x-Fast and y-Fast Tries
Outline for Today

• **Data Structures on Integers**
 • How can we speed up operations that work on integer data?

• **x-Fast Tries**
 • Bit manipulation meets tries and hashing.

• **y-Fast Tries**
 • Combining RMQ, strings, balanced trees, amortization, and randomization!
Working with Integers

- Many practical problems involve working specifically with integer values.
 - **CPU Scheduling**: Each thread has some associated integer priority, and we need to maintain those priorities in sorted order.
 - **Network Routing**: Each computer has an associated IP address, and we need to figure out which connections are active.
 - **ID Management**: We need to store social security numbers, zip codes, phone numbers, credit card numbers, etc. and perform basic lookups and range searches on them.
- We’ve seen many general-purpose data structures for keeping things in order and looking things up.
- **Question**: Can we improve those data structures if we know in advance that we’re working with integer data?
Working with Integers

- Integers are interesting objects to work with:
 - Their values can directly be used as indices in lookup tables.
 - They can be treated as strings of bits, so we can use techniques from string processing.
 - They fit into machine words, so we can process the bits in parallel with individual word operations.
- The data structures we’ll explore over the next few lectures will give you a sense of what sorts of techniques are possible with integer data.
An Auxiliary Motive

- Integer data structures are also a great place to see just how much you’ve learned over the quarter!
- Today’s data structures cover every single unit from the quarter (RMQ, strings, balanced trees, amortization, and randomization).
- I hope this gives you a chance to pause and reflect on just how far you’ve come!
The Setup
Our Machine Model

- We will assume we’re working on a machine where memory is segmented into w-bit words.

- We’ll assume our integers are drawn from some set $[U]$, where $\lg U \leq w$.
 - That is, integers fit into a single machine word.

- We’ll assume that the C integer operators work in constant time, and will not assume we have access to operators beyond them.

 + - * / % << >> & | ^ = <=

- Why these operations? Because they’re standard across most machines. There’s a bunch of papers exploring what a “reasonable” set of operations should look like, but we won’t explore them here.
Ordered Dictionaries
Ordered Dictionaries

- An **ordered dictionary** maintains a set S drawn from an ordered universe \mathcal{U} and supports these operations:
 - $\text{lookup}(x)$, which returns whether $x \in S$;
 - $\text{insert}(x)$, which adds x to S;
 - $\text{delete}(x)$, which removes x from S;
 - $\text{max}() / \text{min}()$, which return the maximum or minimum element of S;
 - $\text{successor}(x)$, which returns the smallest element of S greater than x; and
 - $\text{predecessor}(x)$, which returns the largest element of S smaller than x.

- For context:

 Ordered Dictionary : BST :: Queue : Linked List
Ordered Dictionaries

• Balanced BSTs support all ordered dictionary operations in time $O(\log n)$ each.

• Hash tables support insertion, lookups, and deletion in expected time $O(1)$, but require time $O(n)$ for \textit{max}, \textit{min}, \textit{successor}, and \textit{predecessor}.

• \textbf{Question:} Can we improve upon these bounds if we know that we’re working with integers drawn from $[U]$?
A Start: *Bitwise Tries*
Tries Revisited

- **Recall:** A trie is a simple data structure for storing strings.
- Integers can be thought of as strings of bits.
- **Idea:** Store integers in a *bitwise trie.*
Finding Successors

To compute $\text{successor}(x)$, do the following:

- Search for x.
- If x is a leaf node, its successor is the next leaf.
- If you don't find x, back up until you find a node with a 1 child not already followed, follow the 1, then take the cheapest path down.
Bitwise Trie Efficiency

- All operations on bitwise tries take time proportional to the number of bits in each number.

- Runtime for each operation: $O(\log U)$.
 - This is probably worse than $O(\log n)$.

- For each number stored, we need to store $\Theta(\log U)$ internal nodes.

