Fusion Trees
Part Two
Recap from Last Time
Ordered Dictionaries

- An **ordered dictionary** maintains a set $S$ drawn from an ordered universe $\mathcal{U}$ and supports these operations:
  - $\text{lookup}(x)$, which returns whether $x \in S$;
  - $\text{insert}(x)$, which adds $x$ to $S$;
  - $\text{delete}(x)$, which removes $x$ from $S$;
  - $\text{max}()$ / $\text{min}()$, which return the maximum or minimum element of $S$;
  - $\text{successor}(x)$, which returns the smallest element of $S$ greater than $x$; and
  - $\text{predecessor}(x)$, which returns the largest element of $S$ smaller than $x$.

- Reasoning by analogy:
  
  Ordered Dictionary : BST :: Queue : Linked List
Our Machine Model

• We will assume we’re working on a machine where memory is segmented into $w$-bit words.

• We’ll assume that the C integer operators work in constant time, and will not assume we have access to operators beyond them.

  +  -  *  /  %  <<  >>  &  |  ^  ==  <=

• This is a somewhat arbitrary restriction; it’s been relaxed and revisited in future work.
Word-Level Parallelism

- Last time, we saw five powerful primitives built using word-level parallelism:
  - **Parallel compare:** We can compare a bunch of small numbers in parallel in $O(1)$ machine word operations.
  - **Parallel tile:** We can take a small number and “tile” it multiple times in $O(1)$ machine word operations.
  - **Parallel add:** If we have a bunch of “flag” bits spread out evenly, we can add them all up in $O(1)$ machine word operations.
  - **Parallel rank:** We can find the rank of a small number in an array of small numbers in $O(1)$ machine word operations.
  - **Most-significant bit:** We can compute $\text{msb}(n)$ for any $w$-bit integer $n$ in $O(1)$ machine word operations.
Integer LCP

• Computing msb efficiently lets us implement a number of other efficient primitives.

• Given two integers $m$ and $n$, the longest common prefix of $m$ and $n$, denoted $\text{lcp}(m, n)$, is the length of the longest bitstring they both start with.

• **Claim:** We can compute this in time $O(1)$.

$$63 - \text{msb}(m \oplus n)$$
New Stuff!
The Sardine Tree Revisited

• Last time, we designed a data structure nicknamed the *sardine tree* that
  • stores $s$-bit keys, where $s$ is much smaller than $w$, and
  • supports all operations in time $O(\log_{w/s} n)$.
• Our goal for today will be to generalize this to work with arbitrary integer keys, not just $s$-bit keys.
The Sardine Tree Revisited

• At a high level, the sardine tree is a B-tree augmented with extra information to support fast rank queries.
• The branching factor is $\Theta(w/s)$, the number of keys we can fit into a single machine word.
• We use a parallel rank operation at each node to determine which keys to check and which child to descend into.
• Therefore, each operation’s cost is $O(\log_{w/s} n)$: $O(1)$ work per each of $O(\log_{w/s} n)$ nodes visited.
The Sardine Tree Revisited

- The sardine tree is a specific case of a more general framework.

- Build a B-tree where each node is augmented with a data structure called a ranker with the following properties:
  - The ranker stores $\Theta(K)$ total keys.
  - It supports queries of the form $\text{rank}(x)$, which returns the rank of $x$ among those keys, in time $O(1)$.

- The cost of performing a search is then $O(\log_K n)$, since the tree height is $O(\log_K n)$ and we do $O(1)$ work per node.
The Sardine Tree Revisited

- The sardine tree ranker works by packing the $\Theta(w/s)$ keys into a machine word, then using our parallel rank operation from last time.
- Since there are $\Theta(w/s)$ keys per node, the runtime of each B-tree operation is $O(\log_{w/s} n)$, though the keys are severely size-limited.
Fusion Trees

- The **fusion tree** is a B-tree augmented with a ranker that stores $w^\varepsilon$ keys for some constant $\varepsilon$. Those keys are full $w$-bit words.
- The cost of a lookup, successor, or predecessor in a fusion tree is therefore

$$O(\log_{w^\varepsilon} n) = O(\log n / \log w^\varepsilon) = O(\log_w n).$$
Where We’re Going

- The sardine tree solves the following problem:
  Support rank queries for a large number of small keys.
- To build the fusion tree, we’ll solve this problem:
  Support rank queries for a small number of large keys.
Where We’re Going

• The *parallel rank* operation we devised last time permits O(1)-time rank queries, provided that all the keys fit into a machine word.

