x-Fast and y-Fast Tries
Outline for Today

• **Data Structures on Integers**
 • How can we speed up operations that work on integer data?

• **x-Fast Tries**
 • Bit manipulation meets tries and hashing.

• **y-Fast Tries**
 • Combining RMQ, strings, balanced trees, amortization, and randomization!
Working with Integers

• Many practical problems involve working specifically with integer values.

 • **CPU Scheduling:** Each thread has some associated integer priority, and we need to maintain those priorities in sorted order.

 • **Network Routing:** Each computer has an associated IP address, and we need to figure out which connections are active.

 • **ID Management:** We need to store social security numbers, zip codes, phone numbers, credit card numbers, etc. and perform basic lookups and range searches on them.

• We’ve seen many general-purpose data structures for keeping things in order and looking things up.

• **Question:** Can we improve those data structures if we know in advance that we’re working with integer data?
Working with Integers

- Integers are interesting objects to work with:
 - Their values can directly be used as indices in lookup tables.
 - They can be treated as strings of bits, so we can use techniques from string processing.
 - They fit into machine words, so we can process the bits in parallel with individual word operations.
- The data structures we’ll explore over the next few lectures will give you a sense of what sorts of techniques are possible with integer data.
An Auxiliary Motive

- Integer data structures are also a great place to see just how much you’ve learned over the quarter!
- Today’s data structures cover every single unit from the quarter (RMQ, strings, balanced trees, amortization, and randomization).
- I hope this gives you a chance to pause and reflect on just how far you’ve come!
The Setup
Our Machine Model

- We will assume we’re working on a machine where memory is segmented into \(w \)-bit words.
- We’ll assume our integers are drawn from some set \([U]\), where \(\log U = O(w) \).
 - In other words, we assume our integers fit into a constant number of machine words.
- We’ll assume that the C integer operators work in constant time, and will not assume we have access to operators beyond them.

\[+ - * / \ % \ <\ < \ >\ > \ & \ | \ ^ \ = \ <= \]
Ordered Dictionaries
Ordered Dictionaries

• An **ordered dictionary** maintains a set S drawn from an ordered universe \mathcal{U} and supports these operations:

 • $\text{lookup}(x)$, which returns whether $x \in S$;
 • $\text{insert}(x)$, which adds x to S;
 • $\text{delete}(x)$, which removes x from S;
 • $\text{max}() / \text{min}()$, which return the maximum or minimum element of S;
 • $\text{successor}(x)$, which returns the smallest element of S greater than x; and
 • $\text{predecessor}(x)$, which returns the largest element of S smaller than x.

• For context:

 Ordered Dictionary : BST :: Queue : Linked List
Ordered Dictionaries

- Balanced BSTs support all ordered dictionary operations in time $O(\log n)$ each.
- Hash tables support insertion, lookups, and deletion in expected time $O(1)$, but require time $O(n)$ for $\text{max, min, successor, and predecessor}$.

Question: Can we improve upon these bounds if we know that we’re working with integers drawn from $[U]$?
A Start: *Bitwise Tries*
Tries Revisited

- **Recall:** A trie is a simple data structure for storing strings.
- Integers can be thought of as strings of bits.
- **Idea:** Store integers in a *bitwise trie*.
To compute $\text{successor}(x)$, do the following:

- Search for x.
- If x is a leaf node, its successor is the next leaf.
- If you don't find x, back up until you find a node with a 1 child not already followed, follow the 1, then take the cheapest path down.
Bitwise Trie Efficiency

- All operations on bitwise tries take time proportional to the number of bits in each number.
- Runtime for each operation: $O(\log U)$.
 - This is probably worse than $O(\log n)$.
- For each number stored, we need to store $\Theta(\log U)$ internal nodes.
- Space usage: $O(n \log U)$.
 - This is probably worse than a BST.
- *Can we do better?*
Speeding up Successors

• There are two independent pieces that contribute to the $O(\log U)$ runtime:
 • Need to walk down the trie following the bits of x, and there are $\Theta(\log U)$ of those.
 • From there, need to back up to a branching node where we can find the successor.
• Can we speed up those operations? Or at least work around them?
Observation: A lookup for \(x \) in this trie terminates at the node corresponding to the longest prefix of \(x \).

Question: Do we actually have to walk the trie to find this node?
Claim 1: If a node v corresponds to a prefix of x, all of v's ancestors correspond to prefixes of x.
Claim 2: If a node v does not correspond to a prefix of x, none of v's descendants correspond to prefixes of x.
Claim 3: The deepest node corresponding to a prefix of x can be found by doing a binary search over the layers of the trie.
One Speedup

- **Goal:** Encode the trie so that we can do a binary search over its layers.