- Space usage: $O(n \log U)$.
 - This is probably worse than a BST.

- Can we do better?
Speeding up Successors

• There are two independent pieces that contribute to the $O(\log U)$ runtime:
 • Need to walk down the trie following the bits of x, and there are $\Theta(\log U)$ of those.
 • From there, need to back up to a branching node where we can find the successor.
• Can we speed up those operations? Or at least work around them?
Observation: A lookup for x in this trie terminates at the node corresponding to the longest prefix of x.

Question: Do we actually have to walk the trie to find this node?
Claim 1: If a node \(v \) corresponds to a prefix of \(x \), all of \(v \)'s ancestors correspond to prefixes of \(x \).
Claim 2: If a node v does not correspond to a prefix of x, none of v's descendants correspond to prefixes of x.
Claim 3: The deepest node corresponding to a prefix of x can be found by doing a binary search over the layers of the trie.
One Speedup

• **Goal:** Encode the trie so that we can do a binary search over its layers.

• **One Solution:** Store an array of cuckoo hash tables, one per layer of the trie, that holds all the nodes in that layer.

• Can now query, in worst-case time $O(1)$, whether a node's prefix is present on a given layer.

• There are $O(\log U)$ layers in the trie.

• Binary search will take worst-case time $O(\log \log U)$.

• **Nice side-effect:** Queries are now worst-case $O(1)$, since we can just check the hash table at the bottom layer.
Performing the Binary Search

- This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.
- Fortunately, we can do this!

\[
\begin{array}{c}
\text{x} \\
11011100 10111011 11000100 11010110 11110011 01111011 11110000 10001100
\end{array}
\]
Performing the Binary Search

- This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.

- Fortunately, we can do this!

```c
uint64_t x = /* ... */;
uint64_t mask = something magical;
uint64_t prefix = x & mask;
```
Performing the Binary Search

- This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.
- Fortunately, we can do this!

```
x = 11011100 10111011 11000100 11010110 11110011 01111011 11110000 10001100
mask
prefix = x & mask;
```
Performing the Binary Search

- This binary search assumes that, given a number \(x \) and a length \(k \), we can extract the first \(k \) bits of \(x \) in time \(O(1) \).
- Fortunately, we can do this!

\[
\begin{align*}
x &= 11011100 \ 10111011 \ 11000100 \ 11010110 \ 11110011 \ 01111011 \ 11100000 \ 10001100 \\
\text{mask} &= 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \ 00000000 \\
\text{prefix} &= 11011100 \ 10111011 \ 11000100 \ 11010000 \ 00000000 \ 00000000 \ 00000000 \ 00000000
\end{align*}
\]

```c
uint64_t x = /* ... */;
uint64_t mask = (uint64_t(1) << (64 - k));
uint64_t prefix = x & mask;
```
Performing the Binary Search

- This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.
- Fortunately, we can do this!

```c
uint64_t x = /* ... */;
uint64_t mask = ~(uint64_t(1) << (64 - k));
uint64_t prefix = x & mask;
```
Performing the Binary Search

- This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.

- Fortunately, we can do this!

```
x = 11011100 10111011 11000100 11010110 11110011 01111011 11110000 10001100
mask = 1111111 1111111 1111111 1111000 0000000 0000000 0000000 0000000
prefix = x & mask

-x = ~x + 1

Thanks, CS107!
```
Performing the Binary Search

• This binary search assumes that, given a number x and a length k, we can extract the first k bits of x in time $O(1)$.

• Fortunately, we can do this!

