Succinct Rank and Select
Working With Bits and Words

• When building data structures, we often treat the data we’re storing as “black-box” units.
 • e.g. BSTs only care that the items stored are comparable, hash tables only care that they’re hashable, etc.
• However, they’re made up of individual bits or individual machine words.
• Our next few lectures explore the theme of looking at how values are represented inside the machine from a data structures perspective.
• We’ll also see some amazing techniques that involve harnessing the intrinsic parallelism made possible through operations on machine words.
Where We’re Going

- **Succinct Data Structures (Today)**

 - Minimizing the number of bits necessary to represent a data structure.

- **Word-Level Parallelism (Next Week)**

 - Harnessing the parallelism inherent in individual integer operations.
Outline for Today

• **The Binary Rank Problem**
 • Prefix sums on bitvectors.

• **Jacobson’s Succinct Rank Structure**
 • Solving binary rank using a small number of bits.

• **The Binary Select Problem**
 • The inverse problem to ranking.

• **Clark’s Succinct Select Structure**
 • Solving selection in a small number of bits.
Binary Ranking
Binary Ranking

• The **binary ranking problem** is the following:

 Given a list of n bits and an index i, return the sum of all the bits up to position i in the list.

• It’s basically the problem of computing prefix sums in bitvectors.

11011100101110111100
Binary Ranking

- Let’s imagine we want to be able to answer rank queries in time $O(1)$.
- We could do this by writing down the prefix sums for all positions in an array, then just looking up the answer in a table.
- **Question**: How much space does this use?
Binary Ranking

- It sure looks like this uses $\Theta(n)$ space.
- But what do we mean by “space” here?
 - Integers usually are represented by machine words.
 - We assume each machine word has w bits in it (e.g. $w = 32$, $w = 64$, etc.), for a constant w known to us.
- Space: $\Theta(nw)$ bits. This leaves a lot to be desired.
 - On a 64-bit machine, this is a 64x blowup in memory!
- Can we do better?
Counting Bits

- Let’s suppose we have an array of $1023 = 2^{10} - 1$ bits.
- The prefix sum at each point would be an integer between 0 and 1023, inclusive.
- We could only need 10 bits to represent such a prefix sum.
- **Idea:** Allocate an array of $10n$ bits, interpreted as an array of n 10-bit numbers.
- This reduces our space usage down to $10n$. It’s better than before, but still $10 \times$ bigger than the original array.
Counting Bits

- If we maintain an array of prefix sums for an array of \(n \) bits, each individual prefix sum is a value between 0 and \(n \), inclusive.
- There are \(n+1 \) possibilities for what those numbers can be, so each integer requires \(\lg(n+1) \) bits.
 - We might be able to squeeze out a few more bits by using shorter integers for earlier values, but nothing that improves asymptotic space usage.
- Our solution therefore uses \(O(n \log n) \) bits, but allows for rank queries in time \(O(1) \).
- Can we do better?
Counting Bits

• We’ll say that a solution to binary ranking is a \(\langle s(n), q(n) \rangle \) solution if
 • its space usage is \(s(n) \), and
 • queries take time \(q(n) \).
• We currently have a \(\langle O(n \log n), O(1) \rangle \) solution to binary ranking.
• **Question**: Can we do better?

<table>
<thead>
<tr>
<th>Prefix Sum Array</th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(O(n \log n))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>
Counting Bits

• We are currently using $O(n \log n)$ bits of storage space: $O(n)$ numbers, each of which is $O(\log n)$ bits long.

• To improve on this, we could either
 • reduce how many numbers we’re storing, or
 • reduce how many bits each number uses.

• **Question:** What might that look like?

<table>
<thead>
<tr>
<th>Prefix Sum Array</th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Improving Space Usage

- Split the input array of bits into blocks of b bits each. Then, only store prefix sums at the start of each block.

- To compute the prefix sum at index k:
 - Read the prefix sum at the start of block $\lfloor k/b \rfloor$.
 - Run a linear scan to compute the sum of the first $k \mod b$ bits of the block.
Improving Space Usage

- Total space usage: $O((n \log n) / b)$.
 - We’re storing $\Theta(n / b)$ numbers.
 - Each number needs $O(\log n)$ bits.
- Query time: $O(b)$.
 - We may have to scan $\Theta(b)$ bits.
- There is no “optimal” choice of b here.
 - Increasing b decreases memory usage but increases query time.
 - Decreasing b decreases query time but increases memory usage.
- We’ll therefore leave b as a free parameter that whoever is using our data structure can tune.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

$O(\log n)$-bit numbers
The Story So Far

- Earlier, we said there were two strategies we could use to reduce space:
 - Store fewer numbers.
 - Use fewer bits per number.
- Our blocking approach hits this first point. What about the second?

