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Outline for Today

● Review from Last Time
● Quick refresher on binomial heaps and lazy 

binomial heaps.

● The Need for decrease-key
● An important operation in many graph algorithms.

● Fibonacci Heaps
● A data structure efficiently supporting decrease-

key.

● Representational Issues
● Some of the challenges in Fibonacci heaps.



  

Review: (Lazy) Binomial Heaps



  

Building a Priority Queue

● Group nodes into “packets” with the following 
properties:

● Size must be a power of two.
● Can efficiently fuse packets of the same size.
● Can efficiently find the minimum element of 

each packet.
● Can efficiently “fracture” a packet of 2k nodes 

into packets of 1, 2, 4, 8, …, 2k-1 nodes.



  

Binomial Trees

● A binomial tree of order k is a type of tree 
recursively defined as follows:

A binomial tree of order k is a single node whose 
children are binomial trees of order 0, 1, 2, …, k – 1.

● Here are the first few binomial trees:
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Binomial Trees

● A heap-ordered binomial tree is a binomial 
tree whose nodes obey the heap property: all 
nodes are less than or equal to their 
descendants.

● We will use heap-ordered binomial trees to 
implement our “packets.”
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The Binomial Heap

● A binomial heap is a collection of heap-ordered 
binomial trees stored in ascending order of size.

● Operations defined as follows:

● meld(pq₁, pq₂): Use addition to combine all the trees.

– Fuses O(log n) trees. Total time: O(log n).

● pq.enqueue(v, k): Meld pq and a singleton heap of (v, k).

– Total time: O(log n).

● pq.find-min(): Find the minimum of all tree roots.

– Total time: O(log n).

● pq.extract-min(): Find the min, delete the tree root, 
then meld together the queue and the exposed children.

– Total time: O(log n).



  

Lazy Binomial Heaps

● A lazy binomial heap is a variation on a 
standard binomial heap in which melds are 
done lazily by concatenating tree lists 
together.

● Tree roots are stored in a doubly-linked list.
● An extra pointer is required that points to 

the minimum element.
● extract-min eagerly coalesces binomial 

trees together and runs in amortized time 
O(log n).



  

The Overall Analysis

● Set Φ(D) to be the number of trees in D.
● The amortized costs of the operations on a 

lazy binomial heap are as follows:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(log n)

● Details are in the previous lecture.
● Let's quickly review extract-min's analysis.



  

Analyzing Extract-Min

● Initially, we expose the children of the minimum 
element. This takes time O(log n).

● Suppose that at this point there are T trees. The 
runtime for the coalesce is Θ(T).

● When we're done merging, there will be O(log n) 
trees remaining, so ΔΦ = -T + O(log n).

● Amortized cost is

   = O(log n) + Θ(T) + O(1) · (-T + O(log n))

   = O(log n) + Θ(T) – O(1) · T + O(1) · O(log n)

   = O(log n).



  

A Detail in the Analysis

● The amortized cost of an extract-min is

O(log n) + Θ(T) + O(1) · (-T + O(log n)) 

● Where do these O(log n) terms come from?
● First O(log n): Removing the minimum element 

might expose O(log n) children, since the maximum 
order of a tree is O(log n).

● Second O(log n): Maximum number of trees after a 
coalesce is O(log n).

● A different intuition: Let M(n) be the maximum 
possible order of a tree in a lazy binomial heap.

● Amortized runtime is O(M(n)).



  

The Need for decrease-key



  

Review: Dijkstra's Algorithm

● Dijkstra's algorithm solves the single-source 
shortest paths (SSSP) problem in graphs with 
nonnegative edge weights.
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Dijkstra and Priority Queues

● At each step of Dijkstra's algorithm, we need 
to do the following:
● Find the node at v minimum distance from s.
● Update the candidate distances of all the nodes 

connected to v. (Distances only decrease in this 
step.)

● This first step sounds like an extract-min on 
a priority queue.

● How would we implement the second step?



  

Review: Prim's Algorithm

● Prim's algorithm solves the minimum spanning 
tree (MST) problem in undirected graphs.
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Review: Prim's Algorithm

● Prim's algorithm solves the minimum spanning 
tree (MST) problem in undirected graphs.
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Prim and Priority Queues

● At each step of Prim's algorithm, we need to 
do the following:
● Find the node v outside of the spanning tree with 

the lowest-cost connection to the tree.
● Update the candidate distances from v to nodes 

outside the set S.

