Euler Tour Trees
Outline for Today

- **Dynamic Connectivity**
 - Figuring out what’s connected in a graph as the edges change.

- **Euler Tour Representations**
 - An inspired and clever way to represent trees.

- **Euler Tour Trees**
 - Encoding Euler tours in a creative way.

- **Extending ETTs**
 - Extending our basic structure.
The Dynamic Connectivity Problem
The Connectivity Problem

- The *graph connectivity problem* is the following:

 Given an undirected graph G, preprocess the graph so we can answer queries of the form “are nodes u and v connected?”

- Using $\Theta(m + n)$ preprocessing, can preprocess the graph to answer queries in time $O(1)$.
Dynamic Connectivity

- The **dynamic connectivity problem** is the following:

 Maintain an undirected graph G so that edges may be inserted and deleted and connectivity queries may be answered efficiently.

- This is a *much* harder problem!
Special Cases

- Last time, we covered the *incremental connectivity problem* in which edges can only be added and not removed.
- Today, we’ll cover *dynamic connectivity in forests*, a special case in which the graph is known to be a forest.
- Next time, we’ll cover *fully-dynamic connectivity*, in which there are no restrictions on which edges can be added and removed.
Dynamic Connectivity in Forests
Dynamic Connectivity in Forests

- Consider the following special-case of the dynamic connectivity problem:

 Maintain an undirected *forest* F so that edges may be inserted and deleted and connectivity queries may be answered efficiently.

- Each deleted edge splits a tree in two; each added edge joins two trees and never closes a cycle.
Dynamic Connectivity in Forests

- Consider the following special-case of the dynamic connectivity problem:

 Maintain an undirected *forest* F so that edges may be inserted and deleted and connectivity queries may be answered efficiently.

- Each deleted edge splits a tree in two; each added edge joins two trees and never closes a cycle.
Dynamic Connectivity in Forests

- **Goal**: Support these three operations:
 - \textit{link}(u, v): Add in edge uv. The assumption is that \(u \) and \(v \) are in separate trees.
 - \textit{cut}(u, v): Cut the edge uv. The assumption is that the edge exists in the forest.
 - \textit{are-connected}(u, v): Return whether \(u \) and \(v \) are connected.

 - The data structure we'll develop can perform these operations time \(O(\log n) \) each.
Euler Tours
Euler Tours

- An *Euler tour* is a path through a graph G that visits every edge exactly once.
- It mathematically formalizes the “trace this figure without picking up your pencil or redrawing any lines” puzzles.
Euler Tours

- An *Euler tour* is a path through a graph G that visits every edge exactly once.

- It mathematically formalizes the “trace this figure without picking up your pencil or redrawing any lines” puzzles.

- **Classic Theorem 1**: A graph G has a closed Euler tour if and only if G is connected and every node in G has even degree.

- **Classic Theorem 2**: A directed graph G has a closed Euler tour if and only if G is strongly connected and every node’s indegree equals its outdegree.
Euler Tours on Trees

- Trees do not have Euler tours.

- **Technique:** replace each undirected edge uv with two directed edges uv and vu.

- The resulting graph then has an Euler tour.
Properties of Euler Tours

- **Fact:** Any cyclic shift of an Euler tour of a tree is also an Euler tour.

```plaintext
ab ba ag gh hi id dc cd de ed di ij ji ih hg gf fg ga
```
Properties of Euler Tours

- **Fact:** Any cyclic shift of an Euler tour of a tree is also an Euler tour.
Rerooting a Tour

- In some cases, we will need to cyclicly shift a tour to put an edge leaving a particular node x at front.
- We will call this operation $\textit{reroot}(x)$.
Rerooting a Tour

To perform **reroot**(x):

- Pick any edge rx leaving our new start node r.
- Split the tour into A and B, where A consists of everything up to but not including rx and B consists of everything from rx forward.
- Concatenate $B A$.
Euler Tours and Dynamic Trees

- Given two trees T_1 and T_2, where $u \in T_1$ and $v \in T_2$, executing $\text{link}(u, v)$ links the trees together by adding edge uv.

- Watch what happens to the Euler tours:

```
ab bd db bc ce ec cb ba
fg gj jk kj ji ij jg gh hg gf
```
Euler Tours and Dynamic Trees

- Given two trees T_1 and T_2, where $u \in T_1$ and $v \in T_2$, executing $\text{link}(u, v)$ links the trees together by adding edge uv.