<table>
<thead>
<tr>
<th></th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix Sum Array</td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Partial Prefix Sum Array</td>
<td>$O\left(\frac{n \log n}{b}\right)$</td>
<td>$O(b)$</td>
</tr>
</tbody>
</table>
Combining Things Together

- The “slow” step in our query is the linear scan across the bits of a block. Can we speed things up?
- That linear scan is essentially a rank query on an array of \(b \) bits.
- **Idea:** Rather than use a linear scan there, use our existing \((\Theta(n \log n), O(1)) \) solution at a per-block level.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

O(\log n)\)-bit numbers

O(\log b)\)-bit numbers
Combining Things Together

• How much memory does this use?

Formulate a hypothesis!

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>11</td>
<td>14</td>
<td>19</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
<td></td>
</tr>
</tbody>
</table>

0 (log \(n \))-bit numbers

O(log \(b \))-bit numbers
Combining Things Together

- How much memory does this use?

Discuss with your neighbors!

<table>
<thead>
<tr>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

$O(\log n)$-bit numbers

$O(\log b)$-bit numbers
Combining Things Together

• At the top level, we’re storing $\Theta(n / b)$ integers, one at the start of each block, and each uses $O(\log n)$ bits.
 • Space for those integers: $O((n \log n) / b)$.
• There are $\Theta(n / b)$ blocks, and each block requires $O(b \log b)$ storage.
 • There are b bit positions within each block, and each position has a prefix sum that goes between 0 and b. That means we need $O(b \log b)$ total space.
 • Space for those block-level structures: $O(n \log b)$.
• Total space usage: $O\left(\frac{n \log n}{b} + n \log b\right)$.

\[
\begin{array}{ccccccc}
0 & 5 & 11 & 14 & 19 & 24 \\
11011100 & 10111011 & 11000100 & 11010101 & 11100110 & 11110100 \\
\end{array}
\]
Intuiting $O\left(\frac{n \log n}{b} + n \log b\right)$

- As b increases:
 - We use less space *storing partial prefix sums* at the start of each block, since there are fewer blocks.
 - Each block has more bits, so the *sums within each block* require more bits.

- As b decreases:
 - We use more space *storing partial prefix sums* at the start of each block, since there are more blocks.
 - Each block has fewer bits, so the *sums within each block* requires fewer bits.

Question: What choice of b minimizes the above quantity?
Optimizing $O\left(\frac{n \log n}{b} + n \log b\right)$

- Start by taking the derivative:
 \[
 \frac{d}{db}\left(\frac{n \log n}{b} + n \log b\right) = \frac{-n \log n}{b^2} + \frac{n}{b}
 \]

- Setting equal to zero and solving:
 \[
 \frac{-n \log n}{b^2} + \frac{n}{b} = 0
 \]

 \[
 -\log n + b = 0
 \]

 \[
 b = \log n
 \]

- Asymptotically optimal choice is $b = \Theta(\log n)$, giving space usage $O(n \log \log n)$.
The Story So Far

- Our new approach is more space-efficient than our original approach, and works nicely in practice.
- However, we’re still using more bits for our rank data structure than the array of bits itself needs.
- **Question:** Can we do better?

<table>
<thead>
<tr>
<th></th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix Sum Array</td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Partial Prefix Sum Array</td>
<td>$O\left(\frac{n \log n}{b}\right)$</td>
<td>$O(b)$</td>
</tr>
<tr>
<td>Two-Level Prefix Sums</td>
<td>$O(n \log \log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Feedback Loops

- Think back to how we arrived at our $\Theta(n \log \log n)$-space solution.
 - We split our array apart into blocks of size b.
 - We stored the prefix sums at the start of each block.
 - We used our $\Theta(n \log n)$-space solution for each block.
- More generally, for that last step, we could have used any rank structure we wanted.

<table>
<thead>
<tr>
<th>Block-Level</th>
<th>Block-Level</th>
<th>Block-Level</th>
<th>Block-Level</th>
<th>Block-Level</th>
<th>Block-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>Rank</td>
<td>Rank</td>
<td>Rank</td>
<td>Rank</td>
<td>Rank</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>11</td>
<td>14</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>
Feedback Loops

- Last time, we used our $\langle O(n \log n), O(1) \rangle$ structure per block. It was the best approach we had available.
- But we now have a $\langle O(n \log \log n), O(1) \rangle$ structure available, which uses asymptotically fewer bits!
- What happens if we use that one within each block?

<table>
<thead>
<tr>
<th>Block-Level Rank</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$O(b \log \log b)$ Space</td>
</tr>
<tr>
<td>5</td>
<td>$O(b \log \log b)$ Space</td>
</tr>
<tr>
<td>11</td>
<td>$O(b \log \log b)$ Space</td>
</tr>
<tr>
<td>14</td>
<td>$O(b \log \log b)$ Space</td>
</tr>
<tr>
<td>19</td>
<td>$O(b \log \log b)$ Space</td>
</tr>
<tr>
<td>24</td>
<td>$O(b \log \log b)$ Space</td>
</tr>
</tbody>
</table>

$O(\log n)$-bit numbers
Feedback Loops

- Split the input apart into blocks of size b.
- Store the prefix sum at the start of each block.
- Use our $\langle O(n \log \log n), O(1) \rangle$ solution within each block.
- Compute the overall rank of an index k by combining these answers together.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
<tr>
<td></td>
<td>$O(b \lg \lg b)$ Space</td>
</tr>
</tbody>
</table>

$O(\log n)$-bit numbers
Feedback Loops

- How much memory does this structure use, and what’s the query cost?