<table>
<thead>
<tr>
<th>x</th>
<th>11011100 1011011 11000100 11010110 11110011 01111011 1110000 10001100</th>
</tr>
</thead>
<tbody>
<tr>
<td>mask</td>
<td>11111111 11111111 11111111 11110000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>prefix</td>
<td>11011100 1011011 11000100 11010100</td>
</tr>
</tbody>
</table>

There’s an edge case to handle here for $k = 0$, but that’s easily special-cased. Let me know if there’s a way to avoid this!

```c
uint64_t x = /* ... */;
uint64_t mask = -(uint64_t(1) << (64 - k));
uint64_t prefix = x & mask;
```
Finding Successors

- We can now find the node where the successor search would initially arrive.
- At this point, we’d normally back up until we find a branching node where we can follow a 1 child pointer, then descend from there to the leaves.
- This will take time $O(\log U)$.
- *Can we do better?*
Finding Successors

Claim: If the binary search terminates at a node v, that node must have at most one child.

If it doesn't, it has both a 0 child and a 1 child, so there's a longer prefix that can be matched.

Idea: Steal the missing pointers and use them to speed up successor and predecessor searches.
Threaded Binary Tries

- A **threaded binary trie** is a binary tree where
 - each missing 0 pointer points to the inorder predecessor of the node and
 - each missing 1 points to the inorder successor of the node.
- Notice that the leaves end up in a doubly-linked list.
x-Fast Tries

- An **x-Fast Trie** is a threaded binary trie with a cuckoo hash table at each level that stores the nodes at that level.
- Can do lookups in time $O(1)$.
Claim: Can determine \(\text{successor}(x) \) in time \(O(\log \log U) \).

- Begin with a binary search for the longest prefix of \(x \).
- If that node has a missing 1 pointer, it points directly to the successor.
- Otherwise, it has a missing 0 pointer. Follow it to a leaf, then follow the leaf’s 1 pointer. (Need to handle edge cases with null previous pointers; it’s an exercise to the reader!)
x-Fast Trie Maintenance

- Based on what we've seen:
 - *lookup* takes worst-case time $O(1)$.
 - *successor* and *predecessor* queries take worst-case time $O(\log \log U)$.
 - *min* and *max* can be done in time $O(1)$, assuming we cache those values.
- How efficiently can we support *insert* and *delete*?
x-Fast Tries

- If we \textit{insert}(x), we need to
 - add some new nodes to the trie;
 - wire \(x\) into the doubly-linked list of leaves; and
 - update the thread pointers to include \(x\).
- Worst-case will be \(\Omega(\log U)\) due to the first and third steps.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for \textit{insert}(x):
 - Find \textit{successor}(x).
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for $\text{insert}(x)$:
 - Find $\text{successor}(x)$.
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
Here is an (amortized, expected) $O(\log U)$ time algorithm for $\text{insert}(x)$:

- Find $\text{successor}(x)$.
- Add x to the trie.
- Using the successor from before, wire x into the linked list.
- Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for \textit{insert}(x):
 - Find \textit{successor}(x).
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for \textit{insert}(x):
 - Find \textit{successor}(x).
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
Here is an (amortized, expected) $O(\log U)$ time algorithm for \textbf{insert}(x):

- Find \textit{successor}(x).
- Add x to the trie.
- Using the successor from before, wire x into the linked list.
- Walk up from x, its successor, and its predecessor and update threads.
Here is an (amortized, expected) $O(\log U)$ time algorithm for $\text{insert}(x)$:

- Find $\text{successor}(x)$.
- Add x to the trie.
- Using the successor from before, wire x into the linked list.
- Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for \texttt{insert}(x):
 - Find \texttt{successor}(x).
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
Deletion

- To *delete* \(x \), we need to
 - Remove \(x \) from the trie.
 - Splice \(x \) out of its linked list.
 - Update thread pointers from \(x \)'s former predecessor and successor.

- Runs in expected, amortized time \(O(\log U) \).

- Full details are left as a proverbial Exercise to the Reader. 😊
Space Usage

- How much space is required in an x-fast trie?
- Each leaf node contributes at most $O(\log U)$ nodes in the trie.
- Total space usage for hash tables is proportional to total number of trie nodes.
- Total space: $O(n \log U)$.
Right now, we have a reasonably fast data structure for storing a sorted set of integers.