- Watch what happens to the Euler tours:

```
ab bd db bc ce ec cb ba af fg gj jk kj ji ij jg gh hg gf fa
```
Euler Tours and Dynamic Trees

• Given two trees T_1 and T_2, where $u \in T_1$ and $v \in T_2$, executing $\text{link}(u, v)$ links the trees together by adding edge uv.

• Watch what happens to the Euler tours:
Euler Tours and Dynamic Trees

- Given two trees T_1 and T_2, where $u \in T_1$ and $v \in T_2$, executing $\text{link}(u, v)$ links the trees together by adding edge uv.

- Watch what happens to the Euler tours:

```
ab bd db bc ce ec cb ba
fg gj jk kj ji ij jg gh hg gf
```
Euler Tours and Dynamic Trees

- Given two trees T_1 and T_2, where $u \in T_1$ and $v \in T_2$, executing $\text{link}(u, v)$ links the trees together by adding edge uv.

- Watch what happens to the Euler tours:

```plaintext
ce ec cb ba ab bd db bc
gh hg gf fg gj jk kj ji ij jg
```
Euler Tours and Dynamic Trees

• Given two trees T_1 and T_2, where $u \in T_1$ and $v \in T_2$, executing $\text{link}(u, v)$ links the trees together by adding edge uv.

• Watch what happens to the Euler tours:
Euler Tours and Dynamic Trees

- Given two trees T_1 and T_2, where $u \in T_1$ and $v \in T_2$, executing $\text{link}(u, v)$ links the trees together by adding edge uv.

- To $\text{link}(u, v)$:
 - Let E_1 and E_2 be Euler tours of T_1 and T_2, respectively.
 - $\text{rerooot}(u)$.
 - $\text{rerooot}(v)$.
 - Concatenate $E_1 \ uv \ E_2 \ vu$.

Euler Tours and Dynamic Trees

• Given a tree T, executing $\text{cut}(u, v)$ cuts the edge uv from the tree (assuming it exists).
• Watch what happens to the Euler tour of T:

```
ce ec cb ba ab bd db bc cg gh hg gf fg gj jk kj ji ij jg gc
```
Euler Tours and Dynamic Trees

- Given a tree T, executing $\text{cut}(u, v)$ cuts the edge uv from the tree (assuming it exists).
- Watch what happens to the Euler tour of T:

```
c e e c c e c b b a a b a b b d d b d b c c g g h h g h g f f g f g j j k j k j i i j i j g g c
```
Euler Tours and Dynamic Trees

- Given a tree \(T \), executing \(\text{cut}(u, v) \) cuts the edge \(uv \) from the tree (assuming it exists).
- Watch what happens to the Euler tour of \(T \):

\[
\begin{align*}
&ce
ee & ba
eb & bd
db & cg
dh & gf
& fg & gj & jk & kj & ji & ij & jg & gc
\end{align*}
\]
Euler Tours and Dynamic Trees

- Given a tree T, executing $\text{cut}(u, v)$ cuts the edge uv from the tree (assuming it exists).

- Watch what happens to the Euler tour of T:
Euler Tours and Dynamic Trees

• Given a tree T, executing $\text{cut}(u, v)$ cuts the edge uv from the tree (assuming it exists).

• To perform $\text{cut}(u, v)$:
 • Let E be the Euler tour containing uv and vu.
 • Remove uv and vu from E to form E_1, E_2, and E_3.
 • Then E_1E_3 and E_2 are Euler tours of the two new trees.
Checking Connectivity

- We also need a way to answer queries of the form \textit{are-connected}(u, v).
- This query focuses on nodes, but our Euler tours store edges.
- \textbf{Cute Trick:} Introduce a self-loop on each node that represents the node itself. Add that to each tour as a proxy for the node itself.
- Now, we can answer \textit{are-connected}(x, y) by seeing if xx and yy are part of the same tour.
Checking Connectivity

- This also makes it a lot easier to reroot a tour at a node x.
- We simply find xx, then rotate that edge to the front of the tour.
Checking Connectivity

- This also makes it a lot easier to reroot a tour at a node \(x \).
- We simply find \(xx \), then rotate that edge to the front of the tour.

\[
\begin{align*}
\text{ba aa ab bb bd dd db} & \quad \text{gg gh hh hg gf ff fg gc cc ce ee ec cg}
\end{align*}
\]
Putting It All Together

- To \textit{link}(x, y):
 - Rotate \(xx\) and \(yy\) to the fronts of their tours \(T_x\) and \(T_y\).
 - Join the tours together as \(T_x\ xy\ T_y\ yx\).