<table>
<thead>
<tr>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

O($b \lg \lg b$)-bit numbers

Formulate a hypothesis!
Feedback Loops

- How much memory does this structure use, and what’s the query cost?

Discuss with your neighbors!

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>11</td>
<td>14</td>
<td>19</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
<td></td>
</tr>
</tbody>
</table>

$O(b \log \log b)$-bit numbers

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Space</td>
<td>Space</td>
<td>Space</td>
<td>Space</td>
<td>Space</td>
<td>Space</td>
</tr>
</tbody>
</table>
Feedback Loops

- How much memory does this structure use, and what’s the query cost?
- Memory: $O(\left(\frac{n \log n}{b} + n \log \log b\right))$
- Query Time: $O(1)$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
<tr>
<td>$O(b \lg \lg b)$ Space</td>
<td></td>
</tr>
</tbody>
</table>

$O(\log n)$-bit numbers
Feedback Loops

- **Claim:** The choice of b that asymptotically minimizes $\Theta((n \log n) / b + n \log \log b)$ is given by $b = \Theta(\log n)$.

- We now have an $\langle O(n \log \log \log n), O(1) \rangle$ solution for ranking!

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

$O(b \ lg \ lg \ b)$ Space
Feedback Loops

• As you might expect, we can feed this solution back into itself to come up with a $\langle \Theta(n \log \log \log \log n), O(1) \rangle$ solution to ranking.
• More generally, let $\log^{(k)} n$ denote the logarithm function iterated k times.
• **Question:** Does this solution allow us to get a $\langle \Theta(n \log^{(k)} n), O(1) \rangle$ solution for all choices of k?

Formulate a hypothesis!

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

O($log n$)-bit numbers

| | O($b \lg \lg \lg b$) Space |
Feedback Loops

• As you might expect, we can feed this solution back into itself to come up with a \(\Theta(n \log \log \log \log n), O(1)\) solution to ranking.

• More generally, let \(\log^{(k)} n\) denote the logarithm function iterated \(k\) times.

• **Question:** Does this solution allow us to get a \(\Theta(n \log^{(k)} n), O(1)\) solution for all choices of \(k\)?

Discuss with your neighbors!

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

\(O(b \lg \lg \lg b)\) Space

Discuss with your neighbors!
Counting Layers

- Our \(\mathcal{O}(n \log^{(1)} n), \mathcal{O}(1)\) solution to ranking uses a single array of integers to store prefix sums.
Counting Layers

- Our \(O(n \log^{(2)} n), O(1)\) solution to ranking uses two prefix arrays, one at the top level and one for the blocks.
Counting Layers

- Our $O(n \log^{(2)} n), O(1)$ solution to ranking uses two prefix arrays, one at the top level and one for the blocks.

<table>
<thead>
<tr>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

```
0 1 2 2 2 3 3 ...
```

```
... 0 1 2 2 2 3 3 ...
```
Counting Layers

- Our $\langle O(n \log^{(3)} n), O(1) \rangle$ solution to ranking uses three prefix arrays: one at the top level, one at the block level, and one for “miniblocks.”

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

... 0 1 2 2 2 3 3 ...

...
Counting Layers

- Our $O(n \log^3 n), O(1)$ solution to ranking uses three prefix arrays: one at the top level, one at the block level, and one for “miniblocks.”
Counting Layers

- More generally, if we have k layers of arrays, we use $O(nk + n \log^{(k)} n)$ bits.
 - Each of the first $k - 1$ layers requires $O(n)$ bits.
 - The last layer uses $O(n \log^{(k)} n)$ bits.
- Our query time is $O(k)$, since we have k layers to navigate.
Counting Layers

- We now have a $\langle O(nk + n \log^k n), O(k) \rangle$ solution for ranking.
- If k is a fixed constant, this is a $\langle O(n \log^k n), O(1) \rangle$ solution to ranking.
- **Question:** What if we pick k in terms of n?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

```
0 5 11 14 19 24
11011100 10111011 11000100 11010101 11100110 11110100
```

```
... 0 2 ...
1100 0100 ...
```

```
... 0 1 2 2 2 ...
```

...
Intuiting $O(nk + n \log^{(k)} n)$

- What’s the impact of tuning k?
 - If k is too large, then we have *too many layers of recursion* and the recursive prefix sums use too much space.
 - If k is too small, then we have *too few layers of recursion* and the final array of numbers will be too big.
- There should be an optimal choice of k that balances these constraints. What is it?
Iterated Logarithms

● **Intuition:** The log function is incredibly effective at shrinking down large quantities.

