x-Fast and y-Fast Tries
Outline for Today

- **Bitwise Tries**
 - A simple ordered dictionary for integers.

- **x-Fast Tries**
 - Tries + Hashing

- **y-Fast Tries**
 - Tries + Hashing + Subdivision + Balanced Trees + Amortization
Recap from Last Time
An *ordered dictionary* is a data structure that maintains a set S of elements drawn from an ordered universe \mathcal{U} and supports these operations:

- **insert**(x), which adds x to S.
- **is-empty**(), which returns whether $S = \emptyset$.
- **lookup**(x), which returns whether $x \in S$.
- **delete**(x), which removes x from S.
- **max**() / **min**(), which returns the maximum or minimum element of S.
- **successor**(x), which returns the smallest element of S greater than x, and
- **predecessor**(x), which returns the largest element of S smaller than x.
Integer Ordered Dictionaries

• Suppose that $\mathcal{U} = [U] = \{0, 1, \ldots, U - 1\}$.

• A *van Emde Boas tree* is an ordered dictionary for $[U]$ where

 • *min*, *max*, and *is-empty* run in time $O(1)$.
 • All other operations run in time $O(\log \log U)$.
 • Space usage is $\Theta(U)$ if implemented deterministically, and $O(n)$ if implemented using hash tables.

• **Question:** Is there a simpler data structure meeting these bounds?
The Machine Model

• We assume a *transdichotomous machine model*:

 • Memory is composed of words of w bits each.

 • Basic arithmetic and bitwise operations on words take time $O(1)$ each.

 • $w = \Omega(\log n)$.
A Start: *Bitwise Tries*
Tries Revisited

- **Recall:** A trie is a simple data structure for storing strings.
- Integers can be thought of as strings of bits.
- **Idea:** Store integers in a *bitwise trie*.
Finding Successors

- To compute $successor(x)$, do the following:
- Search for x.
- If x is a leaf node, its successor is the next leaf.
- If you don't find x, back up until you find a node with a 1 child not already followed, follow the 1, then take the cheapest path down.
Bitwise Tries

- When storing integers in $[U]$, each integer will have $\Theta(\log U)$ bits.
- Time for any of the ordered dictionary operations: $O(\log U)$.
- In order to match the time bounds of a van Emde Boas tree, we will need to speed this up exponentially.
Speeding up Successors

- There are two independent pieces that contribute to the $O(\log U)$ runtime:
 - Need to search for the deepest node matching x that we can.
 - From there, need to back up to node with an unfollowed 1 child and then descend to the next leaf.
- To speed this up to $O(\log \log U)$, we'll need to work around each of these issues.
Claim 1: The node found during the first phase of a successor query for x corresponds to the longest prefix of x that appears in the trie.
Claim 2: If a node v corresponds to a prefix of x, all of v's ancestors correspond to prefixes of x.
Claim 3: If a node \(v \) does not correspond to a prefix of \(x \), none of \(v \)'s descendants correspond to prefixes of \(x \).
Claim 4: The deepest node corresponding to a prefix of x can be found by doing a binary search over the layers of the trie.
One Speedup

- **Goal:** Encode the trie so that we can do a binary search over its layers.

- **One Solution:** Store an array of cuckoo hash tables, one per layer of the trie, that stores all the nodes in that layer.

- Can now query, in worst-case time $O(1)$, whether a node's prefix is present on a given layer.

- There are $O(\log U)$ layers in the trie.

- Binary search will take worst-case time $O(\log \log U)$.

- **Nice side-effect:** Queries are now worst-case $O(1)$, since we can just check the hash table at the bottom layer.
The Next Issue

- We can now find the node where the successor search would initially arrive.
- However, after arriving there, we have to back up to a node with a 1 child we didn't follow on the path down.
- This will take time $O(\log U)$.
- Can we do better?
A Useful Observation

- Our binary search for the longest prefix of x will either stop at
 - a leaf node (so x is present), or
 - an internal node.
- If we stop at a leaf node, the successor will be the next leaf in the trie.
- **Idea:** Thread a doubly-linked list through the leaf nodes.
Successors of Internal Nodes

- **Claim:** If the binary search terminates at an internal node, that node must only have one child.
 - If it doesn't, it has both a 0 child and a 1 child, so there's a longer prefix that can be matched.

- **Idea:** Steal the missing pointer and use it to speed up successor and predecessor searches.
Threaded Binary Tries

- A **threaded binary trie** is a binary tree where
 - each missing 0 pointer points to the inorder predecessor of the node and
 - each missing 1 points to the inorder successor of the node.
- Related to threaded binary search trees; read up on them if you're curious!
x-Fast Tries

- An **x-Fast Trie** is a threaded binary trie where leaves are stored in a doubly-linked list and where all nodes in each level are stored in a hash table.

- Can do lookups in time $O(1)$.