- To \textit{cut}(x, y):
 - Delete the edges \(xy\) and \(yx\) from the tour \(T\) to form tours \(T_1, T_2, T_3\).
 - Regroup the tours as \(T_1\ T_3\) and \(T_2\).

- To answer \textit{are-connected}(x, y):
 - Determine whether \(xx\) and \(yy\) are in the same tour.
Putting It All Together

• To **link**(x, y):
 - Rotate xx and yy to the fronts of their tours T_x and T_y.
 - Join the tours together as $T_x \ xy \ T_y \ yx$.

• To **cut**(x, y):
 - Delete the edges xy and yx from the tour T to form tours T_1, T_2, T_3.
 - Regroup the tours as $T_1 \ T_3$ and T_2.

• To answer **are-connected**(x, y):
 - Determine whether xx and yy are in the same tour.
Putting It All Together

- To **link**\((x, y)\):
 - Rotate \(xx\) and \(yy\) to the fronts of their tours \(T_x\) and \(T_y\).
 - Join the tours together as \(T_x \ xy \ T_y \ yx\).

- To **cut**\((x, y)\):
 - Delete the edges \(xy\) and \(yx\) from the tour \(T\) to form tours \(T_1, T_2, T_3\).
 - Regroup the tours as \(T_1 \ T_3\) and \(T_2\).

- To answer **are-connected**\((x, y)\):
 - Determine whether \(xx\) and \(yy\) are in the same tour.
Putting It All Together

• To **link**(x, y):
 • Rotate xx and yy to the fronts of their tours T_x and T_y.
 • Join the tours together as $T_x \ xy \ T_y \ yx$.

• To **cut**(x, y):
 • Delete the edges xy and yx from the tour T to form tours T_1, T_2, T_3.
 • Regroup the tours as $T_1 \ T_3$ and T_2.

• To answer **are-connected**(x, y):
 • Determine whether xx and yy are in the same tour.
Putting It All Together

- To **link**\((x, y)\):
 - Rotate \(xx\) and \(yy\) to the fronts of their tours \(T_x\) and \(T_y\).
 - Join the tours together as \(T_x \ x y \ T_y \ y x\).

- To **cut**\((x, y)\):
 - Delete the edges \(xy\) and \(yx\) from the tour \(T\) to form tours \(T_1, T_2, T_3\).
 - Regroup the tours as \(T_1 \ T_3\) and \(T_2\).

- To answer **are-connected**\((x, y)\):
 - Determine whether \(xx\) and \(yy\) are in the same tour.
Putting It All Together

- To link \((x, y)\):
 - Rotate \(xx\) and \(yy\) to the fronts of their tours \(T_x\) and \(T_y\).
 - Join the tours together as \(T_x\ xy\ T_y\ yx\).

- To cut \((x, y)\):
 - Delete the edges \(xy\) and \(yx\) from the tour \(T\) to form tours \(T_1, T_2, T_3\).
 - Regroup the tours as \(T_1\ T_3\) and \(T_2\).

- To answer are-connected \((x, y)\):
 - Determine whether \(xx\) and \(yy\) are in the same tour.
Putting It All Together

- **To link** \((x, y)\):
 - Rotate \(xx\) and \(yy\) to the fronts of their tours \(T_x\) and \(T_y\).
 - Join the tours together as \(T_x \ xy \ T_y \ yx\).

- **To cut** \((x, y)\):
 - Delete the edges \(xy\) and \(yx\) from the tour \(T\) to form tours \(T_1, T_2, T_3\).
 - Regroup the tours as \(T_1 \ T_3\) and \(T_2\).

- **To answer** *are-connected* \((x, y)\):
 - Determine whether \(xx\) and \(yy\) are in the same tour.
Implementing This Approach
The Story So Far

• We’ve seen how to implement reroot, link, cut, and are-connected in terms of operations on Euler tours.

• The efficiency of those operations depend on how we choose to encode our sequences.

