x-Fast and y-Fast Tries
Outline for Today

- **Bitwise Tries**
 - A simple ordered dictionary for integers.
- **x-Fast Tries**
 - Tries + Hashing
- **y-Fast Tries**
 - Tries + Hashing + Subdivision + Balanced Trees + Amortization
Recap from Last Time
Ordered Dictionaries

- An **ordered dictionary** is a data structure that maintains a set S of elements drawn from an ordered universe \mathcal{U} and supports these operations:
 - $\text{insert}(x)$, which adds x to S.
 - $\text{is-empty}()$, which returns whether $S = \emptyset$.
 - $\text{lookup}(x)$, which returns whether $x \in S$.
 - $\text{delete}(x)$, which removes x from S.
 - $\text{max}()$ / $\text{min}()$, which returns the maximum or minimum element of S.
 - $\text{successor}(x)$, which returns the smallest element of S greater than x, and
 - $\text{predecessor}(x)$, which returns the largest element of S smaller than x.
Integer Ordered Dictionaries

• Suppose that \(\mathcal{U} = [U] = \{0, 1, \ldots, U - 1\} \).

• A van Emde Boas tree is an ordered dictionary for \([U]\) where
 • \textit{min}, \textit{max}, and \textit{is-empty} run in time \(O(1)\).
 • All other operations run in time \(O(\log \log U)\).
 • Space usage is \(\Theta(U)\) if implemented deterministically, and \(O(n)\) if implemented using hash tables.

• \textbf{Question:} Is there a simpler data structure meeting these bounds?
The Machine Model

● We assume a *transdichotomous machine model*:

 ● Memory is composed of words of w bits each.

 ● Basic arithmetic and bitwise operations on words take time $O(1)$ each.

 ● $w = \Omega(\log n)$.
A Start: *Bitwise Tries*
Tries Revisited

- **Recall:** A trie is a simple data structure for storing strings.
- Integers can be thought of as strings of bits.
- **Idea:** Store integers in a *bitwise trie.*
Finding Successors

- To compute \textit{successor}(x), do the following:
 - Search for x.
 - If x is a leaf node, its successor is the next leaf.
 - If you don't find x, back up until you find a node with a 1 child not already followed, follow the 1, then take the cheapest path down.
Bitwise Tries

• When storing integers in $[U]$, each integer will have $\Theta(\log U)$ bits.

• Time for any of the ordered dictionary operations: $O(\log U)$.

• In order to match the time bounds of a van Emde Boas tree, we will need to speed this up exponentially.
Speeding up Successors

- There are two independent pieces that contribute to the $O(\log U)$ runtime:
 - Need to search for the deepest node matching x that we can.
 - From there, need to back up to node with an unfollowed 1 child and then descend to the next leaf.
- To speed this up to $O(\log \log U)$, we'll need to work around each of these issues.
Claim 1: The node found during the first phase of a successor query for x corresponds to the longest prefix of x that appears in the trie.
Claim 2: If a node v corresponds to a prefix of x, all of v's ancestors correspond to prefixes of x.
Claim 3: If a node v does not correspond to a prefix of x, none of v's descendants correspond to prefixes of x.
Claim 4: The deepest node corresponding to a prefix of x can be found by doing a binary search over the layers of the trie.
One Speedup

- **Goal:** Encode the trie so that we can do a binary search over its layers.
- **One Solution:** Store an array of cuckoo hash tables, one per layer of the trie, that stores all the nodes in that layer.
- Can now query, in worst-case time $O(1)$, whether a node's prefix is present on a given layer.
- There are $O(\log U)$ layers in the trie.
- Binary search will take worst-case time $O(\log \log U)$.
- **Nice side-effect:** Queries are now worst-case $O(1)$, since we can just check the hash table at the bottom layer.
The Next Issue

• We can now find the node where the successor search would initially arrive.

• However, after arriving there, we have to back up to a node with a 1 child we didn't follow on the path down.

• This will take time $O(\log U)$.

• Can we do better?
A Useful Observation

• Our binary search for the longest prefix of x will either stop at
 • a leaf node (so x is present), or
 • an internal node.