- **One Solution:** Store an array of cuckoo hash tables, one per layer of the trie, that holds all the nodes in that layer.

- Can now query, in worst-case time $O(1)$, whether a node's prefix is present on a given layer.

- There are $O(\log U)$ layers in the trie.

- Binary search will take worst-case time $O(\log \log U)$.

- **Nice side-effect:** Queries are now worst-case $O(1)$, since we can just check the hash table at the bottom layer.
Performing the Binary Search

- This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.
- Fortunately, we can do this!

\begin{verbatim}
x 11011100 10111011 11000100 11010110 11110011 01111011 11110000 10001100
\end{verbatim}
Performing the Binary Search

- This binary search assumes that, given a number \(x \) and a length \(k \), we can extract the first \(k \) bits of \(x \) in time \(O(1) \).
- Fortunately, we can do this!

```
x = 11011100 10111011 11000100 11010110 11110011 01111011 11110000 10001100
mask = 1111111 1111111 1111111 11110000 00000000 00000000 00000000 00000000
prefix = 11011100 10111011 11000100 11010000 00000000 00000000 00000000 00000000
```

```c
uint64_t x = /* ... */;
uint64_t mask = something magical;
uint64_t prefix = x & mask;
```
Performing the Binary Search

- This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.

- Fortunately, we can do this!

```c
uint64_t x = /* ... */;
uint64_t mask = something magical;
uint64_t prefix = x & mask;
```
Performing the Binary Search

- This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.
- Fortunately, we can do this!

```
uint64_t x = /* ... */;
uint64_t mask = (uint64_t(1) << (64 - k));
uint64_t prefix = x & mask;
```
Performing the Binary Search

• This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.

• Fortunately, we can do this!

```
x = /* … */;
uint64_t mask = ~(uint64_t(1) << (64 - k));
uint64_t prefix = x & mask;
```
Performing the Binary Search

- This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.

- Fortunately, we can do this!

<table>
<thead>
<tr>
<th>x</th>
<th>11011100 10111011 11000100 11010110 11110011 01111011 11110000 10001100</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mask</code></td>
<td>11111111 11111111 11111111 11110000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td><code>prefix</code></td>
<td>11011100 10111011 11000100 11010000 00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

$-x = \sim x + 1$

Thanks, CS107!

```c
uint64_t x = /* ... */;
uint64_t mask = ~(uint64_t(1) << (64 - k)) + 1;
uint64_t prefix = x & mask;
```
Performing the Binary Search

- This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.
- Fortunately, we can do this!

```c
uint64_t x = /* ... */;
uint64_t mask = -(uint64_t(1) << (64 - k));
uint64_t prefix = x & mask;
```

There’s an edge case to handle here for $k = 0$, but that’s easily special-cased. Let me know if there’s a way to avoid this!
Finding Successors

- We can now find the node where the successor search would initially arrive.
- At this point, we’d normally back up until we find a branching node where we can follow a 1 child pointer, then descend from there to the leaves.
- This will take time $O(\log U)$.
- *Can we do better?*
Finding Successors

- **Claim:** If the binary search terminates at a node \(v \), that node must have at most one child.
- If it doesn't, it has both a 0 child and a 1 child, so there's a longer prefix that can be matched.
- **Idea:** Steal the missing pointers and use them to speed up successor and predecessor searches.
Threaded Binary Tries

- A *threaded binary trie* is a binary tree where
 - each missing 0 pointer points to the inorder predecessor of the node and
 - each missing 1 points to the inorder successor of the node.
- Notice that the leaves end up in a doubly-linked list.
x-Fast Tries

- An **x-Fast Trie** is a threaded binary trie with a cuckoo hash table at each level that stores the nodes at that level.
- Can do lookups in time $O(1)$.
Claim: Can determine $\text{successor}(x)$ in time $O(\log \log U)$.