If we have a *static* set of integers that we want to make lots of queries on, this is pretty good as-is!

As you’ll see, though, we can make this even better with some kitchen sink techniques. 😃

x-Fast Trie:

- **lookup**: $O(1)$
- **insert**: $O(\log U)^*$
- **delete**: $O(\log U)^*$
- **max**: $O(1)$
- **succ**: $O(\log \log U)$
- **is-empty**: $O(1)$

* Space: $O(n \log U)$

* Expected, amortized
Time-Out for Announcements!
Problem Sets

• Problem Set Five is due next Tuesday at 2:30PM.
 • You know the drill – feel free to ask questions if you have them!
 • As a reminder, be careful about taking a late period here, as that will overlap with the take-home exam.

• Problem Set Four solutions are now available on the course website.
Take-Home Midterm

- Our take-home midterm will be going out next Tuesday at 2:30PM. It’ll be due next Thursday at 2:30PM.
- Exam covers topics up through and including randomization. All topics from those lectures are fair game, as are topics from the problem sets.
- The exam is open-note and open-book in the following sense:
 - You can refer to any notes you yourself have taken.
 - You can refer to anything on the course website.
 - You can use CLRS if you’d like (though the exam is designed so that you shouldn’t need it).
 - You may not use any other sources.
- The exam is to be done individually. No collaboration is permitted.
Final Project Presentations

- Project presentations will run from **Monday, June 3** to **Wednesday, June 5**.
- Use this link to sign up for a time slot: http://www.slottr.com/cs166-2019
- You can view the available time slots starting today. The form will be open from **noon on Friday, May 24** until noon on Thursday, May 30. It's first-come, first-served.
- Presentations will be 15-20 minutes, plus five minutes for questions. Please arrive five minutes early to get set up.
- Presentations are open to the public, so feel free to stop by any of the presentations you're interested in.
Back to CS166!
y-Fast Tries
Where We Stand

- Right now, we have a reasonably fast data structure for storing a sorted set of integers.
- To make this really shine, we need to improve the highlighted costs.

x-Fast Trie:
- **lookup**: $O(1)$
- **insert**: $O(\log U)$*
- **delete**: $O(\log U)$*
- **max**: $O(1)$
- **succ**: $O(\log \log U)$
- **is-empty**: $O(1)$
- Space: $\Theta(n \log U)$

* Expected, amortized
Shaving Off Logs

- We’re essentially at a spot where we need to shave off a log factor from a couple of operations.

Question: What techniques have we developed so far to do this?

x-Fast Trie:
- **lookup:** $O(1)$
- **insert:** $O(\log U)^*$
- **delete:** $O(\log U)^*$
- **max:** $O(1)$
- **succ:** $O(\log \log U)$
- **is-empty:** $O(1)$
- Space: $\Theta(n \log U)$

* Expected, amortized
Two-Level Structures

- Think back to the hybrid approach we used for solving RMQ.
- It consisted of a two-tiered structure:
 - A bunch of small, lower-level structures that each solve the problem in small cases.
 - A single, larger, top-level structure that helps aggregate those solutions together.
Two-Level Structures

- One of the fastest RMQ hybrids in practice is the \(O(n), O(\log n)\) hybrid structure built with blocks of size \(\Theta(\log n)\) where
 - the summary structure is a \(O(n \log n), O(1)\) sparse table, and
 - the block-level structures are \(O(1), O(n)\) no-preprocessing RMQ structures.
- By breaking the input apart into blocks of size \(\Theta(\log n)\)
 - the summary structure only takes time \(O(n)\) to build, and
 - the linear terms in the blocks become \(O(\log n)\) terms.
The Idea

- Build a two-level ordered dictionary out of existing ordered dictionaries.
- Split the keys apart into logarithmic-sized blocks.
- Build ordered dictionaries for each of the block-level dictionaries.
- Build a summary dictionary to aggregate the blocks together.
The y-Fast Trie
The Setup

