Recap from Last Time
Ordered Dictionaries

- An ordered dictionary maintains a set S drawn from an ordered universe \mathcal{U} and supports these operations:
 - `lookup(x)`, which returns whether $x \in S$;
 - `insert(x)`, which adds x to S;
 - `delete(x)`, which removes x from S;
 - `max()` / `min()`, which return the maximum or minimum element of S;
 - `successor(x)`, which returns the smallest element of S greater than x; and
 - `predecessor(x)`, which returns the largest element of S smaller than x.

Ordered Dictionary : BST :: Queue : Linked List
Our Machine Model

- We will assume we’re working on a machine where memory is segmented into \(w \)-bit words.
- We’ll assume that the C integer operators work in constant time, and will not assume we have access to operators beyond them.

\[+ \quad - \quad * \quad / \quad \% \quad << \quad >> \quad & \quad | \quad ^ \quad == \quad <= \]
Word-Level Parallelism

- Last time, we saw five powerful primitives built using word-level parallelism:
 - **Parallel compare:** We can compare a bunch of small numbers in parallel in $O(1)$ machine word operations.
 - **Parallel tile:** We can take a small number and “tile” it multiple times in $O(1)$ machine word operations.
 - **Parallel add:** If we have a bunch of “flag” bits spread out evenly, we can add them all up in $O(1)$ machine word operations.
 - **Parallel rank:** We can find the rank of a small number in an array of small numbers in $O(1)$ machine word operations.
 - **Most-significant bit:** We can compute $\text{msb}(n)$ for any w-bit integer n in $O(1)$ machine word operations.
Word-Level Parallelism

• Last time, we saw five powerful primitives built using word-level parallelism:

 • **Parallel compare:** We can compare a bunch of small numbers in parallel in O(1) machine word operations.

 • **Parallel tile:** We can take a small number and “tile” it multiple times in O(1) machine word operations.

 • **Parallel add:** If we have a bunch of “flag” bits spread out evenly, we can add them all up in O(1) machine word operations.

 • **Parallel rank:** We can find the rank of a small number in an array of small numbers in O(1) machine word operations.

 • **Most-significant bit:** We can compute \(\text{msb}(n) \) for any \(w \)-bit integer \(n \) in O(1) machine word operations.
Integer LCP

• Computing \(\text{msb} \) efficiently lets us implement a number of other efficient primitives.

• Given two integers \(m \) and \(n \), the **longest common prefix** of \(m \) and \(n \), denoted \(\text{lcp}(m, n) \), is the length of the longest bitstring they both start with.

• **Claim:** We can compute this in time \(O(1) \).

\[
\begin{array}{cccccccccccc}
00011010 & 01101110 & 01111000 & 01001101 & 00101111 & 00001101 & 01110111 & 01100001 \\
00011010 & 01000101 & 00010100 & 00100000 & 01010000 & 00100010 & 01000100 & 00001000 \\
00000000 & 00101011 & 01100100 & 01101101 & 01111111 & 00101111 & 00110011 & 01101001
\end{array}
\]

\(m \oplus n \)
Integer LCP

• Computing \(\text{msb} \) efficiently lets us implement a number of other efficient primitives.

• Given two integers \(m \) and \(n \), the **longest common prefix** of \(m \) and \(n \), denoted \(\text{lcp}(m, n) \), is the length of the longest bitstring they both start with.

• **Claim:** We can compute this in time \(O(1) \).
Integer LCP

• Computing \texttt{msb} efficiently lets us implement a number of other efficient primitives.

• Given two integers \(m \) and \(n \), the \textit{longest common prefix} of \(m \) and \(n \), denoted \(\text{lcp}(m, n) \), is the length of the longest bitstring they both start with.

• \textit{Claim:} We can compute this in time \(O(1) \).

\[
\begin{array}{cccccccccccc}
00011010 & 01101110 & 01111000 & 01001101 & 00101111 & 00001101 & 01110111 & 01100001 \\
00011010 & 01000101 & 00010100 & 00100000 & 01010000 & 00100010 & 01000100 & 00001000 \\
00000000 & 00101011 & 01100100 & 01101101 & 01111111 & 00101111 & 00110011 & 01101001
\end{array}
\]

\[
63 - \text{msb}(m \oplus n)
\]
New Stuff!
The Sardine Tree Revisited

• Last time, we designed a data structure nicknamed the *sardine tree* that
 • stores s-bit keys, where s is much smaller than w, and
 • supports all operations in time $O(\log_{w/s} n)$.

