Frequency Estimators
Outline for Today

• **Randomized Data Structures**
 • Our next approach to improving performance.

• **Count-Min Sketches**
 • A simple and powerful data structure for estimating frequencies.

• **Count Sketches**
 • Another approach for estimating frequencies.
Randomized Data Structures
Tradeoffs

- Data structure design is all about tradeoffs:
 - Trade preprocessing time for query time.
 - Trade asymptotic complexity for constant factors.
 - Trade worst-case per-operation guarantees for worst-case aggregate guarantees.
Randomization

- Randomization opens up new routes for tradeoffs in data structures:
 - Trade worst-case guarantees for average-case guarantees.
 - Trade exact answers for approximate answers.
- Over the next few lectures, we'll explore two families of data structures that make these tradeoffs:
 - Today: *Frequency estimators*.
 - Next Week: *Hash tables*.
Preliminaries: *What is a Hash Function?*
In most programming languages, each object has “a” hash code.

- C++: `std::hash`
- Java: `Object.hashCode`
- Python: `__hash__`

To store objects in a hash table, you just go and implement the appropriate function or type.

In other words, hash functions are *intrinsic* properties of objects.
Hashing in Theoryland

- In Theoryland, a hash function is a function from some domain called the universe (typically denoted \mathcal{U}) to some codomain.
- The codomain is usually a set of the form \{0, 1, 2, 3, ..., $m - 1$\}, which we’ll denote $[m]$.
- We often will grab lots of different hash functions from the same universe \mathcal{U} to some codomain, and we’ll assume we have access to as many of them as we need.
- In other words, hash functions are extrinsic to objects, and it’s possible to have multiple different hash functions available at the same time.
Families of Hash Functions

- A *family* of hash functions is a set \mathcal{H} of hash functions with the same domain and codomain.
- The data structures we’ll explore will assume that we have access to certain families of hash functions with nice properties.
- We’ll then sample uniformly-random choices $h \in \mathcal{H}$ to use as needed.
Sampling Random Functions

• Here’s a family of hash functions \(\mathcal{H} \) from \(\mathbb{N} \) to \([137]\):

\[
\mathcal{H} = \{ f(n) = (an + b) \mod 137 \mid a, b \in [137] \}
\]

• In Theoryland, we’d model picking a uniformly-random hash function from \(\mathcal{H} \) as just that – sampling some \(h \in \mathcal{H} \) uniformly.

• In The Real World, we’d probably model picking such a function like this:

```c
int a = rand() % 137;
int b = rand() % 137;

int hash(int value) {
    return (a * value + b) % 137;
}
```
Characterizing Hash Functions

• Different algorithms and data structures require different guarantees from their hash functions.

• In CS161, you explored *universal hash functions* in the context of chained hash tables.

• For what we’ll be doing in CS166, we’re going to need hash functions with slightly stronger probabilistic guarantees.
Pairwise Independence

- Let \mathcal{H} be a family of hash functions from U to some set C.

- We say that \mathcal{H} is a 2-independent family of hash functions if, for a uniformly-random choice of $h \in \mathcal{H}$, the following is true for all distinct $x, y \in U$:

 \[h(x) \text{ and } h(y) \text{ are uniformly distributed over } C. \]
 \[h(x) \text{ and } h(y) \text{ are independent.} \]

- 2-independent hash functions are great hash functions when we want a nice distribution over the output space even after fixing some specific element.
3-Independence

• Let \mathcal{H} be a family of hash functions from \mathcal{U} to some set \mathcal{C}.

• We say that \mathcal{H} is a **3-independent family of hash functions** if, for a uniformly-random choice of $h \in \mathcal{H}$, the following is true for all distinct $x, y, z \in \mathcal{U}$:

 \[h(x), h(y), \text{ and } h(z) \text{ are uniformly distributed over } \mathcal{C}. \]

 \[h(x), h(y), \text{ and } h(z) \text{ are independent}. \]

• As you’ll see, in many cases, making stronger assumptions about our hash functions makes it possible to simplify tricky probabilistic expressions.

• (As you can probably guess, this generalizes even further to k-independence, which we’ll see on Tuesday.)
Frequency Estimation
Frequency Estimators

• A *frequency estimator* is a data structure supporting the following operations:
 • `increment(x)`, which increments the number of times that x has been seen, and
 • `estimate(x)`, which returns an estimate of the frequency of x.

• Using BSTs, we can solve this in space $\Theta(n)$ with worst-case $O(\log n)$ costs on the operations.

• Using hash tables, we can solve this in space $\Theta(n)$ with expected $O(1)$ costs on the operations.
Frequency Estimators

- Frequency estimation has many applications:
 - Search engines: Finding frequent search queries.
 - Network routing: Finding common source and destination addresses.
- In these applications, $\Theta(n)$ memory can be impractical.
- **Goal:** Get approximate answers to these queries in sublinear space.
Some Terminology

• Let's suppose that all elements \(x \) are drawn from some set \(\mathcal{U} = \{ x_1, x_2, \ldots, x_n \} \).

• We can interpret the frequency estimation problem as follows:

 Maintain an \(n \)-dimensional vector \(a \) such that \(a_i \) is the frequency of \(x_i \).

• We'll represent \(a \) implicitly in a format that uses reduced space.
Vector Norms

• Let $a \in \mathbb{R}^n$ be a vector.