Claim: Can determine successor\((x) \) in time \(O(\log \log U) \).

Start by binary searching for the longest prefix of \(x \).

If at a leaf node, follow the forward pointer to the successor.

If at an internal node, follow the thread pointer to a leaf node. Either return that value or the one after it, depending on how it compares to \(x \).
x-Fast Trie Maintenance

• Based on what we've seen:
 • Lookups take worst-case time $O(1)$.
 • Successor and predecessor queries take worst-case time $O(\log \log U)$.
 • Min and max can be done in time $O(\log \log U)$ by finding the predecessor of ∞ or the successor of $-\infty$.

• How efficiently can we support insertions and deletions?
x-Fast Tries

- If we \textit{insert}(x), we need to
 - Add some new nodes to the trie.
 - Wire \(x \) into the doubly-linked list of leaves.
 - Update the thread pointers to include \(x \).
- Worst-case will be \(\Omega(\log U) \) due to the first and third steps.
Here is an (amortized, expected) $O(\log U)$ time algorithm for $\text{insert}(x)$:

- Find $\text{successor}(x)$.
- Add x to the trie.
- Using the successor from before, wire x into the linked list.
- Walk up from x, its successor, and its predecessor and update threads.
Deletion

- To \textit{delete}(x), we need to
 - Remove \textit{x} from the trie.
 - Splice \textit{x} out of its linked list.
 - Update thread pointers from \textit{x}'s former predecessor and successor.
- Runs in expected, amortized time $O(\log U)$.
- Full details are left as a proverbial Exercise to the Reader. ☺
Space Usage

• How much space is required in an x-fast trie?
• Each leaf node contributes at most $O(\log U)$ nodes in the trie.
• Total space usage for hash tables is proportional to total number of trie nodes.
• Total space: $O(n \log U)$.
For Reference

- van Emde Boas tree
 - **insert**: $O(\log \log U)$
 - **delete**: $O(\log \log U)$
 - **lookup**: $O(\log \log U)$
 - **max**: $O(1)$
 - **succ**: $O(\log \log U)$
 - **is-empty**: $O(1)$
 - Space: $O(U)$

- x-Fast Trie
 - **insert**: $O(\log U)^*$
 - **delete**: $O(\log U)^*$
 - **lookup**: $O(1)$
 - **max**: $O(\log \log U)$
 - **succ**: $O(\log \log U)$
 - **is-empty**: $O(1)$
 - Space: $O(n \log U)$

* Expected, amortized
What Remains

- We need to speed up `insert` and `delete` to run in time $O(\log \log U)$.

- We'd like to drop the space usage down to $O(n)$.

- How can we do this?

- x-Fast Trie
 - `insert`: $O(\log U)^*$
 - `delete`: $O(\log U)^*$
 - `lookup`: $O(1)$
 - `max`: $O(\log \log U)$
 - `succ`: $O(\log \log U)$
 - `is-empty`: $O(1)$

- Space: $O(n \log U)$

* Expected, amortized
Time-Out for Announcements!
Problem Set Five

- Problem Set Five was due today at 3:00PM.
 - If you use all your remaining late days, it's due at Saturday at 3:00PM.
- We're going to aim to get this graded before the midterm.
- Solutions will go out on Monday. We'll put them in the filing cabinet in the Gates building.
Midterm Logistics

- As a reminder, the midterm is next Tuesday from 7:00PM – 10:00PM in 320-105.
- Closed-book, closed-computer, and limited-note. You can bring a double-sided 8.5” × 11” sheet of notes with you to the exam.
- Solutions to the practice problems are available up front. They'll be in Gates if you missed class today.
 - *Gates is locked over the weekend*, so please stop by to pick them up before then. Otherwise, you'll have to wait until Monday unless you have a Gates key.
Final Project Presentations

- Final project presentations will run from **Tuesday, May 31** to **Thursday, June 2**.
- The following link will let you sign up for time slots: http://www.slottr.com/sheets/1197528
- This will be open from noon on Monday, May 23 until noon on Friday, May 27. It's first-come, first-served.
- Presentations will be 10-15 minutes, plus five minutes for questions. Please arrive five minutes early to get set up.
- Presentations are open to the public, so feel free to stop by any of the presentations you're interested in.
Back to CS166!
y-Fast Tries
y-Fast Tries

- The y-Fast Trie is a data structure that will match the vEB time bounds in an expected, amortized sense while requiring only $O(n)$ space.
- It's built out of an x-fast trie and a collection of red/black trees.
The Motivating Idea

- Suppose we have a red/black tree with $\Theta(\log U)$ nodes.
- Any ordered dictionary operation on the tree will then take time $O(\log \log U)$.
- **Idea:** Store the elements in the ordered dictionary in a collection of red/black trees with $\Theta(\log U)$ elements each.
Each of these trees has between $\frac{1}{2} \log U$ and $2 \log U$ nodes.
To perform $\text{lookup}(x)$, we determine which tree would contain x, then check there.
The Idea

If a tree gets too big, we can split it into two trees by cutting at the median element.
Similarly, if trees get too small, we can concatenate the tree with a neighbor.
The Idea

That might create a tree that's too big, in which case we split it in half.
To determine \textit{successor}(x), we find the tree that would contain \(x \), and take its successor there or the minimum value from the next tree.
The Idea

How do we efficiently determine which tree a given element belongs to?