• Our goal for today will be to generalize this to work with arbitrary integer keys, not just s-bit keys.
The Sardine Tree Revisited

- At a high level, the sardine tree is a B-tree augmented with extra information to support fast rank queries.
- The branching factor is $\Theta(w/s)$, the number of keys we can fit into a single machine word.
- We use a parallel rank operation at each node to determine which keys to check and which child to descend into.
- Therefore, each operation’s cost is $O(\log_{w/s} n)$: $O(1)$ work per each of $O(\log_{w/s} n)$ nodes visited.
The Sardine Tree Revisited

- The sardine tree is a specific case of a more general framework.
- Build a B-tree where each node is augmented with a data structure called a \textit{ranker} with the following properties:
 - The ranker stores $\Theta(K)$ total keys.
 - It supports queries of the form $\text{rank}(x)$, which returns the rank of x among those keys, in time $O(1)$.
The Sardine Tree Revisited

- The sardine tree is a specific case of a more general framework.
- Build a B-tree where each node is augmented with a data structure called a ranker with the following properties:
 - The ranker stores $\Theta(K)$ total keys.
 - It supports queries of the form $\text{rank}(x)$, which returns the rank of x among those keys, in time $O(1)$.
- The cost of performing a search is then $O(\log_K n)$, since the tree height is $O(\log_K n)$ and we do $O(1)$ work per node.
The Sardine Tree Revisited

- The sardine tree ranker works by packing the $\Theta(w/s)$ keys into a machine word, then using our parallel rank operation from last time.
- Since there are $\Theta(w/s)$ keys per node, the runtime of each B-tree operation is $O(\log_{w/s} n)$, though the keys are severely size-limited.
The fusion tree is a B-tree augmented with a ranker that stores w^ε keys for some constant ε. Those keys are full w-bit words.

The cost of a lookup, successor, or predecessor in a fusion tree is therefore

$$O(\log_{w^\varepsilon} n) = O(\log n / \log w^\varepsilon) = O(\log_w n).$$
Where We’re Going

- The sardine tree solves the following problem:

 Support rank queries for a large number of small keys.

- To build the fusion tree, we’ll solve this problem:

 Support rank queries for a small number of large keys.
Where We’re Going

- The *parallel rank* operation we devised last time permits $O(1)$-time rank queries, provided that all the keys fit into a machine word.

- In general, we can’t assume that a collection of arbitrary keys all fit into a machine word.

- **Goal:** Compress multiple w-bit keys so that
 - they fit in a machine word so we can use *parallel rank*, and
 - the compression preserves enough information about their order so that the ranks we get back are meaningful.
Compressing Our Numbers

• Let’s imagine we have a collection of \(w \) numbers, each of which is \(w \) bits long.

• For simplicity, we’re going to assume that those numbers are given to us in advance and in sorted order.
 • We’ll relax this later on.
Back to Tries

- Think about what happens if we make a trie from these numbers.
- We have few numbers \((w^\varepsilon) \) and these numbers are large (size \(w \)), so most nodes will have one child.

Idea: Use a Patricia trie!
Think about what happens if we make a trie from these numbers.

We have few numbers (w^ε) and these numbers are large (size w), so most nodes will have one child.

Idea: Use a Patricia trie!

```
00010100 00010111 00011011 01101001 01101110
```

```
00010100 00010111 00011011 01101001 01101110
```
Back to Tries

- Since there are w^ε numbers, there are exactly $w^\varepsilon - 1$ junctions in the Patricia trie.

- Look at each number and focus purely on the bits that correspond to those junctions.

| 00010100 | 00010111 | 00011011 | 01101001 | 01101110 |
Back to Tries

- Since there are w^ε numbers, there are exactly $w^\varepsilon - 1$ junctions in the Patricia trie.
- Look at each number and focus purely on the bits that correspond to those junctions.

<table>
<thead>
<tr>
<th>[000]</th>
<th>[001]</th>
<th>[01]</th>
<th>[10]</th>
<th>[11]</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
• **Claim:** The sorted order of these original numbers matches the lexicographical order of these new bitstrings.