• In general, we can’t assume that a collection of arbitrary keys all fit into a machine word.

• **Goal**: Compress multiple $w$-bit keys so that
  • they fit in a machine word so we can use *parallel rank*, and
  • the compression preserves enough information about their order so that the ranks we get back are meaningful.
### Compressing Our Numbers

- Let’s imagine we have a collection of \( W \) numbers, each of which is \( w \) bits long.

### Table

<table>
<thead>
<tr>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
</tr>
<tr>
<td>00010111</td>
</tr>
<tr>
<td>00011011</td>
</tr>
<tr>
<td>01101001</td>
</tr>
<tr>
<td>01101110</td>
</tr>
</tbody>
</table>
Back to Tries

- Think about what happens if we make a trie from these numbers.
- We have few numbers ($w^\varepsilon$) and these numbers are large (size $w$), so most nodes will have one child.

**Idea:** Use a Patricia trie!
Back to Tries

- Since there are $w^\varepsilon$ numbers, there are exactly $w^\varepsilon - 1$ junctions in the Patricia trie.
- Look at each number and focus purely on the bits that correspond to those junctions.
Back to Tries

**Claim:** The sorted order of these original numbers matches the lexicographical order of these new bitstrings.

**Proof idea:** These new bitstrings represent paths through the Patricia trie.
Back to Tries

- We’re ultimately interested in compressing our numbers so they all fit in a machine word.
- There are at most $w^ε$ bits in each of these new numbers – that’s really promising!

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>001</td>
<td>01</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
<td></td>
</tr>
</tbody>
</table>
Back to Tries

- **Problem:** While the lexicographic ordering of these new strings matches the original ordering, the numeric ordering does not.

- Our *parallel rank* algorithm works with numeric values, not string values.
Patricia Codes

- A bit index $i$ is called **interesting** if there is a branching node in the trie at that bit index.
- The **Patricia code** of an integer is the bitstring consisting of just the interesting bits in that number.
Patricia Codes

- **Claim:** The relative order of the integers in this trie is the same as the relative numeric order of their Patricia codes.
- Each bit either gives a direction to branch at a decision point, or is in the middle of an edge and doesn’t matter.
Patricia Codes

- **Claim:** With the right preprocessing, there’s a way to (sorta) compute the Patricia code of any number in time $O(1)$.
- We’ll go over the details later today.
Patricia Codes

- **Claim**: Assuming we pick \( \varepsilon \) to be sufficiently small, the Patricia codes for our \( w^\varepsilon \) values will fit into a machine word.

- This means that we can preprocess them so that we can compute ranks of Patricia codes in time \( O(1) \).
Patricia Codes

- Our goal is to efficiently compute ranks among the original numbers.
- If all our Patricia codes fit into a single machine word, we can compute \( \text{rank}(x) \) in time \( O(1) \), though it’s a little trickier than it looks.
Computing Ranks

- Suppose we want to determine \textit{rank}(00010101).
- First, compute its Patricia code:

<table>
<thead>
<tr>
<th></th>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
<td></td>
</tr>
</tbody>
</table>
Computing Ranks

- Now, compute the rank of its Patricia code across the trie elements.
- Notice that the rank of this number matches the rank of its Patricia code. Cool!

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>0011</td>
<td>0101</td>
<td>1100</td>
<td>1111</td>
<td>00101000</td>
</tr>
<tr>
<td>00010101</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
<td>00010111</td>
</tr>
</tbody>
</table>
Computing Ranks

- Unfortunately, things get a bit trickier here. Let’s compute \textit{rank}(01001110).

- First, compute its Patricia code:
Computing Ranks

- Now, compute the rank of its Patricia code across the trie elements.
- Its code has rank 5, but the number itself has rank 3!
- Why did we get the wrong answer?
Computing Ranks

- Imagine we did a real, proper lookup of this key in the trie.
- Notice that we fall off the trie at the marked point.