• The $L_1 \text{ norm of } a$, denoted $\|a\|_1$, is defined as

 \[
 \|a\|_1 = \sum_{i=1}^{n} |a_i|
 \]

• The $L_2 \text{ norm of } a$, denoted $\|a\|_2$, is defined as

 \[
 \|a\|_2 = \sqrt{\sum_{i=1}^{n} a_i^2}
 \]
Properties of Norms

- The following property of norms holds for any vector $a \in \mathbb{R}^n$. It's a good exercise to prove this on your own:

$$\|a\|_2 \leq \|a\|_1 \leq \Theta(n^{1/2}) \cdot \|a\|_2$$

- The first bound is tight when exactly one component of a is nonzero.

- The second bound is tight when all components of a are equal.
Where We're Going

• Today, we'll see two data frequency estimation data structures.

• Each is parameterized over two quantities:
 • An *accuracy* parameter $\varepsilon \in (0, 1)$ determining how close to accurate we want our answers to be.
 • A *confidence* parameter $\delta \in (0, 1]$ determining how likely it is that our estimate is within the bounds given by ε.
Where We're Going

- The **count-min sketch** provides estimates with error at most $\varepsilon \|a\|_1$ with probability at least $1 - \delta$.
- The **count sketch** provides estimates with an error at most $\varepsilon \|a\|_2$ with probability at least $1 - \delta$.
 - (Notice that lowering ε and lower δ give better bounds.)
- Count-min sketches will use less space than count sketches for the same ε and δ, but provide slightly weaker guarantees.
The Count-Min Sketch
The Count-Min Sketch

• Rather than diving into the full count-min sketch, we'll develop the data structure in phases.

• First, we'll build a simple data structure that on expectation provides good estimates, but which does not have a high probability of doing so.

• Next, we'll combine several of these data structures together to build a data structure that has a high probability of providing good estimates.
Revisiting the Exact Solution

- In the exact solution to the frequency estimation problem, we maintained a single counter for each distinct element. This is too space-inefficient.

- **Idea:** Store a fixed number of counters and assign a counter to each \(x_i \in \mathcal{U} \). Multiple \(x_i \)'s might be assigned to the same counter.

- To **increment** \(x \), increment the counter for \(x \).

- To **estimate** \(x \), read the value of the counter for \(x \).
Our Initial Structure

- We can model “assigning each x_i to a counter” by using hash functions.
- Choose, from a family of 2-independent hash functions \mathcal{H}, a uniformly-random hash function $h : \mathcal{U} \rightarrow [w]$.
- Create an array count of w counters, each initially zero.
 - We'll choose w later on.
- To $\textbf{increment}(x)$, increment $\text{count}[h(x)]$.
- To $\textbf{estimate}(x)$, return $\text{count}[h(x)]$.
Analyzing this Structure

- **Recall:** \(a\) is the vector representing the true frequencies of the elements.
 - \(a_i\) is the frequency of element \(x_i\).
- Denote by \(\hat{a}_i\) the value of \textit{estimate}(\(x_i\)). This is a random variable that depends on the true frequencies \(a\) (out of our control, but not random) and the hash function \(h\) (truly chosen at random.)
- **Goal:** Show that on expectation, \(\hat{a}_i\) is not far from \(a_i\).
Analyzing this Structure

• Intuitively, what do we expect \hat{a}_i to be?
• There are $\|a\|_1$ total elements spread out across w buckets.
• Assuming they’re well-distributed, we’d probably expect $\|a\|_1 / w$ of them to be in each bucket.
• So a reasonable guess would be that \hat{a}_i should probably end up being something like $a_i + \|a\|_1 / w$.
• Let’s see if we can formalize this.
Analyzing this Structure

• Let's look at $\hat{a}_i = \text{count}[h(x_i)]$ for some choice of x_i.

• For each element x_j:
 • If $h(x_i) = h(x_j)$, then x_j contributes a_j to $\text{count}[h(x_i)]$.
 • If $h(x_i) \neq h(x_j)$, then x_j contributes 0 to $\text{count}[h(x_i)]$.

• To pin this down precisely, let’s define a set of random variables $X_1, X_2, ..., \text{as follows:}$

$$X_j = \begin{cases} 1 & \text{if } h(x_i) = h(x_j) \\ 0 & \text{otherwise} \end{cases}$$

Each of these variables is called an **indicator random variable**, since it “indicates” whether some event occurs.
Analyzing this Structure

- Let's look at $\hat{a}_i = \text{count}[h(x_i)]$ for some choice of x_i.
- For each element x_j:
 - If $h(x_i) = h(x_j)$, then x_j contributes a_j to $\text{count}[h(x_i)]$.
 - If $h(x_i) \neq h(x_j)$, then x_j contributes 0 to $\text{count}[h(x_i)]$.
- To pin this down precisely, let’s define a set of random variables X_1, X_2, \ldots, as follows:
 \[
 X_j = \begin{cases}
 1 & \text{if } h(x_i) = h(x_j) \\
 0 & \text{otherwise}
 \end{cases}
 \]
- The value of \hat{a}_i is then given by
 \[
 \hat{a}_i = \sum_j a_j X_j = a_i + \sum_{j \neq i} a_j X_j
 \]
\[
E[\hat{a}_i] = E[a_i + \sum_{j \neq i} a_j X_j] \\
= E[a_i] + E[\sum_{j \neq i} a_j X_j]
\]