• **Proof idea:** These new bitstrings represent paths through the Patricia trie.
Back to Tries

- We’re ultimately interested in compressing our numbers so they all fit in a machine word.
- There are at most $w^ε$ bits in each of these new numbers – that’s really promising!

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
<td></td>
</tr>
</tbody>
</table>
Problem: While the lexicographic ordering of these new strings matches the original ordering, the numeric ordering does not.

Our parallel rank algorithm works with numeric values, not string values.
Patricia Codes

- A bit index i is called **interesting** if there is a branching node in the trie at that bit index.
- The **Patricia code** of an integer is the bitstring consisting of just the interesting bits in that number.
Patricia Codes

- A bit index i is called **interesting** if there is a branching node in the trie at that bit index.

- The **Patricia code** of an integer is the bitstring consisting of just the interesting bits in that number.
Patricia Codes

- **Claim:** The relative order of the integers in this trie is the same as the relative numeric order of their Patricia codes.

- Each bit either gives a direction to branch at a decision point, or is in the middle of an edge and doesn’t matter.
Patricia Codes

- **Claim:** With the right preprocessing, there’s a way to (sorta) compute the Patricia code of any number in time $O(1)$.

- We’ll go over the details later today.
Claim: Assuming we pick ε to be sufficiently small, the Patricia codes for our w^ε values will fit into a machine word.

This means that we can preprocess them so that we can compute ranks of Patricia codes in time $O(1)$.
Patricia Codes

- Our goal is to efficiently compute ranks among the original numbers.
- If all our Patricia codes fit into a single machine word, we can compute \(\text{rank}(x) \) in time \(O(1) \), though it’s a little trickier than it looks.
Computing Ranks

- Suppose we want to determine \(\text{rank}(00010101) \).
- First, compute its Patricia code:

<table>
<thead>
<tr>
<th></th>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
<td></td>
</tr>
</tbody>
</table>
Computing Ranks

- Suppose we want to determine \textbf{rank}(00010101).
- First, compute its Patricia code:

<table>
<thead>
<tr>
<th></th>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Computing Ranks

- Now, compute the rank of its Patricia code across the trie elements.
- Notice that the rank of this number matches the rank of its Patricia code. Cool!

<table>
<thead>
<tr>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001000</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Computing Ranks

- Unfortunately, things get a bit trickier here. Let's compute \textbf{rank}(01001110).

- First, compute its Patricia code:

01001110

<table>
<thead>
<tr>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Computing Ranks

- Unfortunately, things get a bit trickier here. Let’s compute $\text{rank}(01001110)$.
- First, compute its Patricia code:
Computing Ranks

- Now, compute the rank of its Patricia code across the trie elements.
- Its code has rank 5, but the number itself has rank 3!
- Why did we get the wrong answer?
Computing Ranks

- Imagine we did a real, proper lookup of this key in the trie.
- Notice that we fall off the trie at the marked point.

<table>
<thead>
<tr>
<th>1111</th>
<th>01001110</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Computing Ranks

- We made some “good” decisions followed by some “bogus” decisions.
- The good decisions are the ones where we were on the trie.
- The bogus decisions were from after we fell off.
Computing Ranks

- Look at the longest common prefix between our query key and the key next to it.
- Since the LCP has length two, we know that the first two bits of our number stayed on the trie, and then we fell off.

Example

<table>
<thead>
<tr>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Computing Ranks

- We fell off the trie by reading a 0.
- That means that we belong before everything in the subtree after that point.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Computing Ranks

- **Idea:** Change our number to put a 0 in all positions after the mismatch, then recompute the Patricia code.

- This means “all previous comparisons are good, and then we lose on tiebreaks to everything else.”

<table>
<thead>
<tr>
<th>1000</th>
<th>01000000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Computing Ranks

- Let’s do a second rank query with this new code.
- That places us at rank 3, which is the proper position.
To search for a key:

- Compute its Patricia code.
- Use a parallel rank to determine the rank of its Patricia code.
- Use our msb function from earlier to determine the longest matching prefix between the key and the values adjacent to it.
- Based on the next bit, either replace all successive bits in the Patricia code either with 0s or with 1s.
- Run a second parallel rank to determine the actual rank of the element in the sequence.