● This first step sounds like an extract-min on 
a priority queue.

● How would we implement the second step?



  

The decrease-key Operation

● Some priority queues support the operation 
pq.decrease-key(v, k), which works as 
follows:

Given a pointer to an element v in pq, lower 
its key (priority) to k. It is assumed that k is 

less than the current priority of v.
● This operation is crucial in efficient 

implementations of Dijkstra's algorithm and 
Prim's MST algorithm.



  

Dijkstra and decrease-key

● Dijkstra's algorithm can be implemented with a priority 
queue using

● O(n) total enqueues,

● O(n) total extract-mins, and

● O(m) total decrease-keys.

● Dijkstra's algorithm runtime is

O(n Tenq + n Text + m Tdec)  



  

Prim and decrease-key

● Prim's algorithm can be implemented with a priority 
queue using

● O(n) total enqueues,

● O(n) total extract-mins, and

● O(m) total decrease-keys.

● Prim's algorithm runtime is

O(n Tenq + n Text + m Tdec)  



  

Standard Approaches

● In a binary heap, enqueue, extract-min, 
and decrease-key can be made to work 
in time O(log n) time each.

● Cost of Dijkstra's / Prim's algorithm:

  = O(n Tenq + n Text + m Tdec)

  = O(n log n + n log n + m log n)

  = O(m log n)



  

Standard Approaches

● In a binomial heap, n enqueues takes 
time O(n), each extract-min takes time 
O(log n), and each decrease-key takes 
time O(log n).

● Cost of Dijkstra's / Prim's algorithm:

  = O(n Tenq + n Text + m Tdec)

  = O(n + n log n + m log n)

  = O(m log n)



  

Where We're Going
● The Fibonacci heap has these runtimes:

● enqueue: O(1)

● meld: O(1)

● find-min: O(1)

● extract-min: O(log n), amortized.

● decrease-key: O(1), amortized.

● Cost of Prim's or Dijkstra's algorithm:

 = O(n Tenq + n Text + m Tdec)

 = O(n + n log n + m)

 = O(m + n log n)

● This is theoretically optimal for a comparison-based 
priority queue in Dijkstra's or Prim's algorithms.



  

The Challenge of decrease-key



  

A Simple Implementation

● It is possible to implement decrease-key in 
time O(log n) using lazy binomial heaps.

● Idea: “Bubble” the element up toward the root 
of the binomial tree containing it and 
(potentially) update the min pointer.
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A Simple Implementation

● It is possible to implement decrease-key in 
time O(log n) using lazy binomial heaps.
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of the binomial tree containing it and 
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The Challenge

● Goal: Implement decrease-key in 
amortized time O(1).

● Why is this hard?
● Lowering a node's priority might break the 

heap property.
● Correcting the imbalance O(log n) layers 

deep in a tree might take time O(log n).

● We will need to change our approach.



  

A Crazy Idea

4

5

8

5

7

4

3

2 6

7

4

7

8

9

3

2



  

A Crazy Idea
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A Crazy Idea
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A Crazy Idea

● To implement decrease-key efficiently:
● Lower the key of the specified node.
● If its key is greater than or equal to its 

parent's key, we're done.
● Otherwise, cut that node from its parent and 

hoist it up to the root list, optionally updating 
the min pointer.

● Time required: O(1).
● This requires some changes to the tree 

representation; more details later.



  

Tree Sizes and Orders

● Recall: A binomial tree of order k has 2k 
nodes and the root has k children.

● Going forward, we'll say that the order 
of a node is the number of children it 
has.

● Concern: If trees can be cut, a tree of 
order k might have many fewer than 2k 
nodes.



  

The Problem
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The Problem

123k+1 ... 4

Number of nodes: Θ(k2)
 

Number of trees: Θ(n1/2)

Number of nodes: Θ(k2)
 

Number of trees: Θ(n1/2)



  

The Problem

● Recall: The amortized cost of an 
extract-min is O(M(n)), where M(n) is 
the maximum order of a tree in the heap.

● With true binomial trees, this is O(log n).
● With our “damaged” binomial trees, this 

can be Θ(n1/2).
● We've lost our runtime bounds!



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Three was due at the start 
of class today.
● Want to use late days? Feel free to submit it 

by Saturday at 3:00PM.