This follows from \textit{linearity of expectation}. We’ll use this property extensively over the next few days.
\[E[\hat{a}_i] = E[a_i + \sum_{j \neq i} a_j X_j] \]

\[= E[a_i] + E[\sum_{j \neq i} a_j X_j] \]

\[= a_i + \sum_{j \neq i} E[a_j X_j] \]

The actual value of \(a_i \) is not a random variable. The randomness here is in our choice of hash function, not the choice of the data.
\[E[\hat{a}_i] = E[a_i + \sum_{j \neq i} a_j X_j] \]
\[= E[a_i] + E[\sum_{j \neq i} a_j X_j] \]
\[= a_i + \sum_{j \neq i} E[a_j X_j] \]
\[= a_i + \sum_{j \neq i} a_j E[X_j] \]

\[E[X_j] = 1 \cdot \text{Pr}[h(x_i) = h(x_j)] + 0 \cdot \text{Pr}[h(x_i) \neq h(x_j)] \]

\[X_j = \begin{cases}
1 & \text{if } h(x_i) = h(x_j) \\
0 & \text{otherwise}
\end{cases} \]
\[
E[\hat{a}_i] = E[a_i + \sum_{j \neq i} a_j X_j] \\
= E[a_i] + E[\sum_{j \neq i} a_j X_j] \\
= a_i + \sum_{j \neq i} E[a_j X_j] \\
= a_i + \sum_{j \neq i} a_j E[X_j]
\]

\[
E[X_j] = 1 \cdot \Pr[h(x_i) = h(x_j)] + 0 \cdot \Pr[h(x_i) \neq h(x_j)] \\
= 1 \cdot \Pr[h(x_i) = h(x_j)]
\]

If \(X\) is an indicator variable for some event \(\mathcal{E}\), then \(E[X] = \Pr[\mathcal{E}]\). This is really useful when using linearity of expectation!
\[
\begin{align*}
E[\hat{a}_i] &= E[a_i + \sum_{j \neq i} a_j X_j] \\
&= E[a_i] + E[\sum_{j \neq i} a_j X_j] \\
&= a_i + \sum_{j \neq i} E[a_j X_j] \\
&= a_i + \sum_{j \neq i} a_j E[X_j]
\end{align*}
\]

\[
E[X_j] = 1 \cdot \Pr[h(x_i) = h(x_j)] + 0 \cdot \Pr[h(x_i) \neq h(x_j)]
\]

\[
= 1 \cdot \Pr[h(x_i) = h(x_j)]
\]

\[
= \frac{1}{w}
\]

Any two hash codes from a randomly-chosen 2-independent hash function are independent, uniformly-random variables.
\[
E[\hat{a}_i] = E[a_i + \sum_{j \neq i} a_j X_j] \\
= E[a_i] + E[\sum_{j \neq i} a_j X_j] \\
= a_i + \sum_{j \neq i} E[a_j X_j] \\
= a_i + \sum_{j \neq i} a_j E[X_j] \\
= a_i + \sum_{j \neq i} \frac{a_j}{w} \\
\leq a_i + \frac{\|a\|_1}{w}
\]

\[
E[X_j] = 1 \cdot \Pr[h(x_i) = h(x_j)] + 0 \cdot \Pr[h(x_i) \neq h(x_j)] \\
= 1 \cdot \Pr[h(x_i) = h(x_j)] \\
= \frac{1}{w}
\]
Interpreting our Analysis

• On expectation, the value of $\text{estimate}(x_i)$ is at most $\|a\|_1 / w$ greater than a_i.
 • That matches our intuition from before! Yay!

• From a practical perspective:
 • Increasing w increases memory usage, but improves accuracy.
 • Decreasing w decreases memory usage, but decreases accuracy.
One Problem

• We have shown that on expectation, the value of \texttt{estimate}(x_i) can be made close to the true value.

• However, this data structure may give wildly inaccurate results for most elements.

 • Any low-frequency elements that collide with high-frequency elements will have overreported frequency.

Question: Can we bound the probability that we overestimate the frequency of an element?
One Problem

• We have shown that on expectation, the value of $\text{estimate}(x_i)$ can be made close to the true value.

• However, this data structure may give wildly inaccurate results for most elements.
 • Any low-frequency elements that collide with high-frequency elements will have overreported frequency.

• **Question:** Can we bound the probability that we overestimate the frequency of an element?
A Useful Observation

- Notice that regardless of which hash function we use or the size of the table, we always have $\hat{a}_i \geq a_i$.

- This means that $\hat{a}_i - a_i \geq 0$.

- We have a one-sided error; this data structure will never underreport the frequency of an element, but it may overreport it.
Bounding the Error Probability

- If X is a nonnegative random variable, then Markov's inequality states that for any $c > 0$, we have
 \[\Pr[X > c \cdot \mathbb{E}[X]] \leq 1/c \]
- We know that
 \[\mathbb{E}[\hat{a}_i] \leq a_i + \|a\|_1/w \]
- Therefore, we see that
 \[\mathbb{E}[\hat{a}_i - a_i] \leq \|a\|_1/w \]
- By Markov's inequality, for any $c > 0$, we have
 \[\Pr[\hat{a}_i - a_i > \frac{c\|a\|_1}{w}] \leq 1/c \]
- Equivalently:
 \[\Pr[\hat{a}_i > a_i + \frac{c\|a\|_1}{w}] \leq 1/c \]
Bounding the Error Probability