• Question: What data structure should we use to store those sequences?
Representation Issues

• We need a representation that lets us perform the following operations:
 • Locate specific edges (reroot, link, cut, are-connected).
 • Split a sequence at a point (reroot, cut).
 • Join two sequences together (reroot, link).
 • Remove an edge from a sequence (cut).
 • Append an edge to a sequence (link).
 • Check if two edges are in the same sequence (are-connected).

• What data structures might be appropriate here?

Answer at https://pollev.com/cs166spr23
Representation Issues

- **Idea 1:** Use doubly-linked lists, plus an auxiliary hash table / BST to locate edges.
 - Assuming we have a hash table telling us where edges are, we can split, join, and rotate tours in time $O(1)$.
- **Problem:** There isn’t an easy way to test whether two nodes are in the same tour. Scanning within the linked list make take time $\Theta(n)$.
- Can we do better?
Representation Issues

- In incremental connectivity, we selected a representative for each CC.
- We then had elements store parent pointers that formed a path to the representative.
- Could we do something like that here?
The idea of using trees to store representatives is a good one.

- If the trees are wide and flat, it won’t take too long to find the representative.
- If we don’t have to update “too many” pointers when CC’s change, our operations can run quickly.
- The trees we used last time won’t (immediately) work here.
 - We have to store the elements of the tour in sequential order. There was no such notion of order in disjoint set forests.
 - In disjoint-set forests, linked items can never be cut, allowing for some clever optimizations.
- What’s another tree we can use?
Binary Search(less) Trees

- **Idea 2:** Store our sequences in a balanced BST, sorted by their position within the sequence.
- We’ll use the *shape* and *algorithm* of a BST, but won’t have the ability to conventionally search the tree top-down.
- We’ll rely on the fact that we have external pointers that let us jump to items within the BST.

```
aa ab bb bc cc cb bd dd db ba  
```

```
e  f
```

```
ea ab bb bc cc cb bd dd db ba  
```

```
e  f
```

```
ab  dd  ee  ef
```

```
aa  bc  bd  db  ba
```

```
bb  cc  ba
```
Binary Search(less) Trees

- We can now answer *are-connected*(x, y) in time O(log n).
 - Find xx and yy using our auxiliary lookup table.
 - Walk up from xx and yy to the roots of their trees.
 - See if they’re the same root.
Challenge: We need to be able to cut a sequence just before an edge, and we need to be able to join two sequences together efficiently.

Answer: Use splay trees! They support these operations in amortized time $O(\log n)$.

```
a  b  d  
c   

aa ab bb bc cc cb bd dd db ba
```

```
  cb
 /   
 ab   dd
 /     /
 aa   ee
  /
 bb
```

```
  ef
 /   
 ee   ff
 /     
 ba
```

Answer: Use splay trees! They support these operations in amortized time $O(\log n)$.
Binary Search(less) Trees

- **Answer:** Use splay trees! They support these operations in amortized time $O(\log n)$.

```
Answer: Use splay trees! They support these operations in amortized time O(log n).
```

```
Use splay trees! They support these operations in amortized time O(log n).
```
Binary Search(less) Trees

- **Answer:** Use splay trees! They support these operations in amortized time $O(\log n)$.
Binary Search(less) Trees

- **Answer:** Use splay trees! They support these operations in amortized time $O(\log n)$.

```
aa ab bb bc cc cb bd dd db ba ...
... ae ee ef ff fe ea
```
Binary Search(less) Trees

• **Answer:** Use splay trees! They support these operations in amortized time $O(\log n)$.

```
aa ab bb bc cc cb bd dd db ba ...
... ae ee ef ff fe ea
```
Euler Tour Trees

• To answer \textit{are-connected}(x, y):

\[
\begin{align*}
\text{Splay } & xx, \\
\text{Splay } & yy, \\
\text{Return whether } & xx \\
\text{was encountered on the second splay.}
\end{align*}
\]

Amortized cost: \(O(\log n)\).
Euler Tour Trees

- To answer *are-connected*(x, y):
 - Splay xx.
To answer *are-connected*(x, y):

- Splay xx.
- Splay yy.

Amortized cost: $O(\log n)$.

Euler Tour Trees
Euler Tour Trees

- To answer *are-connected* \((x, y)\):
 - Splay \(xx\).
 - Splay \(yy\).
 - Return whether \(xx\) was encountered on the second splay.
- Amortized cost: \(O(\log n)\).