- Start by binary searching for the longest prefix of x.
- If that node has a missing 1 pointer, it points directly to the successor.
- Otherwise, it has a missing 0 pointer.
- If that pointer is null, return the minimum value (we can cache this.)
- Otherwise, follow it to a leaf, then follow the leaf’s 1 pointer.
x-Fast Trie Maintenance

• Based on what we've seen:
 • *lookup* takes worst-case time $O(1)$.
 • *successor* and *predecessor* queries take worst-case time $O(\log \log U)$.
 • *min* and *max* can be done in time $O(1)$, assuming we cache those values.
 • How efficiently can we support *insert* and *delete*?
x-Fast Tries

- If we *insert* \(x \), we need to
 - add some new nodes to the trie;
 - wire \(x \) into the doubly-linked list of leaves; and
 - update the thread pointers to include \(x \).

- Worst-case will be \(\Omega(\log U) \) due to the first and third steps.
x-Fast Tries

Here is an (amortized, expected) $O(\log U)$ time algorithm for \textit{insert}(x):

- Find \textit{successor}(x).
- Add x to the trie.
- Using the successor from before, wire x into the linked list.
- Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for \textit{insert}(x):
 - Find \textit{successor}(x).
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for \textit{insert}(x):
 - Find \textit{successor}(x).
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for \textit{insert}(x):
 - Find \textit{successor}(x).
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for $\text{insert}(x)$:
 - Find $\text{successor}(x)$.
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
Here is an (amortized, expected) \(O(\log U)\) time algorithm for \textit{insert}(x):

- Find \textit{successor}(x).
- Add \(x\) to the trie.
- Using the successor from before, wire \(x\) into the linked list.
- Walk up from \(x\), its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for \textit{insert}(x):
 - Find \textit{successor}(x).
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for $\text{insert}(x)$:
 - Find $\text{successor}(x)$.
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
Deletion

- To $\textit{delete}(x)$, we need to
 - Remove x from the trie.
 - Splice x out of its linked list.
 - Update thread pointers from x's former predecessor and successor.
- Runs in expected, amortized time $\mathcal{O}(\log U)$.
- Full details are left as a proverbial Exercise to the Reader. ☺
Space Usage

• How much space is required in an x-fast trie?
• Each leaf node contributes at most $O(\log U)$ nodes in the trie.
• Total space usage for hash tables is proportional to total number of trie nodes.
• Total space: $O(n \log U)$.
Where We Stand

- Right now, we have a reasonably fast data structure for storing a sorted set of integers.
- If we have a static set of integers that we want to make lots of queries on, this is pretty good as-is!
- As you’ll see, though, we can make this even better with some kitchen sink techniques. 😊

x-Fast Trie:
- **lookup**: $O(1)$
- **insert**: $O(\log U)^*$
- **delete**: $O(\log U)^*$
- **max**: $O(1)$
- **succ**: $O(\log \log U)$
- **is-empty**: $O(1)$

Space: $O(n \log U)$

* Expected, amortized
Time-Out for Announcements!
Midterm Logistics

- Our midterm will be held next Tuesday from 7:00PM – 10:00PM in **Hewlett 200**.
- Exam is closed-book, closed-computer, and limited-note. You can bring a double-sided 8.5" × 11" sheet of notes with you to the exam.
- Topic coverage is material from PS1 – PS5. Topics from this week won’t be tested, but are an excellent review of the concepts.
- We've released a set of practice problems to help you prepare for the exam. They're up on the course website.
- Can't make the exam time? Have OAE accommodations? Let us know ASAP so that we can set up an alternate time.
Final Project Presentations

- Final project presentations will run from Monday, June 4 to Thursday, June 7.
- Use this link to sign up for a time slot: http://www.slottr.com/cs166-2018
- You can view the available time slots starting today. The form will be open from noon on Thursday, May 24 until noon on Thursday, May 31. It's first-come, first-served.
- Presentations will be 15-20 minutes, plus five minutes for questions. Please arrive five minutes early to get set up.
- Presentations are open to the public, so feel free to stop by any of the presentations you're interested in.
Back to CS166!
y-Fast Tries
Where We Stand

- Right now, we have a reasonably fast data structure for storing a sorted set of integers.
- To make this really shine, we need to improve the highlighted costs.