● The next problem set goes out on 
Tuesday. Enjoy a little break from the 
problem sets!



  



  

Back to CS166!



  

The Problem

● This problem arises because we have lost 
one of the guarantees of binomial trees:

A binomial tree of order k has 2k nodes.
● When we cut low-hanging trees, the root 

node won't learn that these trees are 
missing.

● However, communicating this 
information up from the leaves to the 
root might take time O(log n)!



  

The Tradeoff

● If we don't impose any structural 
constraints on our trees, then trees of 
large order may have too few nodes.
● Leads to M(n) getting too high, wrecking our 

runtime bounds for extract-min.

● If we impose too many structural 
constraints on our trees, then we have to 
spend too much time fixing up trees.
● Leads to decrease-key taking too long.

● How can we strike a balance?



  

The Compromise

● Every non-root node is allowed to lose at most one child.
● If a non-root node loses two children, we cut it from its 

parent. (This might trigger more cuts.)
● We will mark nodes in the heap that have lost children 

to keep track of this fact.
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The Compromise

● Every non-root node is allowed to lose at most one child.
● If a non-root node loses two children, we cut it from its 

parent. (This might trigger more cuts.)
● We will mark nodes in the heap that have lost children 
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The Compromise

● To cut node v from its parent p:
● Unmark v.
● Cut v from p.
● If p is not already marked and is not the root 

of a tree, mark it.
● If p was already marked, recursively cut p 

from its parent.



  

The Compromise

● If we do a few 
decrease-keys, then 
the tree won't lose 
“too many” nodes.

● If we do many 
decrease-keys, the 
information slowly 
propagates to the 
root.
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Assessing the Impact

● The amortized cost of an extract-min is 
O(M(n)), where M(n) is the maximum 
possible order of a tree.

● This used to be O(log n) because our 
trees had exponentially many nodes in 
them.

● What is it now?



  

Two Extremes

● If we never do any decrease-keys, then the 
trees in our data structure are all binomial 
trees.

● Each tree of order k has 2k nodes in it, the 
maximum possible order is O(log n).

● On the other hand, suppose that all trees in the 
binomial heap have lost the maximum possible 
number of nodes.

● In that case, how many nodes will each tree 
have?



  

Maximally-Damaged Trees

A maximally-damaged tree of 
order k is a node whose children 
are maximally-damaged trees of 
orders
 

0, 0, 1, 2, 3, …, k – 2.

A maximally-damaged tree of 
order k is a node whose children 
are maximally-damaged trees of 
orders
 

0, 0, 1, 2, 3, …, k – 2.
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Maximally-Damaged Trees
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Maximally-Damaged Trees

● Theorem: The number of nodes in a maximally-
damaged tree of order k is Fₖ₊₂.

● Proof: Induction.
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φ-bonacci Numbers

● Fact: For n ≥ 2, we have Fₙ ≥ φn-2, where φ is 
the golden ratio:

 φ ≈ 1.61803398875...

● Claim: In our modified data structure, we have 
M(n) = O(log n).

● Proof: In a tree of order k, there are at least
Fₖ₊₂ ≥ φk nodes. Therefore, the maximum
order of a tree in our data structure is
logφ n = O(log n). ■



  

Fibonacci Heaps

● A Fibonacci heap is a lazy binomial heap 
where decrease-key is implemented using 
the earlier cutting-and-marking scheme.

● Operation runtimes:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(log n) amortized
● decrease-key: Up next!



  

Analyzing decrease-key

● In the best case, decrease-key takes 
time O(1) when no cuts are made.

● In the worst case, decrease-key takes 
time O(C), where C is the number of cuts 
made.

● What is the amortized cost of a 
decrease-key?



  

Refresher: Our Choice of Φ

● In our amortized analysis of lazy binomial 
heaps, we set Φ to be the number of trees in 
the heap.

● With this choice of Φ, we obtained these 
amortized time bounds:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(log n)



  

Rethinking our Potential

● Intuitively, a cascading cut only occurs if we have a 
long chain of marked nodes.

● Those nodes were only marked because of previous 
decrease-key operations.

● Idea: Backcharge the work required to do the 
cascading cut to each preceding decrease-key that 
contributed to it.