<table>
<thead>
<tr>
<th>1111</th>
<th>01001110</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>0011</td>
</tr>
<tr>
<td>00010100</td>
<td>00010111</td>
</tr>
</tbody>
</table>
Computing Ranks

- We made some “good” decisions followed by some “bogus” decisions.
- The good decisions are the ones where we were on the trie.
- The bogus decisions were from after we fell off.
Computing Ranks

- Look at the longest common prefix between our query key and the key next to it.
- Since the LCP has length two, we know that the first two bits of our number stayed on the trie, and then we fell off.

<table>
<thead>
<tr>
<th>1111</th>
<th>01001110</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Computing Ranks

- We fell off the trie by reading a 0.
- That means that we belong before everything in the subtree after that point.

<table>
<thead>
<tr>
<th>Bit 1</th>
<th>Bit 2</th>
<th>Bit 3</th>
<th>Bit 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall off here.</td>
<td>Fall off here.</td>
<td>Fall off here.</td>
<td>Fall off here.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Computing Ranks

**Idea:** Change our number to put a 0 in all positions after the mismatch, then recompute the Patricia code.

This means “all previous comparisons are good, and then we lose on tiebreaks to everything else.”
Computing Ranks

- Let’s do a *second* rank query with this new code.
- That places us at rank 3, which is the proper position.

<table>
<thead>
<tr>
<th>1000</th>
<th>01001110</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>0011</td>
</tr>
<tr>
<td>00010100</td>
<td>00010111</td>
</tr>
</tbody>
</table>
Rank in $O(1)$

- To search for a key:
  - Compute its Patricia code.
  - Use a *parallel rank* to determine the rank of its Patricia code.
  - Use our $\text{msb}$ function from earlier to determine the longest matching prefix between the key and the values adjacent to it.
  - Based on the next bit, either replace all successive bits in the Patricia code either with 0s or with 1s.
  - Run a second *parallel rank* to determine the actual rank of the element in the sequence.
- Total cost: $O(1)$.
- I’m glossing over a few details here; check the original paper for details.
Time-Out for Announcements!
Midterm Exam

• You’re done with the midterm! Congratulations!

• We’ll be grading the exam over the weekend and will aim to have it returned as soon as possible.

• Have any questions in the meantime? Come talk to us!
Final Projects

• We’re coming up on final project season!

• As a reminder, you have two deliverables:
  • **Writeup:** Due 24 hours before your presentation. Submit this on GradeScope.
  • **Presentation:** Running all next week, and open to the public.

• Your “interesting” component isn’t submitted separately; you’ll detail it in your writeup and presentation.

• Feel free to stop by any presentations that look intriguing! The *full schedule* is available here.
The Writeup

• As a reminder, your final project paper is due 24 hours before your presentation.

• Your paper should be an accessible, engaging, and technically precise introduction to the data structure.
  • Give some background – why should we care about your topic? How does it fit into the larger intellectual ecosystem?
  • Describe it in as accessible a manner as possible. What are the key ideas driving it? Intuitively, why would you expect them to work? Then get more specific – how does each operation work?
  • Go through the technical details, and be precise. Prove important results and technical lemmas, ideally in your own words.

• Then, describe your “interesting” component, and make it shine! Tell us why what you did was interesting and what you learned in the process.
The Presentation

• Presentations should run around 15-20 minutes.
• Your presentation won't be long enough to present everything from your paper, and you shouldn't try to do that. Instead, focus on what's important and interesting. Convey the major ideas, intuitions, and why your topic is exciting!
• We'll ask a few questions at the end of the presentation, so be prepared to discuss things in a bit more detail.
• Please arrive around five minutes early so that you can get set up.
Back to CS166!
Implementing our Patricia Trie Scheme
Implementing this Idea

- We now have a clever approach for compressing keys based on Patricia tries.
- In this discussion, I’ve drawn the actual trie off to the side here.
- We used this trie to determine where the “interesting” bits were.
Implementing this Idea

- We can find all the interesting bits in a collection of keys without actually building this trie.

- **Idea:** There’s a connection between branching nodes in the trie and the lcp’s of the keys.

```
00010100
00010111

0010 0011
00010100 00010111
00010110 01101001 01101110
```

```
0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0
1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0
```
Implementing this Idea

- Since we don’t need the Patricia trie, we can cast it off into the luminiferous aether.
- We can just store the indices of the interesting bits and the Patricia codes of the keys.