- For now, assume all keys are given to us in advance, in sorted order.
- Split the keys apart into blocks of size $\Theta(\log U)$ and store them in balanced BSTs.
The Setup

- For now, assume all keys are given to us in advance, in sorted order.
- Split the keys apart into blocks of size $\Theta(\log U)$ and store them in balanced BSTs.
- Create a summary x-fast trie that stores the maximum key from each block but the last.

\[\text{x-Fast Trie} \]

\[
\begin{array}{cccc}
7 & 41 & 90 & 107 \\
\end{array}
\]
Performing a Lookup

- Suppose we want to perform **lookup**(90).
- **Idea:** figure out which block 90 would belong to, then search within the BST in that block.
- **Cost:** $O(\log \log U)$.

![Diagram of an x-Fast Trie]

- Search this BST in time $O(\log \log U)$.
- Ask for **successor**(89) up here in time $O(\log \log U)$.
Performing a Lookup

- Suppose we want to perform $\text{lookup}(110)$.
- **Idea:** figure out which block 109 would belong to, then search within the BST in that block.
- Cost: $O(\log \log U)$.

$\text{Ask for } \text{successor}(109) \text{ in time } O(\log \log U). (\text{Oops, doesn’t exist!})$

$\text{Search this BST in time } O(\log \log U).$
Successor Queries

- How might we perform *successor* queries?
- Here’s how we’d determine *successor*(59).

```
Ask for successor(58) up here in time O(log log U).
```

```
Find successor in time O(log log U).
```

```
  3
  |  \
  1  7

  31
  |  \
  27 41

  79
  |  \
  59 90

  107
  |  \
  103 107 109 161
```

x-Fast Trie

Cost: \(O(\log \log U)\).
Successor Queries

- How might we perform \textit{successor} queries?
- Here’s how we’d determine \textit{successor}(107).
- Cost: $O(\log \log U)$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{x-Fast-Trie.png}
\end{figure}

Find successor in time $O(\log \log U)$. (Oops, doesn’t exist!)

Find min in time $O(\log \log U)$. (Oops, doesn’t exist!)

Ask for \textit{successor}(106) up here in time $O(\log \log U)$.
Making Edits

• With a major caveat, insertions follow the same procedure as before.
• Here’s how we’d **insert** (6)

```
insert into this BST in time O(log log U)
```

Ask for **successor** (5) in time $O(\log \log U)$.
Making Edits

- With a major caveat, insertions follow the same procedure as before.
- Here’s how we’d **insert** (6) into this BST in time $O(\log \log U)$.

Ask for successor (5) in time $O(\log \log U)$.
Making Edits

• With a major caveat, insertions follow the same procedure as before.
• Here’s how we’d **insert**(4) into this BST in time O(log log U).

Ask for **successor**(3) in time O(log log U).
Making Edits

- With a major caveat, insertions follow the same procedure as before.
- Here’s how we’d **insert**(4)

insert into this BST in time $O(\log \log U)$

x-Fast Trie

<table>
<thead>
<tr>
<th>7</th>
<th>41</th>
<th>90</th>
<th>107</th>
</tr>
</thead>
</table>

Ask for **successor**(3) in time $O(\log \log U)$.
Making Edits

- With a major caveat, insertions follow the same procedure as before.
- Here’s how we’d insert(2)

\[\text{insert into this BST in time } O(\log \log U) \]

\[\text{Ask for successor(1) in time } O(\log \log U). \]
Making Edits

• With a major caveat, insertions follow the same procedure as before.
• Here’s how we’d **insert**(2)

Ask for **successor**(1) in time $O(\log \log U)$.

insert into this BST in time $O(\log \log U)$.

x-Fast Trie

```
  7  41  90  107
```

```
3
  2
  6
  1  4  7
```

```
31
  27  41
```

```
79
  59  90
```

```
106
  103  107
```

```
110
  109  161
```
The Problem

