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1 Introduction

In this lecture, we’ll consider a type of online decision making, where at each step t = 1, . . . T ,
you are presented with some data, and tasked with making a decision on the fly. Consider
the following concrete setting, called the Learning with Experts problem.

In Learning with Experts, there are N experts, and each day t = 1, . . . T , each expert
predicts the answer to a “Yes” or “No” question, such as “Will it rain today?”. On each day,
after seeing the expert opinions, the algorithm must make some prediction “Yes” or “No”.
The goal is to make as few mistakes as possible over the T days.

If all the experts are unhelpful, for example outputting random guesses at each step, then
we cannot expect any algorithm that makes predictions based on the expert advice to output
predictions better than with 50% accuracy. As we will see, however, it will be possible to
perform comparably to best expert in hindsight, providing the time horizon, T is sufficiently
large.

Our results will be formulated in terms of how well our algorithm performs, in comparison
to the performance of the best single expert. Formally, we will consider the regret, defined as:

Reg(T ) := #mistakes made by alg−#mistakes made by best expert. (1)

To gain some intuition for why achieving a small regret (say, one that scales sublinearly
in T ) might be possible, consider the setting where there is one expert that always predicts
the correct answer, while all the other experts output a random answer. In this case, our
algorithm could listen to the advice of any expert that has made no mistakes so far. After
log(N) timesteps, we can expect that all the bad experts will have made a mistake, and thus
for the remaining time, we will listen to the correct expert. In this case, we will achieve a
regret of log(N), which doesn’t even scale with T !

While we can’t always achieve this good of a regret, a more general idea of up-weighting
the opinion of experts that have made few mistakes, and down-weighting the opinion of
experts that have made many mistakes turns out to work well. In this lecture, we’ll see an
algorithm called Multiplicative Weights which can achieve the following regret guarantee:

Theorem 1.1 The Multiplicative Weights algorithm (MW) achieves:

#mistakes made by MW−#mistakes made by best expert ≤ 2
√

T log(N). (2)
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One useful aspect of this result is that it works even if the correct answer at each step is
adversarially chosen. That is, in the case of predicting rain, the skies would be able to
decide to open or close depending on both the predictions of the experts and knowledge of
the algorithm’s strategy. We’ll discuss this more later.

Applications The multiplicative weights update (MW) strategy which we will see in this
lecture has been rediscovered many times in various fields of computer science and operations
research.

Although we pitched MW as being motivated by online decision making, the applications
of MW go far beyond what one might think of as online decision making. It turns out many
problems can be solved via an online/iterative approach, where the solution is progressively
improved by up-weighting various desiderata for a solution via MW, and using these weights
to update the current solution. Its not always straightforward to see the connection between
the Learning with Experts game and the application, since the objects that MW are applied
to may not seem like “experts”.

1. Game Theory One of the first uses of MW was in finding Nash equillibria of two-
player zero-sum games. Here the game is represented by a m × n payoff matrix,
and the row (resp. column) player must choose a distribution over the m (resp n)
strategies. Here MW is used in a alternating fashion by the two players to update
their distributions over strategies, which in this case are the “experts”.

2. Learning Theory. The most well-known use for MW is learning theory is the Adaboost
algorithm, which is a way designing a strong binary classifier (say that classifies the
data with 90% accuracy) from many weak classifiers (which perform only slightly better
than a random guess). Prior to the discovery of Adaboost, MW was used to design the
Winnow algorithm for linear classification. In both algorithms, the classifier is learned
in an iterative fashion, where at each step, the data samples that are misclassified are
up-weighted using MW, and the classifier is updated to better fit the new distribution
over data samples.

3. Optimization. The MW algorithm can be used to solve various convex optimization
problems, including linear programs. We will see this in Lecture #18. Here the MW
algorithm is used to track a distribution over constraints, where the violated constraints
are up-weighted.

4. Bandits Variants of MW (see the Exp3 algorithm) can be used in bandit feedback
setting where you don’t get to see the loss of each expert (“arm”) at every round, but
rather only the loss of the expert which the algorithm chose to follow.

2



2 Learning with Experts: Formally & More General

Setting

Recall the Learning with Expert problem we introduced.

Learning with Experts Game.
For t = 1, . . . , T :

1. The experts are presented with a “Yes” or “No” question.

2. Each expert predicts an answer “Yes” or “No”.

3. The algorithm chooses a distribution pt (so pt(i) = probability of listening to expert
i).

4. The adversary reveals some correct answer “Yes” or “No” to the question.

5. The algorithm samples an expert according to the distribution pt, and follows that
expert’s prediction.

The total regret is the total number of mistakes made by the algorithm minus the number
of mistakes made by the best expert.