![Euler Tour Tree Diagram]

Why do we splay both \(xx\) and \(yy\)?

Answer at https://pollev.com/cs166spr23
Euler Tour Trees

- To *reroot*(x):
 - Splay xx.

```
  • To *reroot*(x):
  • Splay xx.
```
Euler Tour Trees

- To \textit{rroot}(x):
 - Splay \textit{xx}.
 - Disconnect \textit{xx}’s left child tree \textit{T}.
Euler Tour Trees

To \textit{rerooot}(x):

- Splay xx.
- Disconnect xx's left child tree T.
- Splay the rightmost node in xx's subtree.

Amortized cost: $O(\log n)$.
Euler Tour Trees

To \textit{reroot}(x):

1. Splay xx.
2. Disconnect xx’s left child tree T.
3. Splay the rightmost node in xx’s subtree.
4. Make T the right child of the root.

Amortized cost: $O(\log n)$.
Euler Tour Trees

• To \textit{link}(x, y):

1. \texttt{reroot}(x)
2. \texttt{reroot}(y)
3. Add \(xy\) as the rightmost node of \(x\)’s tree.
4. \texttt{Splay}(xy)
5. Make \(y\)’s right child \(xy\)
6. Add \(yx\) as the rightmost node of the tree.
7. \texttt{Splay}(yx)

Amortized cost: \(O(\log n)\).
Euler Tour Trees

- To \textit{link}(x, y):
 - \textit{rerooot}(x) and \textit{rerooot}(y).

```
x  y
  a  f
  x  y
```

Amortized cost: $O(\log n)$.

```
xx  yy
   xa ...
   ax ...
   yf ...
   fy ...
```
Euler Tour Trees

- To \textbf{link}(x, y):
 - \textbf{reroot}(x) and \textbf{reroot}(y).
 - Add xy as the rightmost node of x’s tree.
 - Splay xy.
 - Make y’s right child xy.
 - Add yx as the rightmost node of the tree.
 - Splay yx.

\textbf{Amortized cost}: $O(\log n)$.
Euler Tour Trees

- To **link**(x, y):
 - **reroot**(x) and **reroot**(y).
 - Add xy as the rightmost node of x’s tree.
 - Splay xy.

\[xx \ x a \ ... \ a x \ xy \quad yy \ y f \ ... \ f y \]
Euler Tour Trees

- To $\text{link}(x, y)$:
 - $\text{reroot}(x)$ and $\text{reroot}(y)$.
 - Add xy as the rightmost node of x’s tree.
 - Splay xy.
 - Set yy’s tree as xy’s right child.

Amortized cost: $O(\log n)$.

$xx \ xa \ \ldots \ ax \ xy \ yy \ yf \ \ldots \ fy$
Euler Tour Trees

- To \textit{link}(x, y):
 - \textit{rerooot}(x) and \textit{rerooot}(y).
 - Add xy as the rightmost node of x’s tree.
 - Splay xy.
 - Set yy’s tree as xy’s right child.
 - Add yx as the rightmost node of the tree.

Amortized cost: $O(\log n)$.

$xx \ x a \ \ldots \ ax \ xy \ yy \ yf \ \ldots \ fy \ yx$
Euler Tour Trees

To \textit{link}(x, y):

- \textit{reroot}(x) and \textit{reroot}(y).
- Add \(xy\) as the rightmost node of \(x\)’s tree.
- Splay \(xy\).
- Set \(yy\)’s tree as \(xy\)’s right child.
- Add \(yx\) as the rightmost node of the tree.
- Splay \(yx\).

\textbf{Amortized cost:} \(O(\log n)\).
Euler Tour Trees

- To \textit{link}(x, y):
 - \textit{reroot}(x) and \textit{reroot}(y).
 - Add \textit{xy} as the rightmost node of \textit{x}'s tree.
 - Splay \textit{xy}.
 - Set \textit{yy}'s tree as \textit{xy}'s right child.
 - Add \textit{yx} as the rightmost node of the tree.
 - Splay \textit{yx}.
- Amortized cost: \(O(\log n)\).
Euler Tour Trees

- To \textit{cut}(x, y):

\[
aa \ ab \ ... \ cx \ xy \ yy \ yf \ ... \ fy \ yx \ xt \ ... \ ba
\]
Euler Tour Trees

- To \textit{cut}(x, y):
 - Splay xy.

\begin{align*}
\text{Amortized cost: } & O(\log n) \\
\text{Euler Tour Trees: } & \text{aa } ab \ldots \text{cx } xy \text{ yy } yf \ldots \text{fy } yx \text{ xt } \ldots \text{ba}
\end{align*}
Euler Tour Trees

- To \textit{cut}(x, y):
 - Splay \(xy\).
 - Delete \(xy\).