 ● Number of protons in the known universe: \(\approx 2^{240} \).

 ● \(\log^{(0)} 2^{240} = 1,766,847,[,\ldots,57\text{ digits}],292,619,776 \)

 ● \(\log^{(1)} 2^{240} = 240 \)

 ● \(\log^{(2)} 2^{240} \approx 7.91 \)

 ● \(\log^{(3)} 2^{240} \approx 2.98 \)

 ● \(\log^{(4)} 2^{240} \approx 1.58 \)

● More generally, for any natural number \(n \), there is some minimum \(k \) for which \(\log^{(k)} n \leq 2 \).

● The **iterated logarithm of** \(n \), denoted \(\log^* n \), is the smallest choice of \(k \) that makes \(\log^{(k)} n \leq 2 \).

● Question to ponder: what’s the smallest \(n \) where \(\log^* n = 10 \)?
Iterated Logarithms

• For any choice of k, we have a

$$\langle O(nk + n \log^{(k)} n), O(k) \rangle$$

solution to ranking.

• Pick $k = \log^* n$. This gives us a

$$\langle O(n \log^* n), O(\log^* n) \rangle$$

solution to binary ranking.

• In practice, this is essentially a $\langle O(n), O(1) \rangle$ solution to ranking.

 • (If $n \leq 2^{64}$, then $\log^* n = 4$. So four layers of structure would always suffice.)
The Story So Far

- We have an (almost) linear-space solution to ranking.
- There’s still more room for improvement.
 - Practically, we’re still using $\approx 5n$ total bits.
 - Theoretically, we’d like to remove the $\log^* n$ factor.
- Can we do better?

<table>
<thead>
<tr>
<th></th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix Sum Array</td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Two-Level Prefix Sums</td>
<td>$O(n \log \log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Multilevel Prefix Sums</td>
<td>$O(n \log^* n)$</td>
<td>$O(\log^* n)$</td>
</tr>
</tbody>
</table>
An Alternative Approach
An Alternative Approach

- Our best approach so far involves the following idea:
 - Split the input array into smaller blocks.
 - Recursively build fast ranking structures per block.
- The recursion in that second step is where we get the $O(\log^* n)$ query time from.
- **Question:** Can we avoid having to run the recursion in the last step?
An Alternative Approach

- When we set out to split our input apart into blocks, we left the choice of block size b unspecified.

- Later, we found that $b = \Theta(\log n)$ was the optimal choice.
 - This means that our blocks are tiny compared to the size of our input array.

- **Key Intuition:** These blocks are so small that there can’t be “too many” distinct blocks.

- **Question:** Where have you seen this idea before?
The Four Russians Strategy

- As an example, imagine that we pick our block size as $b = 3$.
- There are only eight possible blocks:
 $$000 \ 001 \ 010 \ 011 \ 100 \ 101 \ 110 \ 111$$
- We could therefore build a table keyed on a combination of a block and an index into the block:

<table>
<thead>
<tr>
<th>Index</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
The Four Russians Strategy

- There are only 2^b possible blocks.
- There are $O(b)$ positions within a block.
- Each prefix sum within a block requires $O(\log b)$ bits to write out.
- Total space: $O(2^b \cdot b \cdot \log b)$.

<table>
<thead>
<tr>
<th>Index 0</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Index 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Index 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Index 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
The Four Russians Strategy

- Total space: $O(2^b \cdot b \cdot \log b)$.
- Plugging in $b = \frac{1}{2} \log n$ gives a space usage of

 $= O(2^{\frac{1}{2} \log n} \cdot \log n \cdot \log \log n)$

 $= O(n^{\frac{1}{2}} \log n \log \log n)$

 $= o(n^{\frac{2}{3}})$.
- This is sublinear space for sufficiently large n.

<table>
<thead>
<tr>
<th>Index 0</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index 1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index 2</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index 3</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
</table>
The Four Russians Strategy

- Split the input apart into blocks of size $\frac{1}{2} \log n$.
- Compute the prefix sum to the start of each block.
 - This uses $O((n \log n) / \log n) = O(n)$ bits.
- Build a table of all possible rank queries on all possible blocks. This uses $o(n^{\frac{2}{3}})$ bits.
- Total space: $O(n)$.

<table>
<thead>
<tr>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>13</th>
<th>13</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>111</td>
<td>001</td>
<td>011</td>
<td>101</td>
<td>111</td>
<td>000</td>
<td>100</td>
<td>110</td>
<td>101</td>
<td>101</td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Index</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Index</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Four Russians Strategy

- To perform a query for the rank sum up to index k:
 - Compute $\lfloor k/b \rfloor$ to determine which block k falls in.
 - Use the bits of that block as an index into the secondary table, then look up row $k \mod b$.
- Query time: $\mathcal{O}(1)$.