Total cost: $O(1)$.

I’m glossing over a few details here; check the original paper for details.
Time-Out for Announcements!
Midterm Exam

• The midterm is tonight!
 • It’s from 7PM - 10PM.
 • It’s in Hewlett 200.

• You get a single, double-sided sheet of 8.5” × 11” notes with you during the exam.

• *Go rock this exam*. You’re all awesome. Show us how much you’ve learned.
Final Project Presentations

- We’ve just about finished getting time slot signups from each team.
- Once that schedule is ready, we’ll post it to the course website.
- Speaking from experience – these presentations will be a lot of fun. Feel free to pick a few that look interesting and to stop on by!
Back to CS166!
Implementing this Idea
Implementing this Idea

- We now have a clever approach for compressing keys based on Patricia tries.
- In this discussion, I’ve drawn the actual trie off to the side here.
- We used this trie to determine where the “interesting” bits were.
Implementing this Idea

- We can find all the interesting bits in a collection of keys without actually building this trie.

- **Idea:** There’s a connection between branching nodes in the trie and the lcp’s of the keys.
Implementing this Idea

- We can find all the interesting bits in a collection of keys without actually building this trie.
- **Idea:** There’s a connection between branching nodes in the trie and the lcp’s of the keys.
Implementing this Idea

- We can find all the interesting bits in a collection of keys without actually building this trie.

- **Idea:** There’s a connection between branching nodes in the trie and the lcp’s of the keys.

<table>
<thead>
<tr>
<th>00011011</th>
<th>01101001</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>0011</td>
</tr>
<tr>
<td>00010100</td>
<td>00010111</td>
</tr>
</tbody>
</table>
Implementing this Idea

• We can find all the interesting bits in a collection of keys without actually building this trie.

• **Idea:** There’s a connection between branching nodes in the trie and the lcp’s of the keys.

<table>
<thead>
<tr>
<th>01101001</th>
<th>01101100</th>
</tr>
</thead>
<tbody>
<tr>
<td>01101101</td>
<td>01101110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Implementing this Idea

- Since we don’t need the Patricia trie, we can cast it off into the luminiferous aether.
- We can just store the indices of the interesting bits and the Patricia codes of the keys.
Implementing this Idea

- Since we don’t need the Patricia trie, we can cast it off into the luminiferous aether.
- We can just store the indices of the interesting bits and the Patricia codes of the keys.

<table>
<thead>
<tr>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Implementing this Idea

- We’ve assumed up to this point that we can compute Patricia codes in time $O(1)$.
- This is the last step we need to figure out!
- How do we do this?

<table>
<thead>
<tr>
<th></th>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Extracting Patricia Codes

- We’d like to extract the \(w^ε \) interesting bits from each machine word, and ideally, to do so quickly.
- We can start by building up a bitmask to mask everything except those interesting bits.
- If we can compact these bits together, we’ve got the Patricia code!
Extracting Patricia Codes

- We now have all the bits we want, but they’re spread apart too far.
- We saw last time that by using multiplication by an appropriate constant, we can compact bits together.

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000
\end{align*}
\]

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000 \\
 & 00000000
\end{align*}
\]

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000
\end{align*}
\]

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000
\end{align*}
\]

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000
\end{align*}
\]

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000
\end{align*}
\]

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000
\end{align*}
\]

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000
\end{align*}
\]

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000
\end{align*}
\]

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000
\end{align*}
\]

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000
\end{align*}
\]

\[
\begin{align*}
a & 00000000 \\ b & 00000000 \\ c & 00000000 \\ d & 00000000
\end{align*}
\]
The approach we used last time worked well because we knew those bits were evenly-spaced.

Problem: Our “interesting” bits aren’t well-spaced across the word in question.

This may make it impossible to get all the bits next to one another purely using a clever multiplication.

Fortunately, there’s an escape hatch.
Approximate Patricia Codes

- Patricia codes are useful because they
 - contain enough information to compute ranks, and
 - compact that information into a small space.
- **Idea:** Maintain the second property by doing a “decent” job compacting bits, rather than a “perfect” job.
Approximate Patricia Codes

- Patricia codes are useful because they
 - contain enough information to compute ranks, and
 - compact that information into a small space.
- **Idea:** Maintain the second property by doing a “decent” job compacting bits, rather than a “perfect” job.
Approximate Patricia Codes

• An *approximate Patricia code* is a bitstring containing all the interesting bits of a number in the same relative order, with some extra 0’s deterministically interspersed.