More generally, learning from experts can capture a setting beyond binary “Yes” or ”No”
advice, where instead of each expert either being correct or incorrect at step t, each expert
i incurs some loss ℓt(i) which is bounded in [−1, 1]. The Yes/No experts is a special case of
this where the loss is 1 if the expert made a mistake, and 0 otherwise.

General Learning with Experts Game.
For t = 1, . . . , T :

1. The algorithm chooses a distribution pt (so pt(i) = probability of listening to expert
i).

2. The adversary reveals some loss on all the experts ℓt(i) for i ∈ 1, . . . , N , which may
depend on pt.

3. The algorithm incurs the loss Ei∼ptℓt(i)

The total regret is
∑T

t=1 Ei∼ptℓt(i)−mini∈[N ]

∑T
t=1 ℓt(i).
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3 Algorithms for Learning with Experts

We’ll work through a few candidate ideas for Learning with Experts to gain some intuition
for the MW algorithm.

Follow-the-leader (FTL) algorithm. Choose the expert who has made the least mis-
takes (or incurred the least loss) up until time t.

Problem: Loss function could be chosen such that the algorithm always messes up. Eg.,
consider the following round-robin loss function. At time t = 0, the loss is i/N on expert i.
For t > 1, the loss is given by

ℓt(i) =

{
1 t = i+ 1 mod N

0 otherwise.

Then after step t, expert t mod N will have the least cumulative loss, so FTL will choose
expert t − 1 mod N at step t, incurring a loss of 1. Thus the total loss incurred by the
algorithm after T steps is T , while the best possible loss in hindsight is at most T

N
+1. This

does not lead to sublinear regret.

Weight Experts Linearly by their Performance. Choose expert i with probability

pt(i) ∝ #correct predictions by expert i up to time t− 1 . (3)

Problem: the weight on bad experts doesn’t decay quickly enough. Eg., suppose we were
in the Yes/No prediction setting with 2 experts, and one expert had success rate 100%,
while the second had success rate 50%. Then on average, we will pick the bad expert with
probability 1/2

1+1/2
= 1

3
, leading to roughly T/6 mistakes, which is large relative to the best

expert which makes 0 mistakes.

Multiplicative Weights Update. The above strategies suggests that we should: (1) Use
a randomized strategy and (2) more aggressively dismiss experts with large losses.

The multiplicative weight algorithm will maintain a vector wt ∈ RN which tracks the
relative weights of the algorithm’s confidence in each expert. At each step t, we will decay
the weight multiplicatively with the loss attained by each expert. The strength of the decay
is governed by a parameter ϵ.

Multiplicative Weights Update (MW).
Initialize wt(i) = 1 ∀ i ∈ [N ].
For t = 1, . . . , T :

1. Let pt(i) =
wt(i)
Φt

, where Φt :=
∑

i wt(i).

2. Observe losses ℓt(i), and update wt+1(i) = wt(i)e
−ϵℓt(i) for each i ∈ [N ].
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Before analyzing the above algorithm, we first consider a related, simpler algorithm/analysis
which applies to the setting of binary (Yes/No) predictions. In this simpler setting, we will
analyze the Weighted Majority algorithm applied to weights wt(i) = 2−#experts i’s mistakes—
namely where the weight of expert i is halved each time expert i makes a mistake. While
this doesn’t achieve as good of a bound as the more general MW algorithm, we will analyze
it first since the proof has the same structure though is simpler/cleaner.

4 Analysis of Weighted Majority

The following theorem guarantees that the number of mistakes of the weighted algorithm is
at most a small factor times the number of mistakes of the best expert.

Theorem 4.1 The weighted majority algorithm achieves the following guarantee, for every
expert i,

#mistakes weighted majority ≤ 2.41(#mistakes expert i+ log2(N)) (4)

Proof: To prove this theorem we will use a potential function argument, which tracks the
value of the potential function Φt =

∑N
i=1wt(i).

The idea of our argument will be to show that if weighted majority (WM) makes a
mistake, then Φt will have to decay significantly. However, since Φt must be at least as large
as wt(i) for each i, if there is an expert i with good performance, wT (i), and thus ΦT will be
relatively large. We will use these two points together to show that MW cannot make too
many mistakes.

More formally, observe the following:

1. Φ1 = N , since all weights start at 1.

2. wT (i) =
(
1
2

)#i’s mistakes
.