<table>
<thead>
<tr>
<th>0</th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>13</th>
<th>13</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>111</td>
<td>001</td>
<td>011</td>
<td>101</td>
<td>111</td>
<td>000</td>
<td>100</td>
<td>110</td>
<td>101</td>
<td>101</td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index 0</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Index 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Index 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Index 3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
The Story So Far

- This new approach uses $O(n)$ bits and can support queries in time $O(1)$.
- It seems like there’s no more room for improvement here – are we done?

<table>
<thead>
<tr>
<th></th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix Sum Array</td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Multilevel Prefix Sums</td>
<td>$O(n \log^* n)$</td>
<td>$O(\log^* n)$</td>
</tr>
<tr>
<td>Four Russians</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
The Story So Far

- Our Four Russians approach uses $\Theta(n)$ extra bits beyond the bits in the original array. The actual number is actually $2n + o(n)$

because we need to store

- $n / (\frac{1}{2} \lg n) = 2n / \lg n$ indices in the top-level table,
- each index is $\lg (n + 1)$ bits long, and
- we need $o(n)$ bits for the precomputed tables.

- This is a marked improvement over our original approach, but it still means we need at least twice as many bits as in the original array.

- **Goal:** Reduce our overall space usage to something that is $o(n)$, something whose space as a fraction of the number of bits decreases as n gets larger.
The Story So Far

- The two space-efficient solutions we’ve developed so far are based on different ideas.
 - Multilevel Prefix Sums: subdivide the array into blocks, then recursively subdivide those blocks even further.
 - Four Russians: Once we reach blocks of size \(\frac{1}{2} \lg n\) or smaller, precompute all possible answers to all possible queries.
- What happens if we combine these strategies together?

<table>
<thead>
<tr>
<th></th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilevel Prefix Sums</td>
<td>O((n \log^* n))</td>
<td>O((\log^* n))</td>
</tr>
<tr>
<td>Four Russians</td>
<td>O((n))</td>
<td>O(1)</td>
</tr>
</tbody>
</table>
The Combined Approach

- We begin with an array of n bits. We ultimately need to reduce the array size to $\frac{1}{2} \lg n$ to use the Four Russians approach.

- If we immediately subdivide into blocks of that size, we get our $\langle O(n), O(1) \rangle$ solution.

- **Idea:** Introduce some intermediate level of subdivision between the original array and the blocks of size $\frac{1}{2} \lg n$.
The Combined Approach

- Subdivide the array into $\Theta(n / b)$ blocks of size b.
- Write prefix sums of $O(\log n)$ bits at the start of each block.
- Subdivide each block into $\Theta(b / \lg n)$ miniblocks of size $\frac{1}{2} \lg n$.
- Write prefix sums of $O(\log b)$ bits at the start of each miniblock.
- Precompute a table of all rank queries on all miniblocks (not shown), using $o(n^{\frac{2}{3}})$ bits.
The Combined Approach

- To perform a query for the prefix sum at index k:
 - Divide k by b to get the index of the block containing k. Write down the prefix sum at the start of that block.
 - Divide k mod b by $\frac{1}{2} \lg n$ to get the index of the miniblock containing k. Write down the prefix sum at the start of the miniblock.
 - Look up $(k$ mod b) mod $\frac{1}{2} \lg n$ in the precomputed table for the miniblock to get the prefix sum within the miniblock.
 - Add these values together.
- Total query time: O(1).

<table>
<thead>
<tr>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

Miniblock size: $\frac{1}{2} \lg n$ bits

Block size: b bits
The Combined Approach

- Space for top-level array: $O((n \log n) / b)$.
- Space for the blocks: $O((n \log b) / \log n)$
 - $O(n / \log n)$ total miniblocks.
 - $O(\log b)$ bits per miniblock for a prefix sum.
- Space for the Four Russians table: $o(n^{2/3})$.
- Total space: $O((n \log n) / b + (n \log b) / \log n) + o(n)$.
- What’s the optimal choice of b here?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>

Miniblock size: \(\frac{1}{2} \log n\) bits

Block size: \(b\) bits
Optimizing $O\left(\frac{n \log n}{b} + \frac{n \log b}{\log n}\right)$

- Start by taking the derivative:
 $$\frac{d}{db} \left(\frac{n \log n}{b} + \frac{n \log b}{\log n} \right) = \frac{-n \log n}{b^2} + \frac{n}{b \log n}$$

- Setting equal to zero and solving:
 $$\frac{-n \log n}{b^2} + \frac{n}{b \log n} = 0$$
 $$- \log^2 n + b = 0$$
 $$b = \log^2 n$$

- Asymptotically optimal space usage is when we pick $b = \Theta(\log^2 n)$.

- If we do that, our space usage is
 $$O\left(\frac{n \log n}{b} + \frac{n \log b}{\log n}\right) = O\left(\frac{n}{\log n} + \frac{n \log \log n}{\log n}\right) = O\left(\frac{n \log \log n}{\log n}\right)$$
The Combined Approach

- We now have a solution that uses a *sublinear* number of auxiliary bits.
- The space usage for the original array, plus our structure, is $n + o(n)$. As n increases, we need proportionally fewer and fewer bits!