Let \(T_1\) and \(T_2\) be the trees on the left and right.
- Splay the rightmost node of \(T_1\).
- Attach \(T_2\) as the right child of that node.

Amortized cost: \(O(\log n)\).

\[aa \ ab \ \ldots \ cx \quad yy \ yf \ \ldots \ fy \ yx \ xt \ \ldots \ ba \]
Euler Tour Trees

- To \text{cut}(x, y):
 - Splay \text{xy}.
 - Delete \text{xy}.
 - Splay \text{yx}.

\[\text{Amortized cost: } O(\log n) \]

\[\text{Euler Tour Trees} \]

\[a a \ ab \ \ldots \ cx \quad y y \ y f \ \ldots \ fy \ y x \ xt \ \ldots \ ba \]
Euler Tour Trees

- To **cut**(*x*, *y*):
 - Splay *xy*.
 - Delete *xy*.
 - Splay *yx*.
 - Delete *yx*.

- Let *T*₁ and *T*₂ be the trees on the left and right.
 - Splay the rightmost node of *T*₁.
 - Attach *T*₂ as the right child of that node.

- Amortized cost: $O(\log n)$.

Diagram:

```
aa ab ... cx   yy yf ... fy   xt ... ba
```

- Euler Tour Trees
Euler Tour Trees

- To $\text{cut}(x, y)$:
 - Splay xy.
 - Delete xy.
 - Splay yx.
 - Delete yx.
 - Let T_1 and T_2 be the trees on the left and right.

\[T_1 \quad \text{and} \quad T_2 \]

\[aa \ ab \ ... \ cx \quad yy \ yf \ ... \ fy \quad xt \ ... \ ba \]
Euler Tour Trees

- To $\text{cut}(x, y)$:
 - Splay xy.
 - Delete xy.
 - Splay yx.
 - Delete yx.
 - Let T_1 and T_2 be the trees on the left and right.
 - Splay the rightmost node of T_1.

Amortized cost: $O(\log n)$.

Euler Tour Trees

```
T_1 \quad \bullet

T_2

aa \ ab \ \cdots \ cx \quad yy \ yf \ \cdots \ fy \quad xt \ \cdots \ ba
```
Euler Tour Trees

- To \textit{cut}(x, y):
 - Splay \textit{xy}.
 - Delete \textit{xy}.
 - Splay \textit{yx}.
 - Delete \textit{yx}.
 - Let T_1 and T_2 be the trees on the left and right.
 - Splay the rightmost node of T_1.

\begin{center}
\begin{tikzpicture}
 \node[anchor=east] at (0,1) {T_1};
 \node[anchor=east] at (4,1) {T_2};

 \node[draw, circle, fill=yellow!50] at (2,4) {};

 \draw[->] (2,4) -- (0,1);

 \node at (0,0) {$aa\ ab\ \ldots\ cx$};
 \node at (1,0) {$yy\ yf\ \ldots\ fy$};
 \node at (2,0) {$xt\ \ldots\ ba$};
\end{tikzpicture}
\end{center}
Euler Tour Trees

- To \textbf{cut}(x, y):
 - Splay xy.
 - Delete xy.
 - Splay yx.
 - Delete yx.
 - Let T_1 and T_2 be the trees on the left and right.
 - Splay the rightmost node of T_1.
 - Attach T_2 as the right child of that node.