• For any $c > 0$, we know that
 \[
 \Pr[\hat{a}_i > a_i + \frac{c\|a\|_1}{w}] \leq \frac{1}{c}
 \]

• In particular:
 \[
 \Pr[\hat{a}_i > a_i + \frac{e\|a\|_1}{w}] \leq \frac{1}{e}
 \]

• Given an accuracy parameter $\varepsilon, \in (0, 1]$, let's set $w = \lceil e / \varepsilon \rceil$. Then we have
 \[
 \Pr[\hat{a}_i > a_i + \varepsilon\|a\|_1] \leq \frac{1}{e}
 \]

• This data structure uses $O(\varepsilon^{-1})$ space and gives estimates with error at most $\varepsilon\|a\|_1$ with probability at least $1 - 1/e$.
Tuning the Probability

- Right now, we can tune the accuracy ε of the data structure, but we can't tune our confidence in that answer (it's always $1 - 1/e$).

- **Goal:** Update the data structure so that for any confidence $0 < \delta < 1$, the probability that an estimate is correct is at least $1 - \delta$.
Tuning the Probability

• A single copy of our data structure has a decently good chance of providing an estimate that isn’t too far off the true value.

• Intuitively, having lots of copies of this data structure would make it more likely that at least one of them gets a good estimate.

• **Idea:** Combine together multiple copies of this data structure to boost confidence in our estimates.
Running in Parallel

- Let's suppose that we run d independent copies of this data structure. Each has its own independently randomly chosen hash function.
- To $\textit{increment}(x)$ in the overall structure, we call $\textit{increment}(x)$ on each of the underlying data structures.
- The probability that at least one of them provides a good estimate is quite high.
- **Question:** How do you know which one?
Recognizing the Answer

• **Recall:** Each estimate \hat{a}_i is the sum of two independent terms:
 • The actual value a_i.
 • Some “noise” terms from other elements colliding with x_i.
• Since the noise terms are always nonnegative, larger values of \hat{a}_i are less accurate than smaller values of \hat{a}_i.
• **Idea:** Take, as our estimate, the minimum value of \hat{a}_i from all of the data structures.
The Final Analysis

- For each independent copy of this data structure, the probability that our estimate is within $\varepsilon||a||_1$ of the true value is at least $1 - 1/e$.
- Let \mathcal{E}_i be the event that the ith copy of the data structure provides an estimate within $\varepsilon||a||_1$ of the true answer.
- Let \mathcal{E} be the event that the aggregate data structure provides an estimate within $\varepsilon||a||_1$.
- **Question:** What is $\Pr[\mathcal{E}]$?
The Final Analysis

• Since we're taking the minimum of all the estimates, if any of the data structures provides a good estimate, our estimate will be accurate.

• Therefore,

\[\Pr[\varepsilon] = \Pr[\exists i. \varepsilon_i] \]

• Equivalently:

\[\Pr[\varepsilon] = 1 - \Pr[\forall i. \overline{\varepsilon_i}] \]

• Since all the estimates are independent:

\[\Pr[\varepsilon] = 1 - \Pr[\forall i. \overline{\varepsilon_i}] \geq 1 - 1/e^d. \]
The Final Analysis

• We now have that
 \[\Pr[\mathcal{E}] \geq 1 - 1/e^d. \]

• If we want the confidence to be \(1 - \delta\), we can choose \(\delta\) such that
 \[1 - \delta = 1 - 1/e^d \]

• Solving, we can choose \(d = \ln \delta^{-1}\).

• If we make \(\ln \delta^{-1}\) independent copies of our data structure, the probability that our estimate is off by at most \(\varepsilon \|a\|_1\) is at least \(1 - \delta\).
The Count-Min Sketch

- This data structure is called the *count-min sketch*.
- Given parameters ε and δ, choose
 \[w = \lceil e / \varepsilon \rceil \quad d = \lceil \ln \delta^{-1} \rceil \]
- Create an array `count` of size $w \times d$ and for each row i, choose a hash function $h_i : \mathcal{U} \rightarrow [w]$ uniformly and independently from a 2-independent family of hash functions \mathcal{H}.
- To *increment*(x), increment `count`[i][$h_i(x)$] for each row i.
- To *estimate*(x), return the minimum value of `count`[i][$h_i(x)$] across all rows i.
The Count-Min Sketch

- Update and query times are $\Theta(d)$, which is $\Theta(\log \delta^{-1})$.

- Space usage: $\Theta(\varepsilon^{-1} \cdot \log \delta^{-1})$ counters.
 - This can be *significantly* better than just storing a raw frequency count!