<table>
<thead>
<tr>
<th>0010</th>
<th>0011</th>
<th>0101</th>
<th>1100</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
</tr>
</tbody>
</table>
Implementing this Idea

- We’ve assumed up to this point that we can compute Patricia codes in time $O(1)$.
- This is the last step we need to figure out!
- How do we do this?

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>0011</td>
<td>0101</td>
<td>1100</td>
<td>1111</td>
<td></td>
</tr>
<tr>
<td>00010100</td>
<td>00010111</td>
<td>00011011</td>
<td>01101001</td>
<td>01101110</td>
<td></td>
</tr>
</tbody>
</table>
Extracting Patricia Codes

- We’d like to extract the \( w^e \) interesting bits from each machine word, and ideally, to do so quickly.
- We can start by building up a bitmask to mask everything except those interesting bits.
- If we can compact these bits together, we’ve got the Patricia code!
Extracting Patricia Codes

• We now have all the bits we want, but they’re spread apart too far.
• We saw last time that by using multiplication by an appropriate constant, we can compact bits together.
Extracting Patricia Codes

- The approach we used last time worked well because we knew those bits were evenly-spaced.
- **Problem:** Our “interesting” bits aren’t well-spaced across the word in question.
- This may make it impossible to get all the bits next to one another purely using a clever multiplication.

```
   a000b000c000d000e000f000g000h000ijkl
```

- Fortunately, there’s an escape hatch.
Approximate Patricia Codes

• Patricia codes are useful because they
  • contain enough information to compute ranks, and
  • compact that information into a small space.

• **Idea:** Maintain the second property by doing a “decent” job compacting bits, rather than a “perfect” job.
Approximate Patricia Codes

• An *approximate Patricia code* is a bitstring containing all the interesting bits of a number in the same relative order, with some extra 0’s deterministically interspersed.

• **Claim:** We can use approximate Patricia codes rather than true Patricia codes to compute ranks. The relative orders of the codes will come back the same.
Approximate Patricia Codes

- **Theorem:** Suppose we have a $w^\varepsilon$ interesting bits. Then there is a way to compute a multiplier $M$, a mask $K$, and a shift $S$ such that
  $$(n \times M) \gg S \& K$$

  is an approximate Patricia code for $n$ that uses $w^{4\varepsilon}$ bits, and these values can be computed in time $O(w^{4\varepsilon})$.

- **Proof idea:** Create a window of size $(w^\varepsilon)^3$. This gives enough slack space to provide a place to shift each individual bit with no overlaps. Why? Because for each new bit, the possible conflicts you have to worry about depend purely on the other bits placed so far (fewer than $w^\varepsilon$), the other bits in the number (at most $w^\varepsilon$), and the offsets assigned to the other placed bits (at most $w^\varepsilon$). Therefore, there are fewer than $(w^\varepsilon)^3$ constraints, so having $(w^\varepsilon)^3$ slots suffices. From there, we multiply in one last factor of $w^\varepsilon$ replicating the window to ensure that the bits get spread out in the right order.

- Thanks to former CS166 student Jane Lange for this explanation!
Closing In on Fusion Trees

• Our goal is to build a data structure that holds $w^\varepsilon$ integers with $w$ bits each in a way that supports rank in time $O(1)$.
• Given $w^\varepsilon$ integers, we can do some preprocessing to form $w^{4\varepsilon}$-bit approximate Patricia codes for them.
• Storing those approximate codes requires $w^{5\varepsilon}$ bits.
• Observation: Suppose we pick $\varepsilon = \frac{1}{6}$. Then we can store all of those codes in a single machine word!

What is $w^{1/6}$ on a real computer?
We have a ways to go before this strategy will have any chance of being practical.
Fusion Trees

• A **fusion tree** is a B-tree augmented with the preceding strategy for computing ranks quickly.

• The B-tree has order $w^{1/6}$, so its height is $O(\log_w n)$.

• Since the rank of a key in a node can be computed in time $O(1)$, the cost of a lookup, predecessor, or successor operation is $O(\log_w n)$. 
Fusion Trees

- Here’s the final scorecard for fusion trees.
- Notice that `lookup` and `successor` queries are unconditionally asymptotically faster than a regular balanced BST!

