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In last lecture, we introduced the notion of the Laplacian matrix, L, associated to a graph.
We defined it as L = D − A, where D is the diagonal matrix with element Di,i defined as
the degree of the ith node, and A as the adjacency matrix of the graph. The key insight,
which provided an intuitive understanding of the eigenvectors/eigenvalues of the Laplacian,
was the calculation characterizing the associated quadratic form vTLv as corresponding to
assigning value v(i) to the ith node in the graph, and then summing the squares of the
differences in entries, across all edges of the graph:

vTLV =
∑

(i,j)∈edges

(vi − vj)
2.

This characterization led to our understanding that the eigenvectors of L with small eigen-
value tend to give similar values to neighboring nodes, and the eigenvectors with largest
eigenvalues tend to give different values to neighboring nodes. These observations motivated
using spectral embeddings that use the small eigenvectors for applications like 1) visual-
ization, or 2) “spectral clustering”. In contrast, embedding onto the largest eigenvectors
is useful for applications like k-coloring, where neighboring vertices should be assigned to
different sets/colors.

1 Conductance, isoperimeter, and the second eigen-

value

Last lecture, we leveraged the characterization of the quadratic form vTLv to prove that the
multiplicity of the zero eigenvalue is the number of connected components. Based on this,
it seems intuitively clear that if λ2 is extremely small, then the graph might be “close” to
having two connected components, in the sense that there is a way of partitioning the nodes
of the graph into two sets, with very few edges crossing from one set to the other. We now
formalize this connection between λ2, and the quality of the best such partition.

∗©2015–2024, Tim Roughgarden and Gregory Valiant. Not to be sold, published, or distributed without
the authors’ consent.

1



There are several natural metrics for quantifying the quality of a graph partition. We
will state two such metrics. First, it will be helpful to define the boundary of a partition:

Definition 1.1 Given a graph G = (V,E), and a set S ⊂ V , the boundary of S, denoted
δ(S) is defined to be the set of edges of G with exactly one endpoint in set S.

One natural characterization of the quality of a partition (S, V \S) is the isoperimetric
ratio of the set, defined to be the ratio of the size of the boundary of S to the minimum of
|S| and |V \S| :

Definition 1.2 The isoperimetric ratio of a set S, denoted θ(S), is defined as

θ(S) =
|δ(S)|

min(|S|, |V \S|)
.

The isoperimetric number of a graph G is defined as θG = minS⊂V θ(S).

A related notion of the quality of a partition, is the conductance, which is the ratio of
the size of the boundary δ(S) to the minimum of the number of edges involved in S and the
number involved in V \S (where an edge is double-counted if both its endpoints lie within
the set). Formally, this is the following:

Definition 1.3 The conductance of a partition of a graph into two sets, S, V \S, is defined
as

cond(S) =
|δ(S)|

min(
∑

i∈S degree(i),
∑

i ̸∈S degree(i))
.

1.1 Connections with λ2

There are connections between the second eigenvalue of a graph’s Laplacian and both the
isoperimetric number as well as the minimum conductance of the graph. The following
surprisingly easily proved theorem makes the first connection rigorous:

Theorem 1.4 Given any graph G = (V,E) and any set S ⊂ V , θ(S) ≥ λ2(1− min(|S|,|V \S|)
|V | ).

Which implies that the isoperimetric number of the graph satisfies:

θG ≥ λ2/2.

Proof: Because the isoperimetric number of a set S is the same as that of its complement,
V \S, consider a set S and assume, without loss of generality, that |S| ≤ |V |/2. Consider the
associated vectors vS defined as follows:

vS(i) =

{
1− |S|

|V | if i ∈ S

− |S|
|V | if i ̸∈ S
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We now compute
vtSLvS
vtSv

. First, we consider the numerator:

vtSLvs =
∑

i<j:(i,j)∈E

(vS(i)− vS(j))
2 = |δ(S)|,

since the only terms in this sum that contribute a non-zero term correspond to edges with
exactly one endpoint in set S, namely the boundary edges. We now calculate vtSvS =

|S|(1− |S|
|V |)

2 + (|V | − |S|)( |S||V |)
2 = |S|(1− |S|

|V |).

Hence we have shown that
vtSLvS
vtSvS

= |δ(S)|
|S|(1− |S|

|V | )
. On the other hand, we also know that∑

i vS(i) = 0, hence ⟨vS, (1, 1 . . . , 1)⟩ = 0. Recall that

λ2 = min
v:⟨v,(1,...,1)⟩=0

vtLv

vtv
≤ vtSLvS

vtSvS
=

|δ(S)|
|S|(1− |S|

|V |)
.