\textbf{x-Fast Trie:}
- \textit{lookup}: $O(1)$
- \textit{insert}: $O(\log U)^*$
- \textit{delete}: $O(\log U)^*$
- \textit{max}: $O(1)$
- \textit{succ}: $O(\log \log U)$
- \textit{is-empty}: $O(1)$
- Space: $\Theta(n \log U)$

* Expected, amortized
Shaving Off Logs

- We’re essentially at a spot where we need to shave off a log factor from a couple of operations.
- **Question:** What techniques have we developed so far to do this?

\[x\text{-Fast Trie:} \]
- **lookup**: $O(1)$
- **insert**: $O(\log U)^*$
- **delete**: $O(\log U)^*$
- **max**: $O(1)$
- **succ**: $O(\log \log U)$
- **is-empty**: $O(1)$
- Space: $\Theta(n \log U)$

* Expected, amortized
Two-Level Structures

- Think back to the hybrid approach we used for solving RMQ.
- It consisted of a two-tiered structure:
 - A bunch of small, lower-level structures that each solve the problem in small cases.
 - A single, larger, top-level structure that helps aggregate those solutions together.
Two-Level Structures

- One of the fastest RMQ hybrids in practice is the $\langle O(n), O(\log n) \rangle$ hybrid structure built with blocks of size $\Theta(\log n)$ where
 - the summary structure is a $\langle O(n \log n), O(1) \rangle$ sparse table, and
 - the block-level structures are $\langle O(1), O(n) \rangle$ no-preprocessing RMQ structures.
- By breaking the input apart into blocks of size $\Theta(\log n)$
 - the summary structure only takes time $O(n)$ to build, and
 - the linear terms in the blocks become $O(\log n)$ terms.
The Idea

- Build a two-level ordered dictionary out of existing ordered dictionaries.
- Split the keys apart into logarithmic-sized blocks.
- Build ordered dictionaries for each of the block-level dictionaries.
- Build a summary dictionary to aggregate the blocks together.
The y-Fast Trie
The Setup

- For now, assume all keys are given to us in advance, in sorted order.
- Split the keys apart into blocks of size $\Theta(\log U)$ and store them in balanced BSTs.
The Setup

- For now, assume all keys are given to us in advance, in sorted order.
- Split the keys apart into blocks of size $\Theta(\log U)$ and store them in balanced BSTs.
- Create a summary x-fast trie that stores the maximum key from each block but the last.
Performing a Lookup

- Suppose we want to perform \textit{lookup}(90).
- \textbf{Idea:} figure out which block 90 would belong to, then search within the BST in that block.
- \textbf{Cost:} $O(\log \log U)$.

\begin{itemize}
 \item \textit{x-Fast Trie}
 \begin{tabular}{c|c|c|c|c|}
 7 & 41 & 90 & 107 \\
 \end{tabular}
\end{itemize}

Search this BST in time $O(\log \log U)$.

Ask for \textit{successor}(89) up here in time $O(\log \log U)$.

Ask for \textit{successor}(89) up here in time $O(\log \log U)$.

Search this BST in time $O(\log \log U)$.

Search this BST in time $O(\log \log U)$.
Performing a Lookup

- Suppose we want to perform \textit{lookup}(110).
- **Idea:** figure out which block 109 would belong to, then search within the BST in that block.
- **Cost:** \(O(\log \log U)\).

```
Ask for \textit{successor}(109) in time \(O(\log \log U)\).
(Oops, doesn’t exist!)
```

```
Search this BST in time \(O(\log \log U)\).
```
Successor Queries

- How might we perform successor queries?
- Here’s how we’d determine successor(59).

![x-Fast Trie Diagram]

- Ask for successor(58) up here in time $O(\log \log U)$.
- Find successor in time $O(\log \log U)$.
Successor Queries

- How might we perform successor queries?
- Here’s how we’d determine successor(107).
- Cost: $O(\log \log U)$.

Ask for successor(106) up here in time $O(\log \log U)$.

Find successor in time $O(\log \log U)$. (Oops, doesn’t exist!)

Find min in time $O(\log \log U)$.

x-Fast Trie

$\begin{array}{cccc}
7 & 41 & 90 & 107 \\
\end{array}$
Making Edits

- With a major caveat, insertions follow the same procedure as before.
- Here’s how we’d **insert**(6) into this BST in time $O(\log \log U)$.

Ask for **successor**(5) in time $O(\log \log U)$.

![Diagram of x-Fast Trie and BST](image-url)
Making Edits

- With a major caveat, insertions follow the same procedure as before.
- Here’s how we’d **insert** (6)

![Diagram of BST with values 1, 3, 6, 7, 27, 41, 59, 79, 90, 103, 106, 107, 109, 110, 161]

x-Fast Trie

| 7 | 41 | 90 | 107 |

insert into this BST in time $O(\log \log U)$.

Ask for **successor** (5) in time $O(\log \log U)$.
Making Edits

- With a major caveat, insertions follow the same procedure as before.
- Here’s how we’d **insert** (4)

 insert into this BST in time $O(\log \log U)$.