• If we stop at a leaf node, the successor will be the next leaf in the trie.

• **Idea:** Thread a doubly-linked list through the leaf nodes.
Successors of Internal Nodes

- **Claim:** If the binary search terminates at an internal node, that node must only have one child.
 - If it doesn't, it has both a 0 child and a 1 child, so there's a longer prefix that can be matched.

- **Idea:** Steal the missing pointer and use it to speed up successor and predecessor searches.
Threaded Binary Tries

- A **threaded binary trie** is a binary tree where
 - each missing 0 pointer points to the inorder predecessor of the node and
 - each missing 1 points to the inorder successor of the node.
- Related to threaded binary search trees; read up on them if you're curious!
x-Fast Tries

- An **x-Fast Trie** is a threaded binary trie where leaves are stored in a doubly-linked list and where all nodes in each level are stored in a hash table.
- Can do lookups in time $O(1)$.
Claim: Can determine $\text{successor}(x)$ in time $O(\log \log U)$.

- Start by binary searching for the longest prefix of x.
- If at a leaf node, follow the forward pointer to the successor.
- If at an internal node, follow the thread pointer to a leaf node. Either return that value or the one after it, depending on how it compares to x.

![Diagram of x-Fast Tries](https://via.placeholder.com/150)
x-Fast Trie Maintenance

- Based on what we've seen:
 - Lookups take worst-case time $O(1)$.
 - Successor and predecessor queries take worst-case time $O(\log \log U)$.
 - Min and max can be done in time $O(\log \log U)$ by finding the predecessor of ∞ or the successor of $-\infty$.
- How efficiently can we support insertions and deletions?
x-Fast Tries

- If we **insert**(x), we need to
 - Add some new nodes to the trie.
 - Wire x into the doubly-linked list of leaves.
 - Update the thread pointers to include x.
- Worst-case will be $\Omega(\log U)$ due to the first and third steps.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for \texttt{insert}(x):
 - Find \texttt{successor}(x).
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for $\text{insert}(x)$:
 - Find $\text{successor}(x)$.
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
Here is an (amortized, expected) $O(\log U)$ time algorithm for $\text{insert}(x)$:

- Find $\text{successor}(x)$.
- Add x to the trie.
- Using the successor from before, wire x into the linked list.
- Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for \textit{insert}(x):
 - Find \textit{successor}(x).
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
Here is an (amortized, expected) $O(\log U)$ time algorithm for \textit{insert}(x):

- Find \textit{successor}(x).
- Add x to the trie.
- Using the successor from before, wire x into the linked list.
- Walk up from x, its successor, and its predecessor and update threads.
Here is an (amortized, expected) $O(\log U)$ time algorithm for $\text{insert}(x)$:

- Find $\text{successor}(x)$.
- Add x to the trie.
- Using the successor from before, wire x into the linked list.
- Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for $\text{insert}(x)$:
 - Find $\text{successor}(x)$.
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
x-Fast Tries

- Here is an (amortized, expected) $O(\log U)$ time algorithm for $\text{insert}(x)$:
 - Find $\text{successor}(x)$.
 - Add x to the trie.
 - Using the successor from before, wire x into the linked list.
 - Walk up from x, its successor, and its predecessor and update threads.
Deletion

- To delete \(x \), we need to
 - Remove \(x \) from the trie.
 - Splice \(x \) out of its linked list.
 - Update thread pointers from \(x \)'s former predecessor and successor.
- Runs in expected, amortized time \(O(\log U) \).
- Full details are left as a proverbial Exercise to the Reader. ☺
Space Usage

- How much space is required in an x-fast trie?
- Each leaf node contributes at most $O(\log U)$ nodes in the trie.
- Total space usage for hash tables is proportional to total number of trie nodes.
- Total space: $O(n \log U)$.
For Reference

- **van Emde Boas tree**
 - `insert`: $O(\log \log U)$
 - `delete`: $O(\log \log U)$
 - `lookup`: $O(\log \log U)$
 - `max`: $O(1)$
 - `succ`: $O(\log \log U)$
 - `is-empty`: $O(1)$
 - Space: $O(U)$

- **x-Fast Trie**
 - `insert`: $O(\log U)^*$
 - `delete`: $O(\log U)^*$
 - `lookup`: $O(1)$
 - `max`: $O(\log \log U)$
 - `succ`: $O(\log \log U)$
 - `is-empty`: $O(1)$
 - Space: $O(n \log U)$

* Expected, amortized
What Remains

- We need to speed up \textbf{insert} and \textbf{delete} to run in time $O(\log \log U)$.
- We'd like to drop the space usage down to $O(n)$.
- How can we do this?