<table>
<thead>
<tr>
<th>Method</th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilevel Prefix Sums</td>
<td>$O(n \log^* n)$</td>
<td>$O(\log^* n)$</td>
</tr>
<tr>
<td>Four Russians</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Two-Level Four Russians (Jacobson’s Structure)</td>
<td>$O\left(\frac{n \log \log n}{\log n}\right)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Further Work

- These ideas – plus some further refinements – work well in practice.
 - Check out the libraries rank9, poppy, etc. to see how these look in practice.
- Further work in Theoryland has produced $\langle O(n / \log^k n), O(k) \rangle$ structures for any constant k.
 - Many of the techniques employed here come from data compression – very cool!
- There’s also work done into compressing bitvectors while allowing for fast access to individual elements, allowing for even greater space reductions.
 - So the bitvector itself might use $o(n)$ space!
Succinct Select
Selection

• The select operation works as follows:

 Given an array of bits and a number \(k \), return the index of the \(k \)th 1 bit in the array.

• This is essentially the inverse of the rank operation.

• **Goal:** Build a data structure for selection that uses \(o(n) \) bits.
Adapting Our Techniques

• We have a bunch of techniques at our disposal when going into this problem:
 • Break the input apart into blocks to reduce the number of bits needed to write down indices within blocks.
 • Feed data structures back into themselves to significantly decrease the size of the problem.
 • Once the input is down to a small size, apply the Method of Four Russians: precompute all possible problems and stash them in a table.
• However, our solution is going to be a lot more subtle than the previous one due to some nuances of the nature of select.
You Gotta Start Somewhere

- **Initial Idea:** Form an array containing answers to all possible queries.
- **Question:** How much memory does this take?

Formulate a hypothesis!
You Gotta Start Somewhere

- **Initial Idea:** Form an array containing answers to all possible queries.
- **Question:** How much memory does this take?

Discuss with your neighbors!
You Gotta Start Somewhere

- **Initial Idea:** Form an array containing answers to all possible queries.

- **Question:** How much memory does this take?

- **Answer:** It depends on how many 1 bits are in the array.

```
1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0
```

```
0 1 3 4 5 8 10 11 12 14 15 16 17
```
You Gotta Start Somewhere

- Let n denote the length of the input array and m denote the number of 1 bits.
- We need $O(m \log n)$ bits for this approach.
 - Each index requires $O(\log n)$ bits; m indices needed.
- If $m = o(n / \log n)$, this is already an $o(n)$-space solution!
- Many practical problems have $m = \Theta(n)$ (e.g. $m = \frac{1}{2}n$), in which case this is a $\Theta(n \log n)$-space solution.
- Can we do better?
Blocked on Blocking

- In the case of rank, our first step was to break the input apart into blocks.
- That worked nicely because
 \[\text{rank}(0, k) = \text{rank}(0, r) + \text{rank}(r, k) \]
 holds for any \(0 \leq r \leq k \).
- This lets us break up the input at regular boundaries to get nicely-shaped subproblems.
- The formula given above, however, doesn’t work for select. Is there an analog that does?

<table>
<thead>
<tr>
<th>0</th>
<th>5</th>
<th>11</th>
<th>14</th>
<th>19</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>11011100</td>
<td>10111011</td>
<td>11000100</td>
<td>11010101</td>
<td>11100110</td>
<td>11110100</td>
</tr>
</tbody>
</table>
Blocked on Blocking

- Let \(\text{select}(r, k) \) denote the index of the \(k \)th 1 bit that appears at or after index \(r \).

- For any \(0 \leq s \leq k \), we have the following:
 \[
 \text{select}(0, k) = \text{select}(\text{select}(0, s), k - s).
 \]

- This allows us to break the original problem apart into (uneven-size) smaller subproblems by splitting at positions of individual 1 bits.

```
001010000100000000101101000111110100010001000000100
```
The Chunking Strategy

- **Idea:** Pick a “chunk size” \(c \), then break the input into \(O(n / c) \) chunks by splitting at every \(c \)th 1.
 - These chunks may have uneven numbers of bits.
 - Note that there might not be \(\Theta(n / c) \) chunks. (Why?)

- Store the starting index of each chunk in a summary array. This uses \(O((n \log n) / c) \) bits as each index needs \(O(\log n) \) bits.

- To compute select\((k)\), do the following:
 - Compute \(k / c \) to determine which chunk to look in.
 - Look within that chunk for the \((k \mod c)\)th 1 bit.