 Ask for **successor** (3) in time $O(\log \log U)$.
Making Edits

- With a major caveat, insertions follow the same procedure as before.
- Here’s how we’d \textit{insert}(4)

\begin{itemize}
 \item \textit{insert} into this BST in time $O(\log \log U)$
 \item \textit{successor}(3) in time $O(\log \log U)$
\end{itemize}
Making Edits

- With a major caveat, insertions follow the same procedure as before.
- Here’s how we’d **insert**(2) into this BST in time $O(\log \log U)$.

Ask for **successor**(1) in time $O(\log \log U)$.
Making Edits

- With a major caveat, insertions follow the same procedure as before.
- Here’s how we’d **insert** (2)

![x-Fast Trie](image)

Ask for successor (1) in time $O(\log \log U)$.

insert into this BST in time $O(\log \log U)$
The Problem

- If our trees get too big, we may lose our $O(\log \log U)$ time bound.

- **Idea:** Require each tree to have at most $2 \cdot \lg U$ elements. If it gets too big, split it and update the x-fast trie.
The Problem

- If our trees get too big, we may lose our $O(\log \log U)$ time bound.

- **Idea:** Require each tree to have at most $2 \cdot \lg U$ elements. If it gets too big, split it and update the x-fast trie.
The Problem

- If our trees get too big, we may lose our $O(\log \log U)$ time bound.

- **Idea:** Require each tree to have at most $2 \cdot \lg U$ elements. If it gets too big, split it and update the x-fast trie.
The Problem

- If our trees get too big, we may lose our $O(\log \log U)$ time bound.
- **Idea:** Require each tree to have at most $2 \cdot \lg U$ elements. If it gets too big, split it and update the x-fast trie.
The Problem

- If our trees get too big, we may lose our $O(\log \log U)$ time bound.
- **Idea:** Require each tree to have at most $2 \cdot \lg U$ elements. If it gets too big, split it and update the x-fast trie.
Analyzing an Insertion

- If we perform an *insert* and don’t end up doing a resize, the cost is $O(\log \log U)$.
- If we perform an *insert* and do have to do a resize, the work done is
 - $O(\log \log U)$ to *split* the binary search tree, and
 - $O(\log U)$ to insert into the x-fast trie.
- Total work: $O(\log U)$.
Analyzing an Insertion

- If we perform an \textit{insert} and don’t end up doing a resize, the cost is $O(\log \log U)$.

- If we perform an \textit{insert} and do have to do a resize, the work done is
 - $O(\log \log U)$ to \textit{split} the binary search tree, and
 - $O(\log U)$ to insert into the x-fast trie.

- Total work: $O(\log U)$.

But this is uncommon! We only do this if a tree got way too big.
An Amortized Analysis

- Whenever we do an insertion, place a credit on the newly-inserted element.
 - Cost of a “light” \textit{insert} still \(O(\log \log U)\).
- If we have to split a tree, the tree size was above \(2 \log U\), so there must be \(\log U\) credits on it (one for each element above \(\log U\)).
- The \textit{amortized} cost of a “heavy” insert is then
 \[
 O(\log \log U) + O(\log U) - \Theta(\log U) = O(\log \log U).
 \]

Cost of a regular insert, plus the tree split.
Cost of adding to the \(x\)-fast trie.
Credits spent.
A Nice Side-Effect

- We can now abandon our assumption that we’re given all the keys in sorted order in advance.
- Each insertion takes amortized time $O(\log \log U)$, so we can build the structure up from scratch!
A Nice Side-Effect

- We can now abandon our assumption that we’re given all the keys in sorted order in advance.
- Each insertion takes amortized time $O(\log \log U)$, so we can build the structure up from scratch!
A Nice Side-Effect

- We can now abandon our assumption that we’re given all the keys in sorted order in advance.
- Each insertion takes amortized time $O(\log \log U)$, so we can build the structure up from scratch!