- Provides an estimate to within $\varepsilon \|a\|_1$ with probability at least $1 - \delta$.
Some Generalizable Ideas

- Many of the techniques and ideas from this analysis will show up in other places.
- First, the idea of using **indicator variables** and **linearity of expectation** to simplify expected value calculations.
- Second, relying on the **independence guarantees** of our hash function to simplify some of the intermediate steps.
- Third, the fact that being good **on expectation** isn’t the same as being good **with high probability** and using **concentration inequalities** to quantify spread.
- Finally, the fact that **confidence** and **accuracy** aren’t the same, and running **multiple parallel copies** of a data structure to boost confidence.
Time-Out for Announcements!
Final Project Proposal

- Final project proposals were due today at 2:30PM.
- We’re going to run a matchmaking algorithm soon and get back to everyone with their assigned topics.
- We’re looking forward to seeing what everyone has come up with!
Problem Sets

- Problem Set Four is due next Thursday at 2:30PM.
- Have questions? As always, you can
 - stop by office hours, or
 - ask on Piazza!
- We hope you have fun with this one!
Back to CS166!
An Alternative: Count Sketches
The Motivation

• (Note: This is historically backwards; count sketches came before count-min sketches.)
• In a count-min sketch, errors arise when multiple elements collide.
• Errors are strictly additive; the more elements collide in a bucket, the worse the estimate for those elements.
• Question: Can we try to offset the “badness” that results from the collisions?
The Setup

- As before, for some parameter w, we'll create an array count of length w.
- As before, choose a hash function $h : U \rightarrow [w]$ from a family \mathcal{H}.
- For each $x_i \in U$, assign x_i either +1 or -1.
- To $\text{increment}(x)$, go to $\text{count}[h(x)]$ and add ± 1 as appropriate.
- To $\text{estimate}(x)$, return $\text{count}[h(x)]$, multiplied by ± 1 as appropriate.
The Intuition

- Think about what introducing the ±1 term does when collisions occur.
- If an element \(x \) collides with a frequent element \(y \), we're not going to get a good estimate for \(x \) (but we wouldn't have gotten one anyway).
- If \(x \) collides with multiple infrequent elements, the collisions between those elements will partially offset one another and leave a better estimate for \(x \).
More Formally

- Let’s have $h \in \mathcal{H}$ chosen uniformly at random from a 3-independent family of hash functions from \mathcal{U} to \mathcal{W}.
- Choose $s \in \mathcal{U}$ uniformly randomly and independently of h from a 3-independent family from \mathcal{U} to $\{-1, +1\}$.
 - (Note: The more traditional analysis uses 2-independence rather than 3-independence. I’m showing you a slightly simplified version.)
- To increment(x), add $s(x)$ to $\text{count}[h(x)]$.
- To estimate(x), return $s(x) \cdot \text{count}[h(x)]$.
How accurate is our estimation?
Formalizing the Intuition

• As before, define \hat{a}_i to be our estimate of a_i.

• As before, \hat{a}_i will depend on how the other elements are distributed. Unlike before, it now also depends on signs given to the elements by s.

• Specifically, for each other x_j that collides with x_i, the error contribution will be

$$s(x_i) \cdot s(x_j) \cdot a_j$$

• Why?
 • The counter for x_i will have $s(x_j) a_j$ added in.
 • We multiply the counter by $s(x_i)$ before returning it.
Formalizing the Intuition

• As before, define \hat{a}_i to be our estimate of a_i.

• As before, \hat{a}_i will depend on how the other elements are distributed. Unlike before, it now also depends on signs given to the elements by s.

• Specifically, for each other x_j that collides with x_i, the error contribution will be

$$s(x_i) \cdot s(x_j) \cdot a_j$$

• Or:
 • If $s(x_i)$ and $s(x_j)$ point in the same direction, the terms add to the total.
 • If $s(x_i)$ and $s(x_j)$ point in different directions, the terms subtract from the total.
Formalizing the Intuition

• In our quest to learn more about \hat{a}_i, let’s have X_j be a random variable indicating whether x_i and x_j collided with one another:

$$X_j = \begin{cases}
1 & \text{if } h(x_i) = h(x_j) \\
0 & \text{if } h(x_i) \neq h(x_j)
\end{cases}$$

• We can then express \hat{a}_i in terms of the signed contributions from the items it collides with:

$$\hat{a}_i = \sum_j a_j s(x_i) s(x_j) X_j = a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j$$

This is how much the collision impacts our estimate.

We only care about items we collided with.
\begin{align*}
\mathbb{E}[\hat{a}_i] &= \mathbb{E}[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j] \\
&= \mathbb{E}[a_i] + \mathbb{E}\left[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j \right]
\end{align*}

Hey, it’s linearity of expectation!
\[\mathbb{E}[\hat{a}_i] = \mathbb{E}[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j] \]
\[= \mathbb{E}[a_i] + \mathbb{E}\left[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j \right] \]
\[= a_i + \sum_{j \neq i} \mathbb{E}[a_j s(x_i) s(x_j) X_j] \]

Remember that \(a_i \) and the like aren’t random variables.
\[
\mathbb{E}[\hat{a}_i] = \mathbb{E}[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j] \\
= \mathbb{E}[a_i] + \mathbb{E}\left[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j\right] \\
= a_i + \sum_{j \neq i} \mathbb{E}\left[a_j s(x_i) s(x_j) X_j\right] \\
= a_i + \sum_{j \neq i} \mathbb{E}[s(x_i) s(x_j)] \mathbb{E}[a_j X_j]
\]

We chose the hash functions \(h\) and \(s\) independently of one another.

\[
X_j = \begin{cases}
1 & \text{if } h(x_i) = h(x_j) \\
0 & \text{if } h(x_i) \neq h(x_j)
\end{cases}
\]
\[
\mathbb{E}[\hat{a}_i] = \mathbb{E}[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j] \\
= \mathbb{E}[a_i] + \mathbb{E}\left[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j\right] \\
= a_i + \sum_{j \neq i} \mathbb{E}[a_j s(x_i) s(x_j) X_j] \\
= a_i + \sum_{j \neq i} \mathbb{E}[s(x_i) s(x_j)] \mathbb{E}[a_j X_j] \\
= a_i + \sum_{j \neq i} \mathbb{E}[s(x_i)] \mathbb{E}[s(x_j)] \mathbb{E}[a_j X_j]
\]