\textbf{x-Fast Trie}

- \textbf{insert}: $O(\log U)^*$
- \textbf{delete}: $O(\log U)^*$
- \textbf{lookup}: $O(1)$
- \textbf{max}: $O(\log \log U)$
- \textbf{succ}: $O(\log \log U)$
- \textbf{is-empty}: $O(1)$
- Space: $O(n \log U)$

* Expected, amortized
Time-Out for Announcements!
Problem Set Five

• Problem Set Five was due today at 3:00PM.
 • If you use all your remaining late days, it's due at Saturday at 3:00PM.
• We're going to aim to get this graded before the midterm.
• Solutions will go out on Monday. We'll put them in the filing cabinet in the Gates building.
Midterm Logistics

• As a reminder, the midterm is next Tuesday from 7:00PM – 10:00PM in 320-105.

• Closed-book, closed-computer, and limited-note. You can bring a double-sided 8.5” × 11” sheet of notes with you to the exam.

• Solutions to the practice problems are available up front. They'll be in Gates if you missed class today.

 • *Gates is locked over the weekend*, so please stop by to pick them up before then. Otherwise, you'll have to wait until Monday unless you have a Gates key.
Final Project Presentations

- Final project presentations will run from Tuesday, May 31 to Thursday, June 2.
- The following link will let you sign up for time slots: http://www.slottr.com/sheets/1197528
- This will be open from noon on Monday, May 23 until noon on Friday, May 27. It's first-come, first-served.
- Presentations will be 10-15 minutes, plus five minutes for questions. Please arrive five minutes early to get set up.
- Presentations are open to the public, so feel free to stop by any of the presentations you're interested in.
Back to CS166!
y-Fast Tries
y-Fast Tries

- The **y-Fast Trie** is a data structure that will match the vEB time bounds in an expected, amortized sense while requiring only $O(n)$ space.
- It's built out of an x-fast trie and a collection of red/black trees.
The Motivating Idea

- Suppose we have a red/black tree with \(\Theta(\log U) \) nodes.
- Any ordered dictionary operation on the tree will then take time \(O(\log \log U) \).
- **Idea**: Store the elements in the ordered dictionary in a collection of red/black trees with \(\Theta(\log U) \) elements each.
The Idea

- 0 - 54
- 65 - 91
- 103 - 133
- 154 - 258
Each of these trees has between $\frac{1}{2} \log U$ and $2 \log U$ nodes.
The Idea

To perform $\text{lookup}(x)$, we determine which tree would contain x, then check there.
The Idea

If a tree gets too big, we can split it into two trees by cutting at the median element.

0 - 54
65 - 91
103 - 133
154 - 258
The Idea

If a tree gets too big, we can split it into two trees by cutting at the median element.
Similarly, if trees get too small, we can concatenate the tree with a neighbor.
The Idea

Similarly, if trees get too small, we can concatenate the tree with a neighbor.

0 - 91
103 - 133
154 - 181
221 - 258
The Idea

That might create a tree that's too big, in which case we split it in half.
To determine $\textit{successor}(x)$, we find the tree that would contain x, and take its successor there or the minimum value from the next tree.
The Idea

- 0 - 91
- 103 - 133
- 154 - 181
- 221 - 258
The Idea

0 - 91
103 - 133
154 - 181
221 - 258
The Idea

How do we efficiently determine which tree a given element belongs to?
The Idea

- 0 - 91
- 103 - 133
- 154 - 181
- 221 - 258
These partition points are given by taking the maximum element in each tree at the time it's created.
To do $\text{lookup}(x)$, find the smallest max value that's at least x, then go into the preceding tree.
To do \textit{lookup}(x), find \textit{successor}(x) in the set of maxes, then go into the preceding tree.
The Idea