• **Claim**: We can use approximate Patricia codes rather than true Patricia codes to compute ranks. The relative orders of the codes will come back the same.
Approximate Patricia Codes

• **Theorem:** Suppose we have a \(w^\varepsilon \) interesting bits. Then there is a way to compute a multiplier \(M \), a mask \(K \), and a shift \(S \) such that

\[
((n \times M) \gg S) \& K
\]

is an approximate Patricia code for \(n \) that uses \(w^{4\varepsilon} \) bits, and these values can be computed in time \(O(w^{4\varepsilon}) \).

• **Proof:** Some very clever arguments involving induction and modular arithmetic. Check Fredman and Willard’s paper for details!

• **Challenge:** Find a simple, visual, intuitive explanation for this algorithm.
Closing In on Fusion Trees

• Our goal is to build a data structure that holds w^ε integers with w bits each in a way that supports \textit{rank} in time $O(1)$.

• Given w^ε integers, we can do some preprocessing to form $w^{4\varepsilon}$-bit approximate Patricia codes for them.

• Storing those approximate codes requires $w^{5\varepsilon}$ bits.

• \textit{Observation:} Suppose we pick $\varepsilon = \frac{1}{6}$. Then we can store all of those codes in a single machine word!

What is $w^{1/6}$ on a real computer? We have a ways to go before this strategy will have any chance of being practical.
Fusion Trees

- A **fusion tree** is a B-tree augmented with the preceding strategy for computing ranks quickly.

- The B-tree has order $w^{1/6}$, so its height is $O(\log_w n)$.

- Since the rank of a key in a node can be computed in time $O(1)$, the cost of a lookup, predecessor, or successor operation is $O(\log_w n)$.
Fusion Trees

- Here’s the final scorecard for fusion trees.
- Notice that **lookup** and **successor** queries are unconditionally asymptotically faster than a regular balanced BST!

<table>
<thead>
<tr>
<th>The Fusion Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>lookup: $O(\log_w n)$</td>
</tr>
<tr>
<td>insert: $O(w^{2/3} \log_w n)$</td>
</tr>
<tr>
<td>delete: $O(w^{2/3} \log_w n)$</td>
</tr>
<tr>
<td>max: $O(\log_w n)$</td>
</tr>
<tr>
<td>succ: $O(\log_w n)$</td>
</tr>
<tr>
<td>Space: $\Theta(n)$</td>
</tr>
</tbody>
</table>
Fusion Trees

- The mutating operations **insert** and **delete** are expensive.

Idea: Adapt the technique from y-fast tries: rather than have one big fusion tree, have a bunch of smaller data structures linked together by fusion trees.

The Fusion Tree

- **lookup:** $O(\log_w n)$
- **insert:** $O(w^{2/3} \log_w n)$
- **delete:** $O(w^{2/3} \log_w n)$
- **max:** $O(\log_w n)$
- **succ:** $O(\log_w n)$
- Space: $\Theta(n)$
Fusion Trees

- In 1996, Arne Andersson devised the exponential tree, a variation on fusion trees with these indicated runtimes.

 - **Intuition:** Instead of having a constant branching factor at each level of the tree, have the branching factor decay exponentially.

 - This still keeps the tree height low, but makes the amortized cost of each operation small.

The Exponential Tree

- **lookup:** $O(\log_w n)$
- **insert:** $O(\log_w n + \log \log n)^*$
- **delete:** $O(\log_w n + \log \log n)^*$
- **max:** $O(\log_w n)$
- **succ:** $O(\log_w n)$
- Space: $\Theta(n)$

* Amortized
A Cool Application: *Integer Sorting*
Integer Sorting

• Suppose you’re given a list of b-bit integers x_1, x_2, \ldots, x_n to sort.

 - **Heapsort** takes time $O(n \log n)$.
 - **Base-2 radix sort** takes time $O(nb)$.
 - **Base-n radix sort** takes time $O(nb / \log n)$.