- How do we do that second step?
The Chunking Strategy

- Because our chunks don’t have uniform size, doing a linear scan within the chunk will not necessarily take time $O(c)$.
 - c counts how many 1 bits are in the chunk, not how many total bits are in the chunk.
- Because our chunks don’t have uniform size, the index of the 1 bits within each block doesn’t necessarily use space $O(\log c)$.
 - The chunk size might be as big as $\Theta(n)$.
- Therefore, our earlier tricks from rank aren’t going to work here. We need to find a different strategy.
Small/Large Decomposition

- **Key Insight:** Pick a number L and categorize chunks as follows.
 - **Small chunks** are ones with fewer than L bits.
 - **Large chunks** are ones with at least L bits.
- Intuitively, we’ll handle the chunks as follows.
 - There can’t be “too many” large chunks in the array. That will bound the cost of dealing with them.
 - All small chunks have a bounded size. From there, we can use our earlier techniques (linear scans, recursion, Four Russians, etc.) to handle them.
Small/Large Decomposition

• Here’s a framework for performing select(\(k\)):
 • Compute \(i = \lfloor k/c \rfloor\), the index of the chunk our bit belongs to.
 • Compare the start positions of chunks \(i\) and \(i+1\) to determine how many bits are in chunk \(i\). Denote this as \(r\).
 - If \(r \geq L\), use [insert large strategy here] to determine the position of the \((k \mod c)^{th}\) 1 bit within the (large) chunk.
 - If \(r < L\), use [insert small strategy here] to determine the position of the \((k \mod c)^{th}\) 1 bit within the (small) chunk.
 • Add that bit position to the position stored at the top of chunk \(i\).
 • We need to determine how to pick \(L\) and \(c\), as well as what the small and large strategies are.

\[
\begin{array}{cccc}
0 & 19 & 28 & 32 \\
0010100001000000001 & 011010001 & 1111 & 010001000100000001
\end{array}
\]
Handling Large Chunks

- Large chunks have size at least L, and there’s no upper bound on their size.
 - The index of a 1 bit in a large chunk might require $\Theta(\log n)$ bits.
- However:
 - There can’t be that many large blocks. Specifically, there’s at most n / L of them. (Why?)
 - There aren’t that many 1 bits inside a large block. Specifically, there’s at most c such bits.
- **Idea:** For large chunks, just write down the positions of the 1 bits in the chunk. Then, tune L relative to c to reduce space usage.

![Diagram]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>19</th>
<th>28</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>001010000100000000</td>
<td>011010001</td>
<td>111</td>
<td>010001000100000000001</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>37</td>
<td>41</td>
<td>49</td>
</tr>
</tbody>
</table>
Handling Large Chunks

Suppose we write down the positions of the 1 bits within each large block. How many bits of memory does this take?

Answer: $O((cn \log n) / L)$ bits.

- There are at most n / L large blocks.
- Each large block has c 1 bits whose indices must be recorded.
- Each index into a large block uses $O(\log n)$ bits.
- Combined with the space for the top-level array, this uses $O((n \log n) / c + (cn \log n) / L)$ bits.
Optimizing $O\left(\frac{n \log n}{c} + \frac{cn \log n}{L}\right)$

- This quantity is (asymptotically) minimized when the two fractions are (asymptotically) equal.
- This happens when $L = \Theta(c^2)$, in which case the space usage is $O((n \log n) / c)$.

```
0  19  28  32
001010001000000001 011010001 1111 010001000100000001
2  4  9  18  33  37  41  49
```
Handling Small Chunks

- We still need to handle small chunks, which now all have size at most c^2.

- **Initial Idea:** Use linear scans within those chunks. Each small chunk has size at most c^2, giving a query time of $O(c^2)$.
Putting it All Together

- Split the input into chunks of c bits each.
- For each large chunk containing at least c^2 bits, write down the position of each 1 bit in the chunk.
- For each small chunk containing at most c^2 bits, use a linear scan within the chunk.
- This gives a $O((n \log n) / c), c^2)$ solution to selection.
The Story So Far

- By tuning c, we can get sublinear space usage, though at a cost to query time.
- The query time here isn’t great because we’re using linear scans within small chunks.
- What happens if we pull out more powerful techniques to handle small chunks?

<table>
<thead>
<tr>
<th></th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precomputed Array</td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Small/Large w/Linear Scans</td>
<td>$O\left(\frac{n \log n}{c}\right)$</td>
<td>$O(c^2)$</td>
</tr>
</tbody>
</table>
Improving Our Approach

- Our small chunks, as the name suggests, don’t have too many bits in them.
 - Specifically, at most c^2, where we get to pick c.
- **Idea:** If the small chunks are sufficiently small, there won’t be “too many” possible distinct small chunks, and we can use a Four Russians speedup.
- This would drop our query time to $O(1)$:
 - For large chunks, we explicitly store answers to select queries.
 - All small chunk select queries are already precomputed.
Improving Our Approach

- For example, suppose our small chunks all have 3 bits or fewer.
- We could precompute a table like the one shown below that encodes all possible select queries.
- With chunk size c, small chunks have at most c^2 bits, and the table needs $O(2^{c^2} c^2 \log c)$ bits.
- Setting $c = \frac{\sqrt{\lg n}}{2}$ makes the above expression $o(n^{1/2})$, a sublinear number of bits.