3. If WM makes a mistake at step t, then Φt+1 ≤ 3
4
Φt. This is because at least half of

the total weight of Φt corresponds to experts that were wrong. So at least half of the
weight gets halved.

Telescoping the 3rd bullet, and then plugging in (1) we have

ΦT ≤ Φ1

(
3

4

)#WM’s mistakes

= N

(
3

4

)#WM’s mistakes

. (5)

Thus since ΦT ≥ wT (i) for any i, we have(
1

2

)#i’s mistakes

≤ N

(
3

4

)#WM’s mistakes

. (6)
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Taking log (base 2) on both sides, we have

−#i’s mistakes ≤ log2(N) + log2

(
3

4

)
#WM’s mistakes (7)

Rearranging yields the theorem. ■

5 Analysis of Multiplicative Weights Update

The following theorem guarantees that the total regret of the MW algorithm relative to the
loss of the best expert scales with 2

√
T log(N). The proof follows the high level proof of the

simplified version above.

Theorem 5.1 The MW algorithm with parameter ϵ ≤ 1 achieves

T∑
t=1

Ei∼ptℓt(i)− min
i∈[N ]

T∑
t=1

ℓt(i) ≤ Tϵ+
log(N)

ϵ
. (8)

Setting ϵ =

√
log(N)
√
T

yields a regret of 2
√

T log(N).

Proof: To prove this theorem we will use the same potential function argument as in the
binary case, which tracks the value of Φt =

∑N
i=1wt(i).

The idea of the argument is the same as in the binary case above: if MW obtains a high
loss, then Φt will have to decay significantly. However, if there is an expert i with good
performance, than Φt must be at least as large as wt(i), that is

wt(i) =
T∏
t=1

exp(−ϵℓt(i)) = exp

(
−ϵ

T∑
t=1

ℓi(t)

)
. (9)

Thus MW cannot obtain a high loss too many times.
To formalize this, we consider how much Φt decays each step. For each t, we have

Φt+1 =
N∑
i=1

wt+1(i) (10)

=
N∑
i=1

wt(i) exp(−ϵℓt(i)) (11)

(12)
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Since e−x ≤ 1− x+ x2, this is at most

N∑
i=1

wt(i)
(
1− ϵℓt(i) + ϵ2ℓt(i)

2
)

(13)

≤
N∑
i=1

wt(i)
(
1− ϵℓt(i) + ϵ2

)
(14)

= (1 + ϵ2)
N∑
i=1

wt(i)− ϵ

N∑
i=1

wt(i)ℓt(i) (15)

= (1 + ϵ2)Φt − ϵΦt

N∑
i=1

pt(i)ℓt(i) (16)

= Φt

(
1 + ϵ2 − ϵ⟨pt, ℓt⟩

)
(17)

≤ Φt exp(ϵ
2 − ϵ⟨pt, ℓt⟩) (18)

Here we have denoted ⟨pt, ℓt⟩ =
∑N

i=1 pt(i)ℓt(i), and in the last line, we used the fact that
1− x ≤ e−x.

Summarizing, we have the following bound on the decay of Φt at each step:

Φt+1 ≤ Φt exp(ϵ
2 − ϵ⟨pt, ℓt⟩). (19)

Telescoping bound over all T steps, we have that

ΦT ≤ Φ1

T∏
t=1

exp(ϵ2T − ϵ⟨pt, ℓt⟩) = Φ1 exp

(
ϵ2T − ϵ

T∑
t=1

⟨pt, ℓt⟩

)
(20)

= N exp

(
ϵ2T − ϵ

T∑
t=1

⟨pt, ℓt⟩

)
. (21)

Here in the second line we plugged in Φ1 = N , since all the weights start at 1.
Now recall from Equation 9 that for any expert i, we have Φt ≥ wt(i). Combining this

with the equation above, we have

exp

(
−ϵ

T∑
t=1

ℓi(t)

)
≤ ΦT ≤ N

T∏
t=1

exp(ϵ2T − ϵ⟨pt, ℓt⟩) (22)

Taking logarithms yields

−
T∑
t=1

ℓi(t) ≤ log(N) + ϵ2T − ϵ
T∑
t=1

⟨pt, ℓt⟩, (23)

and thus
T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓi(t) ≤ ϵT +
log(N)

ϵ
, (24)

as desired. ■
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Remark 5.2 If the losses are instead bounded between [−ρ, ρ], then by scaling down the
losses by a factor of ρ, we achieve the guarantee

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓi(t) ≤ ρϵT +
ρ log(N)

ϵ
. (25)
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