Amortized cost: $O(\log n)$.
Euler Tour Trees

- To cut\((x, y)\):
 - Splay xy.
 - Delete xy.
 - Splay yx.
 - Delete yx.
 - Let \(T_1\) and \(T_2\) be the trees on the left and right.
 - Splay the rightmost node of \(T_1\).
 - Attach \(T_2\) as the right child of that node.
- Amortized cost: \(O(\log n)\).
Euler Tour Trees

• With all things said and done, we get the following amortized runtimes for each operation:
 • *are-connected*: \(O(\log n)\)
 • *link*: \(O(\log n)\)
 • *cut*: \(O(\log n)\)

• These bounds can be made worst-case efficient using different types of balanced BSTs instead of splay trees, but splaying is probably the fastest way to do this.
Extending Euler Tour Trees
Extending Euler Tour Trees

- We now have a (relatively) simple and fast data structure for solving dynamic connectivity in forests.
- What else can we do with them?
Extending Euler Tour Trees

• Suppose we want to add an operation \textit{size}(x) that returns the number of nodes in the tree containing x.

• How might we accomplish this?
Tree Sizes

• We can determine $\text{size}(x)$ as follows:
 • Figure out which Euler tour xx is in.
 • Count how many nodes of the form zz it contains.
• A naive implementation of this algorithm might take time $\Theta(n)$ if all nodes are in the same tree. Can we do better?

```
aa ab bb bc cc cb bd dd db ba
```
```
e e f f f e
```
We’re storing our Euler tours in balanced BSTs.

We want to be able to answer the following question about a given BST:

How many nodes of the form \textit{xx} are in this BST?

This can be done in time $O(\log n)$. How?
Tree Sizes

- **Idea:** Augment the BSTs holding our Euler tours.
- Specifically, each node stores the number of self-loops at or below it in the tree.
- This information can be maintained through rotations and after each splay tree operation.
Tree Sizes

• To determine \textit{size}(x):
Tree Sizes

- To determine $size(x)$:
 - Splay xx.
Tree Sizes

- To determine $\text{size}(x)$:
 - Splay xx.

\[\text{Amortized cost: } O(\log n) \]
Tree Sizes

- To determine \texttt{size}(x):
 - Splay \texttt{xx}.
 - Return the augmented value in the node for \texttt{xx}.
- Amortized cost: \(O(\log n)\).
Extending Euler Tour Trees

- Suppose that each node represents a network router.
- We want to add these two operations:
 - \textit{add-packet}(x, p), which attaches packet \(p \) to node \(x \); and
 - \textit{remove-packet}(x), which removes and returns some packet reachable from \(x \), chosen arbitrarily from all the options.
- How might we do this?
Packet Finding

• Given the Euler tour representation of our trees, this essentially boils down to the following:

 Augment a BST containing nodes and edges so that we can quickly identify a node with a packet.

• How might we do this?
Packet Finding

- Augment each node with a list of the packets it stores.
- Augment each tree node with a bit indicating whether there's a packet in its subtree.
- We can use this latter information to quickly find nodes holding packets.
Packet Finding

- To find and remove a packet:

 1. Walk from the root to any node containing a packet, using the augmentation to guide the search.
 2. Splay that node to the root.
 3. Remove a packet from it, updating the root's augmentation.

Amortized cost: $O(\log n)$.
Packet Finding

• To find and remove a packet:
 • Walk from the root to any node containing a packet, using the augmentation to guide the search.

Amortized cost: $O(\log n)$.
Packet Finding

- To find and remove a packet:
 - Walk from the root to any node containing a packet, using the augmentation to guide the search.
 - Splay that node to the root.

Amortized cost: $O(\log n)$.
Packet Finding

• To find and remove a packet:
 • Walk from the root to any node containing a packet, using the augmentation to guide the search.
 • Splay that node to the root.
 • Remove a packet from it, updating the root’s augmentation.
Packet Finding

• To find and remove a packet:
 • Walk from the root to any node containing a packet, using the augmentation to guide the search.
 • Splay that node to the root.
 • Remove a packet from it, updating the root’s augmentation.

• Amortized cost: $O(\log n)$.
Generalizing This Idea

- More generally, Euler tour trees play well with augmentations that care about global properties of individual trees.
- There’s another way to use splay trees to encode dynamic trees (*st-trees*, also called *link/cut trees*, though the later name is ambiguous) that works well for augmenting over *paths* in trees rather than trees as a whole.
- (Check out the Sleator/Tarjan paper for more details.)
Next Time

- **Fully-Dynamic Connectivity**
 - Solving connectivity in general graphs, not just forests.
- **“Blame It On The Little Guy”**
 - A surprisingly versatile algorithmic strategy.
- **Holm’s Structure**
 - An elegant way to solve dynamic connectivity by harnessing augmented ETTs.