<table>
<thead>
<tr>
<th>Action</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lookup</code></td>
<td>$O(\log_w n)$</td>
</tr>
<tr>
<td><code>insert</code></td>
<td>$O(\frac{w^{2/3}}{\log w} \log_w n)$</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>$O(\frac{w^{2/3}}{\log w} \log_w n)$</td>
</tr>
<tr>
<td><code>max</code></td>
<td>$O(\log_w n)$</td>
</tr>
<tr>
<td><code>succ</code></td>
<td>$O(\log_w n)$</td>
</tr>
<tr>
<td>Space</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>
Fusion Trees

- The mutating operations **insert** and **delete** are expensive.
- **Idea:** Adapt the technique from \( y \)-fast tries: rather than have one big fusion tree, have a bunch of smaller data structures linked together by fusion trees.

<table>
<thead>
<tr>
<th>The Fusion Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>lookup:</strong> ( O(\log_w n) )</td>
</tr>
<tr>
<td><strong>insert:</strong> ( O(w^{2/3} \log_w n) )</td>
</tr>
<tr>
<td><strong>delete:</strong> ( O(w^{2/3} \log_w n) )</td>
</tr>
<tr>
<td><strong>max:</strong> ( O(\log_w n) )</td>
</tr>
<tr>
<td><strong>succ:</strong> ( O(\log_w n) )</td>
</tr>
<tr>
<td><strong>Space:</strong> ( \Theta(n) )</td>
</tr>
</tbody>
</table>
Fusion Trees

- In 1996, Arne Andersson devised the *exponential tree*, a variation on fusion trees with these indicated runtimes.

- **Intuition:** Instead of having a constant branching factor at each level of the tree, have the branching factor decay exponentially.

- This still keeps the tree height low, but makes the amortized cost of each operation small.

---

The Exponential Tree

- **lookup:** $O(\log_w n)$
- **insert:** $O(\log_w n + \log \log n)^*$
- **delete:** $O(\log_w n + \log \log n)^*$
- **max:** $O(\log_w n)$
- **succ:** $O(\log_w n)$
- Space: $\Theta(n)$

* Amortized
A Cool Application: *Integer Sorting*
Integer Sorting

- Suppose you’re given a list of \( b \)-bit integers \( x_1, x_2, \ldots, x_n \) to sort.

- **Heapsort** takes time \( O(n \log n) \).
- **Base-2 radix sort** takes time \( O(nb) \).
- **Base-n radix sort** takes time \( O(nb / \log n) \).

- A **y-fast trie** takes expected time \( O(n \log b) \).
- An **exponential tree** takes time \( O(n \log_b n) \).
Integer Sorting

• These algorithms are asymptotically incomparable, since $b$ and $n$ are independent quantities.

$\log b = \log_b n$

$\log b = \frac{\log n}{\log b}$

$\log^2 b = \log n$

$\sqrt{\log n}$

$\sqrt{\log n}$

• **Question:** What is the crossover point?

$b = 2^{\sqrt{\log n}}$
Theorem: There is a randomized, $O(n \sqrt{\log n})$-time integer sorting algorithm.

Proof: If $b \leq 2^{\sqrt{\log n}}$, use exponential tree sort. Otherwise, use $y$-fast trie sort.

Question: What is the crossover point?
More to Explore

- In 1994, Fredman and Willard (the creators of the fusion tree) invented the **AF-heap**, a variation on a Fibonacci heap with *extract-min* taking time $O(\log n / \log \log n)$ and used it to get a linear time algorithm for computing minimum spanning trees.

- In 1995, Andersson et al adapted the size-reduction techniques from fusion trees to develop **signature sort**, a randomized sorting algorithm for integers. Assuming $w = \log^{2+\varepsilon} n$, it runs in expected time $O(n)$. (Want to learn more? Your classmates are presenting signature sort next Monday morning!)

- In 1997, using the linear-time MST algorithm, Thorup developed a **linear-time algorithm** for undirected SSSP.

- In 2002, Han developed a deterministic $O(n \log \log n)$-time algorithm for integer sorting that uses only linear space, and with Thorup developed a randomized $O(n \sqrt{\log \log n})$-time algorithm for integer sorting that only uses linear space.

- In 2002, Andersson and Thorup developed a deterministic, worst-case efficient integer ordered dictionary with each operation costing $O(\sqrt{\frac{\log n}{\log \log n}})$, which is provably optimal under reasonable assumptions.
Next Time

- **Where to Go From Here**
  - General recap, final thoughts, and looking to the future!