Remember that \(s\) is drawn from a 3-independent family of hash functions, so \(s(x_i)\) and \(s(x_j)\) are independent random variables.
\[E[\hat{a}_i] = E[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j] \]
\[= E[a_i] + E[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j] \]
\[= a_i + \sum_{j \neq i} E[a_j s(x_i) s(x_j) X_j] \]
\[= a_i + \sum_{j \neq i} E[s(x_i)] E[s(x_j)] E[a_j X_j] \]
\[= a_i + \sum_{j \neq i} 0 \]
\[= a_i \]

\[E[s(x_i)] = \frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot (+1) \]
\[= 0 \]

\(s \) is drawn from a 3-independent family of hash functions.

\(s(x_i) \) is uniform over \{-1, +1\}

\(\Pr[s(x_i) = -1] = \frac{1}{2} \quad \Pr[s(x_i) = +1] = \frac{1}{2} \)
Expecting the Unexpected

• We’ve just seen that $E[\hat{a}_i] = a_i$, so on expectation our estimate is perfectly correct!

• However, we have no idea how likely it is that we’re going to get an estimate like this.

• Let’s see if we can bound the likelihood that we stray far from a_i.
A Hitch

• In the count-min sketch, we used Markov's inequality to bound the probability that we get a bad estimate.

• This worked because we had a one-sided error: the distance $\hat{a}_i - a_i$ from the true answer was nonnegative.

• However, with the count sketch, we have a two-sided error: $\hat{a}_i - a_i$ can be negative in the count sketch because collisions can decrease the estimate \hat{a}_i below the true value a_i.

• We'll need to use a different technique to bound the error.
Chebyshev to the Rescue

- **Chebyshev's inequality** states that for any random variable X with finite variance, given any $c > 0$, the following holds:

 $$\Pr\left[|X - \mathbb{E}[X]| \geq c \sqrt{\text{Var}[X]} \right] \leq \frac{1}{c^2}$$

- Equivalently:

 $$\Pr\left[|X - \mathbb{E}[X]| \geq c \right] \leq \frac{\text{Var}[X]}{c^2}$$

- If we can get the variance of \hat{a}_i, we can bound the probability that we get a bad estimate with our data structure.
Computing the Variance

• Let’s try computing the variance of our estimate \hat{a}_i:

\[
\begin{align*}
\text{Var}[\hat{a}_i] &= \text{Var}[a_i + \sum_{j \neq i} a_j s(x_i)s(x_j)X_j] \\
&= \text{Var}\left[\sum_{j \neq i} a_j s(x_i)s(x_j)X_j\right]
\end{align*}
\]

$\text{Var}[a + X] = \text{Var}[X]$
Computing the Variance

• Let’s try computing the variance of our estimate \hat{a}_i:

$$\text{Var}[\hat{a}_i] = \text{Var}[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j]$$

$$= \text{Var}\left[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j\right]$$

• Variance is not a linear operator, but it is linear if the underlying random variables are independent of one another.

• **Claim:** Each term of the sum is independent of the others.
Independence Day

• We want to show that these two terms are independent:

\[a_j \ s(x_i) \ s(x_j) \ X_j \quad a_k \ s(x_i) \ s(x_k) \ X_k \]

• Imagine we know \(a_j \ s(x_i) \ s(x_j) \ X_j \).

• Whether \(a_k \ s(x_i) \ s(x_k) \ X_k = 0 \) depends on whether \(h(x_i) = h(x_k) \).
 • The values \(h(x_i), h(x_j), \) and \(h(x_k) \) are uniformly-random and independent because \(h \) is 3-independent.
 • Knowing whether \(h(x_i) = h(x_j) \) doesn’t impact the probability that \(h(x_i) = h(x_k) \), since all three values are uniform and independent.

• The sign of \(a_k \ s(x_i) \ s(x_k) \ X_k \) depends on \(s(x_i) \cdot s(x_k) \).
 • \(s(x_i), s(x_j), \) and \(s(x_k) \) are uniformly-random and independent because \(s \) is 3-independent.
 • There’s an equal chance that \(s(x_i) \cdot s(x_k) = 1 \) and \(s(x_i) \cdot s(x_k) = -1 \), since even with \(s(x_i) \cdot s(x_j) \) fixed, \(s(x_k) \) is independently and uniformly distributed over \(\{+1, -1\} \).
\[\text{Var}[\hat{a}_i] = \text{Var}[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j] \]

\[= \text{Var}\left[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j \right] \]

\[= \sum_{j \neq i} \text{Var}[a_j s(x_i) s(x_j) X_j] \]

\[\leq \sum_{j \neq i} E\left[(a_j s(x_i) s(x_j) X_j)^2 \right] \]

\[
\text{Var}[Z] = E[Z^2] - E[Z]^2 \\
\leq E[Z^2]
\]
\[
\text{Var}[\hat{a}_i] = \text{Var}[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j]
\]

\[
= \text{Var}[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j]
\]

\[
= \sum_{j \neq i} \text{Var}[a_j s(x_i) s(x_j) X_j]
\]

\[
\leq \sum_{j \neq i} E[(a_j s(x_i) s(x_j) X_j)^2]
\]