“A classical” techniques

• A **y-fast trie** takes expected time $O(n \log b)$.
• An **exponential tree** takes time $O(n \log_b n)$.

“Modern” techniques
Integer Sorting

• These algorithms are asymptotically incomparable, since b and n are independent quantities.

 y-Fast Trie Sort
 $O(n \log b)$

 Exponential Tree Sort
 $O(n \log_b n)$

• **Question:** What is the crossover point?
Integer Sorting

- These algorithms are asymptotically incomparable, since b and n are independent quantities.

 \[n \log b = n \log_b n \]

y-Fast Trie Sort

O($n \log b$)

Exponential Tree Sort

O($n \log_b n$)

Question: What is the crossover point?
Integer Sorting

- These algorithms are asymptotically incomparable, since b and n are independent quantities.

\[n \log b = n \log_b n \]
\[\log b = \log_b n \]

y-Fast Trie Sort
- $O(n \log b)$

Exponential Tree Sort
- $O(n \log_b n)$

Question: What is the crossover point?
Integer Sorting

- These algorithms are asymptotically incomparable, since b and n are independent quantities.

\[
\begin{align*}
\text{- } \text{y-Fast Trie Sort} & \quad \text{O}(n \log b) \\
\text{- Exponential Tree Sort} & \quad \text{O}(n \log_b n)
\end{align*}
\]

- Question: What is the crossover point?
Integer Sorting

- These algorithms are asymptotically incomparable, since b and n are independent quantities.

y-Fast Trie Sort

$\mathcal{O}(n \log b)$

Exponential Tree Sort

$\mathcal{O}(n \log_b n)$

- **Question**: What is the crossover point?
Integer Sorting

• These algorithms are asymptotically incomparable, since b and n are independent quantities.

y-Fast Trie Sort

$O(n \log b)$

Exponential Tree Sort

$O(n \log_b n)$

• **Question:** What is the crossover point?
Integer Sorting

• These algorithms are asymptotically incomparable, since b and n are independent quantities.

 y-Fast Trie Sort

 $O(n \log b)$

 $n \log b = n \log_b n$

 $\log b = \log_b n$

 $\log^2 b = \log n$

 $\log b = \sqrt{\log n}$

 $b = 2^{\sqrt{\log n}}$

• **Question:** What is the crossover point?
Integer Sorting

- **Theorem:** There is a randomized, \(O(n \sqrt{\log n}) \)-time integer sorting algorithm.

- **Proof:** If \(b \leq 2^{\log n} \), use exponential tree sort. Otherwise, use y-fast trie sort.

Question: What is the crossover point?

- **y-Fast Trie Sort**
 \[O(n \log b) \]

- **Exponential Tree Sort**
 \[O(n \log_b n) \]

- These algorithms are asymptotically incomparable, since \(b \) and \(n \) are independent quantities.
More to Explore

• In 1994, Fredman and Willard (the creators of the fusion tree) invented the **AF-heap**, a variation on a Fibonacci heap with **extract-min** taking time $O(\log n / \log \log n)$ and used it to get a linear time algorithm for computing minimum spanning trees.

• In 1995, Andersson et al adapted the size-reduction techniques from fusion trees to develop **signature sort**, a randomized sorting algorithm for integers. Assuming $w = \lg^{2+\varepsilon} n$, it runs in expected time $O(n)$.

• In 1997, using the linear-time MST algorithm, Thorup developed a **linear-time algorithm** for undirected SSSP. (Want to learn more? Your classmates will be presenting it next Wednesday at 10:30AM!)

• In 2002, Han developed a deterministic $O(n \log \log n)$-time algorithm for integer sorting that uses only linear space, and with Thorup developed a randomized $O(n \sqrt{\log \log n})$-time algorithm for integer sorting that only uses linear space.

• In 2002, Andersson and Thorup developed a deterministic, worst-case efficient integer ordered dictionary with each operation costing $O(\sqrt{\frac{\log n}{\log \log n}})$, which is provably optimal under reasonable assumptions.
Next Time

- **Dynamic Connectivity**
 - Maintaining connectivity in a changing world.

- **Euler Tour Trees**
 - Dynamic connectivity in forests.

- **Dynamic Graphs**
 - A hierarchical data structure for dynamic connectivity in general undirected graphs.