<table>
<thead>
<tr>
<th>Index 0</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Index 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Index 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>
The Story So Far

- Directly using Four Russians gives constant query times, but uses superlinear ($\omega(n)$) space.
- Can we do better?

<table>
<thead>
<tr>
<th></th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precomputed Array</td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Small/Large w/Linear Scans</td>
<td>$O\left(\frac{n \log n}{c}\right)$</td>
<td>$O(c^2)$</td>
</tr>
<tr>
<td>Small/Large w/Four Russians</td>
<td>$O\left(n \sqrt{\log n}\right)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Improving Small/Large

- Think back to our rank data structure.
- Our first attempt to use a Four Russians speedup used a two-level structure with a block size of \(\frac{1}{2} \lg n \).
- We reduced the space usage further by using two layers of blocking.
- Can we do that here?

<table>
<thead>
<tr>
<th></th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four Russians</td>
<td>(O(n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Two-Level Four Russians (Jacobson’s Structure)</td>
<td>(O\left(\frac{n \log \log n}{\log n}\right))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>
Improving Small/Large

- **Idea:** Recursively apply the chunking construction one more time.
- Pick a “minichunk” size c_2. Split each small chunk into minichunks by chopping at each (c_2)th 1 bit.
- Write down each minichunk’s index relative to its chunk.
- As before, call a minichunk **large** if it has at least $(c_2)^2$ bits, and **small** if it has fewer than $(c_2)^2$ bits.
- As before, we can choose any strategies we want for handling large and small miniblocks.

![Diagram showing the chunking process]

- 001010000100000000
- 01101000
- 111
- 010001000100000001
- 00 011 010001 0
- 19 28 32
- 0110100001000000001 01101000 111 010001000100000001
- 2 4 9 18
- 0 3
- 011 010001
- 001010000100000000 01101000 111 010001000100000001
- 0 19 28 32
- 33 37 41 49
Handling Large Minichunks

- As with large chunks, we’ll handle large minichunks by writing out the indices of all 1 bits in the minichunk.
- This will use a very small amount of space; more on that later.

![Diagram of minichunk handling](image)
Handling Small Minichunks

- A small minichunk has at most \((c_2)^2\) bits.
- If we pick \(c_2\) such that \((c_2)^2 \leq \sqrt[2]{\log n}\), we can precompute all possible minichunks and all select queries in them.
- We’ll therefore pick \(c_2 = \frac{\sqrt[2]{\log n}}{2}\).
Improving Small/Large

• If you work out the details on the space usage, you’ll find that it comes out to

\[
O\left(\frac{n \log n}{c} + \frac{n \log c}{\sqrt[4]{\log n}}\right).
\]

• After a bit of tinkering, you can find that picking \(c = \Theta(\log^2 n) \) does a good job balancing these two terms.

• This makes the space usage work out to the (pleasantly confusing)

\[
O\left(\frac{n \log \log n}{\sqrt[4]{\log n}}\right).
\]
The Final Scorecard

- We now have a sublinear-space implementation of select!
- Using more advanced techniques, it’s possible to improve this further to $O(n / \log^k n)$ space with query time $O(k)$ for any constant k.

<table>
<thead>
<tr>
<th>Method</th>
<th>Bits Needed</th>
<th>Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precompute-All</td>
<td>$O(n \log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Small/Large w/Four Russians</td>
<td>$O\left(n \sqrt{\log n}\right)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Two-Layer Small/Large w/Four Russians (Clark)</td>
<td>$O\left(\frac{n \log \log n}{\sqrt[4]{\log n}}\right)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
In Practice

- The approach we just outlined is great in Theoryland, but leaves a lot to be desired in practice.
 - There are some details we glossed over about how to pack all the bits needed for the relevant tables into a small amount of space while still being navigable. This introduces some overhead.
 - With this implementation, n needs to be colossal before the space overhead drops below n bits.
- In practice, other selection structures are used that have lookup costs like $O(\log \log n)$ but which use significantly less space.
- *(Possibly?)* **Open Problem:** Build a simple, practical, succinct selection structure with fast $O(1)$ query costs.
Summary for Today

• When you drop to the level of counting individual bits, data structure design gets a lot more complex (and interesting)!

• Recursively subdividing larger structures into smaller pieces is a great way to reduce space usage.

• The Method of Four Russians is a fantastic way to handle arrays once they get sufficiently small.

• Using a fixed number of recursive reductions, then switching to a Four Russians speedup, is a common strategy for building sublinear-space data structures.
Next Time

- **Integer Data Structures**
 - Storing integers that fit into machine words.
- **x-Fast Tries**
 - Tries + Cuckoo Hashing
- **y-Fast Tries**
 - Tries + Cuckoo Hashing + RMQ + Balanced Trees + Amortization