This is an (expected) $O(n \log \log U)$-time sorting algorithm!
Making Edits

• With a major caveat, deletions follow the same procedure as insertions.
• Here’s how we’d delete(7).
Making Edits

• With a major caveat, deletions follow the same procedure as insertions.
• Here’s how we’d **delete** (7).

delete from this BST in time $O(\log \log U)$

Ask for **successor** (6) in time $O(\log \log U)$.

x-Fast Trie

| 7 | 41 | 90 | 107 |

1 7 27 41 59 90 103 107 109 110 161
Making Edits

- Our x-fast trie still holds 7, even though 7 is no longer present.
- That’s not a problem – those keys just serve as “routing information” to tell us which BSTs to look at.
- **Intuition:** The x-fast trie keys act as partitions between BSTs. They don’t need to actually be present in our data structure.
Shrinking our Structure

• What happens if we remove all the elements from our structure without touching the x-fast trie?

x-Fast Trie

1 3
27 27
31 31
41 41
79 79
90 90
106 106
103 103
107 107
110 110
109 109
161 161

7 41 90 107
Shrinking our Structure

- What happens if we remove all the elements from our structure without touching the x-fast trie?

![x-Fast Trie Diagram]

- The diagram shows a x-Fast Trie with the numbers 7, 41, 90, and 107. The structure is designed to efficiently store and search through a set of elements.
Shrinking our Structure

• What happens if we remove all the elements from our structure without touching the x-fast trie?
• Each operation still takes time $O(\log \log U)$.
• But now our space usage depends on the maximum size we reached, not the current size!
Achieving a Balance

- If each tree has $\Theta(\log U)$ elements in it, then our space usage is
 - $\Theta(n)$ for all the trees, plus
 - $\Theta((n / \log U) \log U) = \Theta(n)$ for the x-fast trie,
- This uses $\Theta(n)$ total memory.
Achieving a Balance

- **Invariant:** Require each tree to have between $\frac{1}{2}\log_2 U$ and $2\log_2 U$ elements.

- If a tree gets too small, either
 - borrow lots of elements from a neighbor and update the x-fast trie, or
 - merge with a neighbor and update the x-fast trie.
Achieving a Balance

- **Invariant**: Require each tree to have between $\frac{1}{2}\log U$ and $2 \log U$ elements.

- If a tree gets too small, either
 - borrow lots of elements from a neighbor and update the x-fast trie, or
 - merge with a neighbor and update the x-fast trie.
Achieving a Balance

- **Invariant:** Require each tree to have between $\frac{1}{2}\log U$ and $2 \log U$ elements.

- If a tree gets too small, either
 - borrow lots of elements from a neighbor and update the x-fast trie, or
 - merge with a neighbor and update the x-fast trie.
Achieving a Balance

- **Invariant:** Require each tree to have between $\frac{1}{2}\lg U$ and $2\lg U$ elements.
- If a tree gets too small, either
 - borrow lots of elements from a neighbor and update the x-fast trie, or
 - merge with a neighbor and update the x-fast trie.
Achieving a Balance

- **Invariant:** Require each tree to have between $\frac{1}{2}\lg U$ and $2\lg U$ elements.

- If a tree gets too small, either
 - borrow lots of elements from a neighbor and update the x-fast trie, or
 - merge with a neighbor and update the x-fast trie.
What We’ve Seen

- Here’s the final scorecard for the y-fast trie.
- Assuming $n = \omega(\log U)$, which it probably is, this is strictly better than a binary search tree.
- And it gives rise to an $O(n \log \log U)$-expected-time sorting algorithm!

<table>
<thead>
<tr>
<th>The y-Fast Trie:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lookup: $O(\log \log U)$</td>
<td></td>
</tr>
<tr>
<td>insert: $O(\log \log U)^*$</td>
<td></td>
</tr>
<tr>
<td>delete: $O(\log \log U)^*$</td>
<td></td>
</tr>
<tr>
<td>max: $O(\log \log U)$</td>
<td></td>
</tr>
<tr>
<td>succ: $O(\log \log U)$</td>
<td></td>
</tr>
<tr>
<td>is-empty: $O(1)$</td>
<td></td>
</tr>
<tr>
<td>Space: $\Theta(n)$</td>
<td></td>
</tr>
</tbody>
</table>

* Expected, amortized.
What We Needed

- An x-fast trie requires *tries* and *cuckoo hashing*.
- The y-fast trie requires amortized analysis and *split/join* on *balanced BSTs*.
- y-fast tries also use the “blocking” technique from *RMQ* we used to shave off log factors.
What’s Missing

• There’s still a little gap between where BSTs dominate and where y-fast tries take over.
 • Specifically, what if $n = O(\log U)$?
• Our solution still involves randomness.
 • We need that in the cuckoo hash tables at each level.
• **Question:** Can we build a solution with neither of these weaknesses?
Next Time

• **Word-Level Parallelism**
 • Parallel processing via addition, subtraction, and the like.

• **Sardine Trees**
 • A fast ordered dictionary for truly tiny trees.