0 - 91
103 - 133
154 - 181
221 - 258
These partition points are given by taking the maximum element in each tree at the time it's created.
To do $\text{lookup}(x)$, find the smallest max value that's at least x, then go into the preceding tree.
To do $\text{lookup}(x)$, find $\text{successor}(x)$ in the set of maxes, then go into the preceding tree.
To determine $\text{successor}(x)$, find $\text{successor}(x)$ in the maxes, then return the successor of x in that subtree or the min of the next subtree.
The Idea

To \textit{insert}(x), compute \textit{successor}(x) and insert \(x \) into the tree before it. If the tree splits, insert a new max into the top list.
To **delete** \(x \), do a lookup for \(x \) and delete it from that tree. If \(x \) was the max of a tree, *don't delete it from the top list*. Contract trees if necessary.
The Idea

How do we store the set of maxes so that we get efficient *successor* queries?
y-Fast Tries

- A **y-Fast Trie** is constructed as follows:
 - Keys are stored in a collection of red/black trees, each of which has between $\frac{1}{2} \log U$ and $2 \log U$ keys.
 - From each tree (except the first), choose a *representative* element.
 - Representatives demarcate the boundaries between trees.
 - Store each representative in the x-fast trie.
- Intuitively:
 - The x-fast trie helps locate which red/black trees need to be consulted for an operation.
 - Most operations are then done on red/black trees, which then take time $O(\log \log U)$ each.
Analyzing y-Fast Tries

• The operations \textit{lookup}, \textit{successor}, \textit{min}, and \textit{max} can all be implemented by doing \(O(1)\) BST operations and one call to \textit{successor} in the \(x\)-fast trie.
 • Total runtime: \(O(\log \log U)\).

• \textit{insert} and \textit{delete} do \(O(1)\) BST operations, but also have to do \(O(1)\) insertions or deletions into the \(x\)-fast trie.
 • Total runtime: \(O(\log U)\).
 • ... or is it?
Analyzing y-Fast Tries

- Each insertion does $O(\log \log U)$ work inserting and (potentially) splitting a red/black tree.

- The insertion in the x-fast trie takes time $O(\log U)$.

- However, we only split a red/black tree if its size doubles from $\log U$ to $2 \log U$, so we must have done at least $O(\log U)$ insertions before we needed to split.

- The extra cost amortizes across those operations to $O(1)$, so the amortized cost of an insertion is $O(\log \log U)$.
Analyzing y-Fast Tries

- Each deletion does $O(\log \log U)$ work deleting from, (potentially) joining a red/black tree, and (potentially) splitting the resulting red/black tree.
- The insertions and deletions in the x-fast trie take time at most $O(\log U)$.
- However, we only join a tree with its neighbor if its size dropped from $\log U$ to $\frac{1}{2} \log U$, which means there were $O(\log U)$ intervening deletions.
- The extra cost amortizes across those operations to $O(1)$, so the amortized cost of an insertion is $O(\log \log U)$.
Space Usage

- So what about space usage?
- Total space used across all the red/black trees is $O(n)$.
- The x-fast trie stores $\Theta(n / \log U)$ total elements.
- Space usage:
 \[\Theta((n / \log U) \cdot \log U) = \Theta(n). \]
- We're back down to linear space!
For Reference

- van Emde Boas tree
 - **insert**: $O(\log \log U)$
 - **delete**: $O(\log \log U)$
 - **lookup**: $O(\log \log U)$
 - **max**: $O(1)$
 - **succ**: $O(\log \log U)$
 - **is-empty**: $O(1)$
 - Space: $O(U)$

- y-Fast Trie
 - **insert**: $O(\log \log U)$*
 - **delete**: $O(\log \log U)$*
 - **lookup**: $O(\log \log U)$
 - **max**: $O(\log \log U)$
 - **succ**: $O(\log \log U)$
 - **is-empty**: $O(1)$
 - Space: $O(n)$

* Expected, amortized.
What We Needed

• An x-fast trie requires tries and cuckoo hashing.

• The y-fast trie requires amortized analysis and split/join on balanced, augmented BSTs.

• y-fast tries also use the “blocking” technique from RMQ we used to shave off log factors.
Next Time

- **Disjoint-Set Forests**
 - A data structure for incremental connectivity in general graphs.

- **The Ackermann Inverse Function**
 - One of the slowest-growing functions you'll ever encounter in practice.