Multiplying both sides of this inequality by (1− |S|
|V |) yields the theorem. ■

What does Theorem 1.4 actually mean? It says that if λ2 is large (say, some constant
bounded away from zero), then all small sets, S, have lots of outgoing edges—linear in
|S|. For example, if λ2 ≥ 1/2, then for all sets S with |S| ≤ |V |/4, we have that θ(S) ≥
1
2
(1− 1/4) = 3/8, which implies that |δ(S)| ≥ 3

8
|S|.

There is a partial converse to Theorem 1.4, known as Cheeger’s Inequality, which argues
that if λ2 is small, then there exists at least one set S, such that the conductance of the
set S is also small. Cheeger’s inequality is usually formulated in terms of the eigenvalues of
the normalized Laplacian matrix, defined by normalizing entry L(i, j) by 1/

√
deg(i) · deg(j).

Rather than formally defining the normalized Laplacian, we will simply state the theorem
for regular graphs (graphs where all nodes have the same degree):

Theorem 1.5 (Cheeger’s Inequality) If λ2 is the second smallest eigenvalue of the Lapla-
cian of a d-regular graph G = (V,E), then there exists a set S ⊂ V such that

λ2

2d
≤ cond(S) ≤

√
2λ2√
d

.

1.2 Beyond λ2?

Is there an analog of Theorem 1.4 and Cheeger’s inequality that applies to λ3, or higher
eigenvalues? If λk = 0, we know the graph has k connected components, and hence it is
tempting to conclude that if λk is nonzero, but small, the graph should have a partition into
k pieces with few edges crossing between partitions. In some sense, this has been well-known
empirically, though it was only in the past decade that rigorous analogs of “higher order”
Cheeger’s inequality were established [1], and this is an area of active research.
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2 Random walks and diffusion on graphs

Beyond their use for graph partitioning and visualization, the eigenvalues and eigenvectors
of a graph arise naturally when considering random processes on graph. Below, we describe
one concrete model of diffusion over a graph, and give a high-level discussion of how the
eigenvalues and eigenvectors connect to this process. Next week, when we discuss Markov
Chains, we will expand on some of these connections.

Consider the following basic model of diffusion, which models a variety of biological
phenomena, as well as how beliefs, political views, cultural norms, etc. spread in a social
network: Let A denote the adjacency matrix of a graph, G = (V,E) with |V | = n, and
assume that at time t = 1, the vector v1 has entries corresponding to the initial views of
each of the n nodes. (For example, let v1(i) ∈ (0, 1) represent how strongly person i believes
that people should wear masks in grocery stores.) Consider the following dynamics: at each
time t > 1, the views of each node are replaced by the average of the views that their
neighbors had at time t− 1. Formulating this update as a matrix product, we have:

vt+1 = D−1Avt,

where D−1 denotes the diagonal matrix whose ith diagonal entry is 1/deg(i).
These dynamics do not necessarily converge in the limit as t gets large: for a network with

just two people with an edge between them, they will “swap” their views at each timestep.
Nevertheless, if the dynamics do eventually converge to a vector, v, we know that vector
must satisfy v = D−1Av, and hence v will be an eigenvector of D−1A with eigenvalue 1!!

In the case where this convergence happens, how quickly will it be expected to occur?
Namely, how large a value of t will be necessary for vt ≈ v? Recall from our analysis of the
power iteration algorithm from Lecture 8, that the diffusion update defined above is simply
performing the power iteration algorithm that computes the top eigenvector of D−1A—the
only difference is that in the power iteration algorithm, we choose a uniformly random unit
vector as the initial vector, whereas in the above dynamics, the initial vector v1 corresponds
to the initial “views” of the corresponding nodes. In our analysis of the power iteration
algorithm, we saw that the ratio of the largest to second largest eigenvalues determined how
quickly we would expect the dynamics to converge to the top eigenvector. (If the eigenvalues
are very close, then we will need to run for more iterations.)

At a high level, if the dynamics are run on a well-connected graph, then 1) they will
converge quickly (if they do actually converge) 2) the ratio of the largest to second largest
eigenvalue of D−1A will be large, and 3) the second smallest eigenvalue of the Laplacian
will be large. Conversely, if the graph is not well-connected (e.g. a graph consisting of two
clusters with only a single edge crossing between them), then the dynamics will converge
slowly, the second largest eigenvalue of D−1A will be similar to the largest, and the second-
smallest eigenvalue of the graph Laplacian will be close to zero. These high-level principles
will be useful to keep in mind next week, as we discuss Markov Chains and Markov Chain
Monte Carlo (MCMC).
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