● Specifically, change Φ as follows:

Φ = #trees + #marked
● Note: Since only decrease-key interacts with marked 

nodes, our amortized analysis of all previous 
operations is still the same.



  

The (New) Amortized Cost

● Using our new Φ, a decrease-key makes C cuts, it
● Marks one new node (+1),
● Unmarks C nodes (-C), and
● Adds C trees to the root list (+C).

● Amortized cost is

    = Θ(C) + O(1) · ΔΦ

    = Θ(C) + O(1) · (1 – C + C)

    = Θ(C) + O(1) · 1

    = Θ(C) + O(1)

    = Θ(C)
● Hmmm... that didn't work.



  

The Trick

● Each decrease-key makes extra work 
for two future operations:
● Future extract-mins that now have more 

trees to coalesce, and
● Future decrease-keys that might have to do 

cascading cuts.

● We can make this explicit in our potential 
function:

Φ = #trees + 2·#marked



  

The (Final) Amortized Cost

● Using our new Φ, a decrease-key makes C cuts, it
● Marks one new node (+2),
● Unmarks C nodes (-2C), and
● Adds C trees to the root list (+C).

● Amortized cost is

    = Θ(C) + O(1) · ΔΦ

    = Θ(C) + O(1) · (2 – 2C + C)

    = Θ(C) + O(1) · (2 – C)

    = Θ(C) – O(C) + O(1)

    = Θ(1)
● We now have amortized O(1) decrease-key!



  

The Story So Far

● The Fibonacci heap has the following 
amortized time bounds:
● enqueue: O(1)
● find-min: O(1)
● meld: O(1)
● decrease-key: O(1) amortized
● extract-min: O(log n) amortized

● This is about as good as it gets!



  

The Catch: Representation Issues



  

Representing Trees

● The trees in a Fibonacci heap must be 
able to do the following:
● During a merge: Add one tree as a child of 

the root of another tree.
● During a cut: Cut a node from its parent in 

time O(1).

● Claim: This is trickier than it looks.



  

Representing Trees
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Representing Trees
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Finding this 
pointer might take 

time Θ(log n)!

Finding this 
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time Θ(log n)!



  

The Solution

B C D E

A
Each node stores a 

pointer to its parent.

Each node stores a 
pointer to its parent.

The parent 
stores a pointer 
to an arbitrary 

child.

The parent 
stores a pointer 
to an arbitrary 

child.

The children of each 
node are in a circularly, 

doubly-linked list.

The children of each 
node are in a circularly, 

doubly-linked list.



  

Awful Linked Lists

● Trees are stored as follows:
● Each node stores a pointer to some child.
● Each node stores a pointer to its parent.
● Each node is in a circularly-linked list of its siblings.

● Awful, but the following possible are now 
possible in time O(1):
● Cut a node from its parent.
● Add another child node to a node.

● This is the main reason Fibonacci heaps are so 
complex.



  

Fibonacci Heap Nodes

● Each node in a Fibonacci heap stores
● A pointer to its parent.
● A pointer to the next sibling.
● A pointer to the previous sibling.
● A pointer to an arbitrary child.
● A bit for whether it's marked.
● Its order.
● Its key.
● Its element.



  

In Practice

● In practice, Fibonacci heaps are slower 
than other heaps with worse asymptotic 
performance.

● Why?
● Huge memory requirements per node.
● High constant factors on all operations.
● Poor locality of reference and caching.



  

In Theory

● That said, Fibonacci heaps are worth 
knowing about for several reasons:
● Clever use of a two-tiered potential function 

shows up in lots of data structures.
● Implementation of decrease-key forms the 

basis for many other advanced priority 
queues.

● Gives the theoretically optimal comparison-
based implementation of Prim's and 
Dijkstra's algorithms.



  

Summary

● decrease-key is a useful operation in many 
graph algorithms.

● Implement decrease-key by cutting a node from 
its parent and hoisting it up to the root list.

● To make sure trees of high order have lots of 
nodes, add a marking scheme and cut nodes that 
lose two or more children.

● Represent the data structure using Awful Linked 
Lists.

● Can prove that the number of trees is O(log n) 
by most maximally damaged trees in the heap.



  

Next Time

● Splay Trees
● Amortized-efficient balanced trees.

● Static Optimality
● Is there a single best BST for a set of data?

● Dynamic Optimality
● Is there a single best BST for a set of data if 

that BST can change over time?
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