To determine \textit{successor}(x), find \textit{successor}(x) in the maxes, then return the successor of \(x \) in that subtree or the min of the next subtree.
The Idea

To \textit{insert}(x), compute \textit{successor}(x) and insert x into the tree before it. If the tree splits, insert a new max into the top list.
To *delete* \(x \), do a lookup for \(x \) and delete it from that tree. If \(x \) was the max of a tree, *don't delete it from the top list*. Contract trees if necessary.
The Idea

- 0 - 91
- 103 - 133
- 154 - 181
- 221 - 258
How do we store the set of maxes so that we get efficient *successor* queries?
y-Fast Tries

A **y-Fast Trie** is constructed as follows:
- Keys are stored in a collection of red/black trees, each of which has between $\frac{1}{2} \log U$ and $2 \log U$ keys.
- From each tree (except the first), choose a *representative* element.
 - Representatives demarcate the boundaries between trees.
- Store each representative in the x-fast trie.

Intuitively:
- The x-fast trie helps locate which red/black trees need to be consulted for an operation.
- Most operations are then done on red/black trees, which then take time $O(\log \log U)$ each.
Analyzing y-Fast Tries

- The operations *lookup, successor, min*, and *max* can all be implemented by doing $O(1)$ BST operations and one call to *successor* in the x-fast trie.
 - Total runtime: $O(\log \log U)$.

- *insert* and *delete* do $O(1)$ BST operations, but also have to do $O(1)$ insertions or deletions into the x-fast trie.
 - Total runtime: $O(\log U)$.
 - ... or is it?
Analyzing y-Fast Tries

- Each insertion does $O(\log \log U)$ work inserting and (potentially) splitting a red/black tree.
- The insertion in the x-fast trie takes time $O(\log U)$.
- However, we only split a red/black tree if its size doubles from $\log U$ to $2 \log U$, so we must have done at least $O(\log U)$ insertions before we needed to split.
- The extra cost amortizes across those operations to $O(1)$, so the amortized cost of an insertion is $O(\log \log U)$.
Analyzing y-Fast Tries

- Each deletion does $O(\log \log U)$ work deleting from, (potentially) joining a red/black tree, and (potentially) splitting the resulting red/black tree.

- The insertions and deletions in the x-fast trie take time at most $O(\log U)$.

- However, we only join a tree with its neighbor if its size dropped from $\log U$ to $\frac{1}{2} \log U$, which means there were $O(\log U)$ intervening deletions.

- The extra cost amortizes across those operations to $O(1)$, so the *amortized* cost of an insertion is $O(\log \log U)$.
Space Usage

• So what about space usage?
• Total space used across all the red/black trees is $O(n)$.
• The x-fast trie stores $\Theta(n / \log U)$ total elements.
• Space usage:
 \[\Theta((n / \log U) \cdot \log U) = \Theta(n). \]
• We're back down to linear space!
For Reference

- **van Emde Boas tree**
 - *insert*: $O(\log \log U)$
 - *delete*: $O(\log \log U)$
 - *lookup*: $O(\log \log U)$
 - *max*: $O(1)$
 - *succ*: $O(\log \log U)$
 - *is-empty*: $O(1)$
 - Space: $O(U)$

- **y-Fast Trie**
 - *insert*: $O(\log \log U)^*$
 - *delete*: $O(\log \log U)^*$
 - *lookup*: $O(\log \log U)$
 - *max*: $O(\log \log U)$
 - *succ*: $O(\log \log U)$
 - *is-empty*: $O(1)$
 - Space: $O(n)$

* Expected, amortized.
What We Needed

• An x-fast trie requires tries and cuckoo hashing.

• The y-fast trie requires amortized analysis and split/join on balanced, augmented BSTs.

• y-fast tries also use the “blocking” technique from RMQ we used to shave off log factors.
Next Time

• **Disjoint-Set Forests**
 • A data structure for incremental connectivity in general graphs.

• **The Ackermann Inverse Function**
 • One of the slowest-growing functions you'll ever encounter in practice.