fibonacci heap has the following
amortized time bounds:

 enqueue: O(1)

o find-min: O(1)

meld: O(1)

 decrease-key: O(1) amortized

 extract-min: O(log n) amortized
« This is about as good as it gets!



The Catch: Representation Issues



Representing Trees

 The trees in a Fibonacci heap must be
able to do the following:

 During a merge: Add one tree as a child of
the root of another tree.

 During a cut: Cut a node from its parent in
time O(1).

e Claim: This is trickier than it looks.



Representing Irees

66 o HEHE




Representing Irees

A- D 4

66 o HEEE

Finding this
pointer might take
time ©(log n)!




The Solution

The parent
Egch node; stores a stores a pointer
pointer to its parent. to an arbitrary
child.

B D

The children of each
node are in a circularly,
doubly-linked list.

=l




Awful Linked Lists

* Trees are stored as follows:
« Each node stores a pointer to some child.

« Each node stores a pointer to its parent.
« Each node is in a circularly-linked list of its siblings.

« Awful, but the following possible are now
possible in time O(1):

« Cut a node from its parent.
« Add another child node to a node.

« This is the main reason Fibonacci heaps are so
complex.



Fibonacci Heap Nodes

« Each node in a Fibonacci heap stores

« A pointer to its parent.

« A pointer to the next sibling.

« A pointer to the previous sibling.
« A pointer to an arbitrary child.
A bit for whether it's marked.

Its order.

Its key.
Its element.



In Practice

 In practice, Fibonacci heaps are slower
than other heaps with worse asymptotic
performance.

« Why?
« Huge memory requirements per node.
 High constant factors on all operations.
« Poor locality of reference and caching.



In Theory

« That said, Fibonacci heaps are worth
knowing about for several reasons:

« Clever use of a two-tiered potential function
shows up in lots of data structures.

 Implementation of decrease-key forms the
basis for many other advanced priority
queues.

« Gives the theoretically optimal comparison-
based implementation of Prim's and
Dijkstra's algorithms.



Summary

» decrease-Kkey is a useful operation in many
graph algorithms.

 Implement decrease-key by cutting a node from
its parent and hoisting it up to the root list.

« To make sure trees of high order have lots of
nodes, add a marking scheme and cut nodes that
lose two or more children.

 Represent the data structure using Awful Linked
Lists.

 Can prove that the number of trees is O(log n)
by most maximally damaged trees in the heap.



Next Time

 Splay Trees

 Amortized-efficient balanced trees.
» Static Optimality

» Is there a single best BST for a set of data?
 Dynamic Optimality

» Is there a single best BST for a set of data if
that BST can change over time?
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