- If our trees get too big, we may lose our $O(\log \log U)$ time bound.
- **Idea:** Require each tree to have at most $2 \cdot \lg U$ elements. If it gets too big, split it and update the x-fast trie.
The Problem

- If our trees get too big, we may lose our $O(\log \log U)$ time bound.
- **Idea:** Require each tree to have at most $2 \cdot \lg U$ elements. If it gets too big, split it and update the x-fast trie.
The Problem

- If our trees get too big, we may lose our $O(\log \log U)$ time bound.
- **Idea:** Require each tree to have at most $2 \cdot \log U$ elements. If it gets too big, split it and update the x-fast trie.
The Problem

- If our trees get too big, we may lose our $O(\log \log U)$ time bound.
- **Idea:** Require each tree to have at most $2 \cdot \lg U$ elements. If it gets too big, split it and update the x-fast trie.
The Problem

- If our trees get too big, we may lose our $O(\log \log U)$ time bound.

- **Idea:** Require each tree to have at most $2 \cdot \lg U$ elements. If it gets too big, split it and update the x-fast trie.
Analyzing an Insertion

- If we perform an *insert* and don’t end up doing a resize, the cost is $O(\log \log U)$.
- If we perform an *insert* and *do* have to do a resize, the work done is
 - $O(\log \log U)$ to *split* the binary search tree, and
 - $O(\log U)$ to insert into the x-fast trie.
- Total work: $O(\log U)$.
Analyzing an Insertion

- If we perform an `insert` and don’t end up doing a resize, the cost is $O(\log \log U)$.
- If we perform an `insert` and do have to do a resize, the work done is:
 - $O(\log \log U)$ to `split` the binary search tree, and
 - $O(\log U)$ to insert into the x-fast trie.
- **Total work:** $O(\log U)$.

But this is uncommon! We only do this if a tree got way too big.
An Amortized Analysis

- Whenever we do an insertion, place a credit on the newly-inserted element.
 - Cost of a “light” insert still $O(\log \log U)$.
- If we have to split a tree, the tree size was above $2 \lg U$, so there must be $\lg U$ credits on it (one for each element above $\lg U$).
- The *amortized* cost of a “heavy” insert is then $O(\log \log U) + O(\log U) - \Theta(\log U) = O(\log \log log U)$.
A Nice Side-Effect

- We can now abandon our assumption that we’re given all the keys in sorted order in advance.
- Each insertion takes amortized time $O(\log \log U)$, so we can build the structure up from scratch!
A Nice Side-Effect

- We can now abandon our assumption that we’re given all the keys in sorted order in advance.
- Each insertion takes amortized time $O(\log \log U)$, so we can build the structure up from scratch!
A Nice Side-Effect

- We can now abandon our assumption that we’re given all the keys in sorted order in advance.
- Each insertion takes amortized time $O(\log \log U)$, so we can build the structure up from scratch!

This is an (expected) $O(n \log \log U)$-time sorting algorithm!
Making Edits

- With a major caveat, deletions follow the same procedure as insertions.
- Here’s how we’d delete(7).
Making Edits

- With a major caveat, deletions follow the same procedure as insertions.
- Here’s how we’d delete(7).

x-Fast Trie

- Ask for successor(6) in time $O(\log \log U)$.

delete from this BST in time $O(\log \log U)$.
Making Edits

- Our x-fast trie still holds 7, even though 7 is no longer present.
- That’s not a problem – those keys just serve as “routing information” to tell us which BSTs to look at.
- **Intuition:** The x-fast trie keys act as partitions between BSTs. They don’t need to actually be present in our data structure.
Shrinking our Structure

- What happens if we remove all the elements from our structure without touching the x-fast trie?