\[
= \sum_{j \neq i} E[a_j^2 s(x_i)^2 s(x_j)^2 X_j^2]
\]

\[
= \sum_{j \neq i} a_j^2 E[X_j^2]
\]

\[
\text{s(x) = ±1, so}
\]

\[
\text{s(x)^2 = 1}
\]
\[
\text{Var}[\hat{a}_i] = \text{Var}[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j]
\]

\[
= \text{Var}[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j]
\]

\[
= \sum_{j \neq i} \text{Var}[a_j s(x_i) s(x_j) X_j]
\]

\[
\leq \sum_{j \neq i} \mathbb{E}[(a_j s(x_i) s(x_j) X_j)^2]
\]

\[
= \sum_{j \neq i} \mathbb{E}[a_j^2 s(x_i)^2 s(x_j)^2 X_j^2]
\]

\[
= \sum_{j \neq i} a_j^2 \mathbb{E}[X_j^2]
\]

\[
= \sum_{j \neq i} a_j^2 \mathbb{E}[X_j]
\]

Useful Fact:
If \(X \) is an indicator variable, then \(X^2 = X \).
\[
\text{Var}[\hat{a}_i] = \text{Var}[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j]
\]
\[
= \text{Var}\left[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j\right]
\]
\[
= \sum_{j \neq i} \text{Var}[a_j s(x_i) s(x_j) X_j]
\]
\[
\leq \sum_{j \neq i} \mathbb{E}\left[(a_j s(x_i) s(x_j) X_j)^2\right]
\]
\[
= \sum_{j \neq i} \mathbb{E}[a_j^2 s(x_i)^2 s(x_j)^2 X_j^2]
\]
\[
= \sum_{j \neq i} a_j^2 \mathbb{E}[X_j^2]
\]
\[
= \sum_{j \neq i} a_j^2 \mathbb{E}[X_j]
\]
\[
= \sum_{j \neq i} a_j^2 / w
\]
\[X_j = \begin{cases}
1 & \text{if } h(x_i) = h(x_j) \\
0 & \text{if } h(x_i) \neq h(x_j)
\end{cases}\]
\[
\text{Var}[\hat{a}_i] = \text{Var}[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j]
\]
\[
= \text{Var}[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j]
\]
\[
= \sum_{j \neq i} \text{Var}[a_j s(x_i) s(x_j) X_j]
\]
\[
\leq \sum_{j \neq i} \mathbb{E}[(a_j s(x_i) s(x_j) X_j)^2]
\]
\[
= \sum_{j \neq i} \mathbb{E}[a_j^2 s(x_i)^2 s(x_j)^2 X_j^2]
\]
\[
= \sum_{j \neq i} a_j^2 \mathbb{E}[X_j^2]
\]
\[
= \sum_{j \neq i} a_j^2 \mathbb{E}[X_j]
\]
\[
= \sum_{j \neq i} a_j^2 / w
\]
\[
\leq \sqrt{\sum_{j} a_j^2} = \|a\|_2
\]
\[
\leq \|a\|_2^2 / w
\]
\[\text{Var}[\hat{a}_i] = \text{Var}[a_i + \sum_{j \neq i} a_j s(x_i) s(x_j) X_j] \]

\[= \text{Var}[\sum_{j \neq i} a_j s(x_i) s(x_j) X_j] \]

\[= \sum_{j \neq i} \text{Var}[a_j s(x_i) s(x_j) X_j] \]

\[\leq \sum_{j \neq i} \mathbb{E}[(a_j s(x_i) s(x_j) X_j)^2] \]

\[= \sum_{j \neq i} \mathbb{E}[a_j^2 s(x_i)^2 s(x_j)^2 X_j^2] \]

\[= \sum_{j \neq i} a_j^2 \mathbb{E}[X_j^2] \]

\[= \sum_{j \neq i} a_j^2 \mathbb{E}[X_j] \]

\[= \sum_{j \neq i} a_j^2/w \]

\[\leq \|a\|_2^2/w \]

I know this might look really dense, but many of these substeps end up being really useful techniques. These ideas generalize, I promise.
Harnessing Chebyshev

- Chebyshev's Inequality says
 \[\Pr \left[|X - \mathbb{E}[X]| \geq c \sqrt{\text{Var}[X]} \right] \leq 1/c^2 \]

- Applying this to \(\hat{a}_i \) yields
 \[\Pr \left[|\hat{a}_i - a_i| \geq \frac{c \|a\|_2}{\sqrt{w}} \right] \leq 1/c^2 \]

- Given error parameter \(\varepsilon \), pick \(w = \lceil e / \varepsilon^2 \rceil \), so
 \[\Pr \left[|\hat{a}_i - a_i| \geq \frac{c \varepsilon \|a\|_2}{\sqrt{e}} \right] \leq 1/c^2 \]

- Therefore, choosing \(c = e^{1/2} \) gives
 \[\Pr \left[|\hat{a}_i - a_i| \geq \varepsilon \|a\|_2 \right] \leq 1/e \]
The Story So Far

- We now know that, by setting $\epsilon = (e / w)^{1/2}$, the estimate is within $\epsilon \|a\|_2$ with probability at least $1 - 1 / e$.

- Solving for w, this means that we will choose $w = \lceil e / \epsilon^2 \rceil$.

- Space usage is now $O(\epsilon^{-2})$, but the error bound is now $\epsilon \|a\|_2$ rather than $\epsilon \|a\|_1$.