![x-Fast Trie diagram]

x-Fast Trie

<table>
<thead>
<tr>
<th>7</th>
<th>41</th>
<th>90</th>
<th>107</th>
</tr>
</thead>
</table>

![Nodes 1 to 161]

Nodes: 1, 3, 7, 90, 107, 109, 110, 161
Shrinking our Structure

- What happens if we remove all the elements from our structure without touching the \(x \)-fast trie?

\[
\begin{array}{c}
x\text{-Fast Trie} \\
\begin{array}{cccc}
7 & 41 & 90 & 107 \\
\end{array}
\end{array}
\]
Shrinking our Structure

• What happens if we remove all the elements from our structure without touching the x-fast trie?
• Each operation still takes time $O(\log \log U)$.
• But now our space usage depends on the maximum size we reached, not the current size!

![x-Fast Trie Diagram]

- 7 41 90 107
Achieving a Balance

- If each tree has $\Theta(\log U)$ elements in it, then our space usage is:
 - $\Theta(n)$ for all the trees, plus
 - $\Theta((n / \log U) \log U) = \Theta(n)$ for the x-fast trie,
- This uses $\Theta(n)$ total memory.
Achieving a Balance

- **Invariant:** Require each tree to have between $\frac{1}{2}\log U$ and $2\log U$ elements.
- If a tree gets too small, either
 - borrow lots of elements from a neighbor and update the x-fast trie, or
 - merge with a neighbor and update the x-fast trie.
Achieving a Balance

- **Invariant:** Require each tree to have between $\frac{1}{2}\lg U$ and $2\lg U$ elements.

- If a tree gets too small, either
 - borrow lots of elements from a neighbor and update the x-fast trie, or
 - merge with a neighbor and update the x-fast trie.
Achieving a Balance

- **Invariant:** Require each tree to have between $\frac{1}{2}\log U$ and $2\log U$ elements.
- If a tree gets too small, either
 - borrow lots of elements from a neighbor and update the x-fast trie, or
 - merge with a neighbor and update the x-fast trie.
Achieving a Balance

- **Invariant:** Require each tree to have between $\frac{1}{2}\log U$ and $2 \log U$ elements.

- If a tree gets too small, either
 - borrow lots of elements from a neighbor and update the x-fast trie, or
 - merge with a neighbor and update the x-fast trie.
Achieving a Balance

- **Invariant:** Require each tree to have between $\frac{1}{2}\lg U$ and $2 \lg U$ elements.
- If a tree gets too small, either
 - borrow lots of elements from a neighbor and update the x-fast trie, or
 - merge with a neighbor and update the x-fast trie.
What We’ve Seen

- Here’s the final scorecard for the y-fast trie.
- Assuming $n = \omega(\log U)$, which it probably is, this is strictly better than a binary search tree.
- And it gives rise to an $O(n \log \log U)$-expected-time sorting algorithm!

The y-Fast Trie:
- **lookup**: $O(\log \log U)$
- **insert**: $O(\log \log U)^*$
- **delete**: $O(\log \log U)^*$
- **max**: $O(\log \log U)$
- **succ**: $O(\log \log U)$
- **is-empty**: $O(1)$
- Space: $\Theta(n)$
 * Expected, amortized.
What We Needed

• An x-fast trie requires *tries* and *cuckoo hashing*.

• The y-fast trie requires amortized analysis and *split/join* on *balanced BSTs*.

• y-fast tries also use the “blocking” technique from *RMQ* we used to shave off log factors.
What’s Missing

• There’s still a little gap between where BSTs dominate and where y-fast tries take over.
 • Specifically, what if $n = O(\log U)$?

• Our solution still involves randomness.
 • We need that in the cuckoo hash tables at each level.

• **Question:** Can we build a solution with neither of these weaknesses?
Next Time

- **Word-Level Parallelism**
 - Treating arithmetic as parallel computation.

- **Sardine Trees**
 - A fast ordered dictionary for truly tiny integers.

- **Finding the Most Significant Bit**
 - An astonishing algorithm for a deceptively tricky problem.