- As before, the next step is to reduce the error probability.
Repetitions with a Catch

• As before, our goal is to make it possible to choose a bound $0 < \delta < 1$ so that the confidence is at least $1 - \delta$.

• As before, we'll do this by making d independent copies of the data structure and running each in parallel.

• Unlike the count-min sketch, errors in count sketches are two-sided; we can overshoot or undershoot.

• Therefore, it's not meaningful to take the minimum or maximum value.

• How do we know which value to report?
Working with the Median

- **Claim:** If we output the median estimate given by the data structures, we have high probability of giving the right answer.

- **Intuition:** The only way we report an answer more than $\varepsilon \|a\|_2$ is if at least half of the data structures output an answer that is more than $\varepsilon \|a\|_2$ from the true answer.

- Each individual data structure is wrong with probability at most $1/e$, so this is highly unlikely.
The Setup

• Let X denote a random variable equal to the number of data structures that produce an answer not within $\varepsilon \|a\|_2$ of the true answer.

• Since each independent data structure has failure probability at most $1/e$, we can upper-bound X with a $\text{Binom}(d, 1/e)$ variable.

• We want to know $\Pr[X > d/2]$.

• How can we determine this?
Chernoff Bounds

- The **Chernoff bound** says that if \(X \sim \text{Binom}(n, p) \) and \(p < 1/2 \), then

\[
\Pr[X > n/2] < e^{\frac{-n(1/2-p)^2}{2p}}
\]

- In our case, \(X \sim \text{Binom}(d, 1/e) \), so we know that

\[
\Pr[X > \frac{d}{2}] \leq e^{\frac{-d(1/2-1/e)^2}{2(1/e)}} = e^{-k \cdot d} \quad \text{(for some constant } k)\]

- Therefore, choosing \(d = k^{-1} \cdot \log \delta \) ensures that \(\Pr[X > d / 2] \leq \delta \).

- Therefore, the success probability is at least \(1 - \delta \).
Chernoff Bounds

• The **Chernoff bound** says that if $X \sim \text{Binom}(n, p)$ and $p < 1/2$, then

\[
\Pr[X > n/2] < e^{\frac{-n(1/2-p)^2}{2p}}
\]

In our case, $X \sim \text{Binom}(i, 1/e)$, so we know that

\[
\Pr[X > i/2] < e^{\frac{-d(1/2-1/e)^2}{2(1/e)}}
\]

The specific constant factor here matters, since it’s an exponent! To implement this data structure, you’ll need to work out the exact value.

• Therefore, choosing $d = k^{-1} \cdot \log \delta$ ensures that $\Pr[X > d/2] \leq \delta$.

• Therefore, the success probability is at least $1 - \delta$.

The Overall Construction

- The **count sketch** is the data structure given as follows.
- Given ε and δ, choose
 \[w = \lceil e / \varepsilon^2 \rceil \quad d = \Theta(\log \delta^{-1}) \]
- Create an array **count** of $w \times d$ counters.
- Choose hash functions h_i and s_i for each of the d rows.
- To **increment**(x), add $s_i(x)$ to **count**[i][$h_i(x)$] for each row i.
- To **estimate**(x), return the median of $s_i(x) \cdot \text{count}[i][h_i(x)]$ for each row i.
The Final Analysis

- With probability at least $1 - \delta$, all estimates are accurate to within a factor of $\varepsilon \|a\|_2$.

- Space usage is $\Theta(w \times d)$, which we've seen to be $\Theta(\varepsilon^{-2} \cdot \log \delta^{-1})$.

- Updates and queries run in time $\Theta(\delta^{-1})$.

- Trades factor of ε^{-1} space for an accuracy guarantee relative to $\|a\|_2$ versus $\|a\|_1$.
In Practice

• These data structures have been and continue to be used in practice.

• These sketches and their variants have been used at Google and Yahoo! (or at least, there are papers coming from there about their usage).

• Many other sketches exist as well for estimating other quantities; they'd make for really interesting final project topics!
More to Explore

- A **cardinality estimator** is a data structure for estimating how many different elements have been seen in sublinear time and space. They're used extensively in database implementations.

- If instead of estimating a_i terms individually we want to estimate $\|a\|_1$ or $\|a_2\|$, we can use a **frequency moment estimator**.

- You’ll get to play around with at least one of these on Problem Set Five.
Some Concluding Notes
Randomized Data Structures

• You may have noticed that the final versions of these data structures are actually not all that complex – each just maintains a set of hash functions and some 2D tables.

• The analyses, on the other hand, are a lot more involved than what we saw for other data structures.

• This is common – randomized data structures often have simple descriptions and quite complex analyses.
The Strategy

• Typically, an analysis of a randomized data structure looks like this:
 • First, show that the data structure (or some random variable related to it), on expectation, performs well.
 • Second, use concentration inequalities (Markov, Chebyshev, Chernoff, or something else) to show that it's unlikely to deviate from expectation.
• The analysis often relies on properties of some underlying hash function. On Tuesday, we'll explore why this is so important.
Next Time

- **Hashing Strategies**
 - There are a lot of hash tables out there. What do they look like?

- **Linear Probing**
 - The original hashing strategy!

- **Analyzing Linear Probing**
 - ...is way, way more complicated than you probably would have thought. But it's beautiful! And a great way to learn about randomized data structures!