CS168, Spring 2017

Mini-Project #1
Due by 11:59 PM on Tuesday, April 11th.

You can work individually or with one partner. If you work in a pair, both partners will receive the
same grade.

Detailed submission instructions are at the course website (http://cs168.stanford.edu) under the
“Coursework - Assignment” section. If you work in pairs, only one member should submit all of the
relevant files.

Use 12pt or higher font for your writeup.
Make sure the plots you submit are easy to read at a normal zoom level.

If you’ve written code to solve a certain part of a problem, or if the part explicitly asks you to implement
an algorithm, you must also include the code in your pdf submission.

Code marked as “Deliverable” should be pasted into the relevant section. Keep variable names con-
sistent with those used in the problem statement, and with general conventions. No need to include
import statements and other scaffolding, if it is clear from context. Use the verbatim environment to
paste code in LaTeX.

def example():
print "Your code should be formatted like this."

Reminder: No late assignments will be accepted, but we will drop your lowest mini-project grade
when calculating your final grade.

Part 1: The Power of Two Choices

Goal: The goal of this part of the assignment is to gain an appreciation for the unreasonable effectiveness
of simple randomized load balancing, and measure the benefits of some lightweight optimizations.

Description: We consider random processes of the following type: there are N bins, and we throw N balls
into them, one by one. We’ll compare four different strategies for choosing the bin in which to place a given

ball.
1.
2.

Select one of the N bins uniformly at random, and place the current ball in it.

Select two of the N bins uniformly at random (either with or without replacement), and look at how
many balls are already in each. If one bin has strictly fewer balls than the other, place the current ball
in that bin. If both bins have the same number of balls, pick one of the two at random and place the
current ball in it.

Same as the previous strategy, except choosing three bins at random rather than two.

Select two bins as follows: the first bin is selected uniformly from the first N/2 bins, and the second
uniformly from the last N/2 bins. (You can assume that N is even.) If one bin has strictly fewer balls
than the other, place the current ball in that bin. If both bins have the same number of balls, place
the current ball (deterministically) in the first of the two bins.

(5 points) Write code to simulate strategies 1-4. For each strategy, there should be a function that
takes the number N of balls and bins as input, simulates a run of the corresponding random process,
and outputs the number of balls in the most populated bin (denoted by X below).
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(b) (10 points) Let N = 200,000 and simulate each of the four strategies 30 times. For each strategy, plot
the histogram of the 30 values of X E| Discuss the pros and cons of the different strategies. Does one
of them stand out as a “sweet spot”?

(¢) (5 points) Propose an analogy between the first of the random processes above and the standard
implementation of hashing N elements into a hash table with N buckets, and resolving collisions via
chaining (i.e., one linked list per bucket). Discuss in particular any relationships between X and search
times in the hash table.

(d) (5 points) Do the other random processes suggest alternative implementations of hash tables with
chaining? Discuss the trade-offs between the different hash table implementations that you propose
(e.g., in terms of insertion time vs. search time).

Deliverables:  Your code for part (a); your histograms for part (b); your written answers to parts (c)
and (d).

Part 2: Conservative Updates in a Count-Min Sketch

Goal: The goal of this part is to understand the count-min sketch (from Lecture #2) via an implementa-
tion, and to explore the benefits of a “conservative updates” optimization.

Description: You'll use a count-min sketch with 4 independent hash tables, each with 256 counters. Your
sketch should take a “trial” as input, and the hash value of an element x during trial i (i = 1,2,...,10) for
table j (j =1,2,3,4) is calculated as follows:

e Consider the input x as a string, and append i — 1 as a string to the end of the string.

e Calculate the MD5 score of the resulting stringﬂ Do not implement the MD5 algorithm yourself; most
modern programming languages have packages that calculate MD5 scores for you. For example, in
Python 3, you can use the hashlib library and hashlib.md5(foo.encode(’utf-8’)) .hexdigest ()
to compute the MD5 score of the string foo (returning a hexidecimal string).

e The hash value is the j-th byte of the score.

As an example, to compute the hash value of 100 in the 4th table of the 9th trial, we calculate the MD5
score of the string “1008,” which is (in hexidecimal):

15 87 96 5f b4 d4 b5 af e8 42 8a 4a 02 4f eb 0d
The 4th byte is 5f in hexidecimal, which is 95 in decimal.

(a) (5 points) Implement the count-min sketch, as above.

You will be feeding data streams (i.e., sequences of elements) into count-min sketches. Every element of
each stream is an integer between 1 and 9050 (inclusive). The frequencies are given by:

e Integers 1000 - (i — 1) + 1 to 1000 - 7, for 1 < i <9, appear ¢ times in the stream. That is, the integers
1 to 1000 appear once in the stream; 1001 to 2000 appear twice; and so on.

e An integer 9000 + ¢, for 1 < i < 50, appears 32 times in the stream. For example, the integer 9050
appears 2500 times.

(Each time an integer appears in the stream, it has a count of 1 associated with it.)

(b) (2 points) Call an integer a heavy hitter if the number of times it appears is at least 1% of the total
number of stream elements. How many heavy hitters are there in a stream with the above frequencies?

1For example, in Python, the numpy and matplotlib.pyplot libraries are useful for creating histograms. See the course Web
site for some starter code you can use and modify as necessary.
2See http://en.wikipedia.org/wiki/MD5.
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Next, you will consider 3 different data streams, each corresponding to the elements above in a different
order.

1. Forward: the elements appear in non-decreasing order.
2. Reverse: the elements appear in non-increasing order.

3. Random: the elements appear in a random order.

(c) (6 points) For each of the three data streams, feed it into a count-min sketch (i.e., successively insert
its elements), and compute the values of the following quantities, averaged over the 10 trials, for each
order of the stream:

— The sketch’s estimate for the frequency of element 9050.
— The sketch’s estimate for the number of heavy hitters (elements with estimated frequency at least
1% of the stream length).

Does the order of the stream affect the estimated counts? Explain your answer.

(d) (3 points) Implement the conservative updates optimization, as follows. When updating the counters
during an insert, instead of incrementing all 4 counters, we only increment the subset of these 4 counters
that have the lowest current count (if two or more of them are tied for the minimum current count,
then we increment each of these).

(e) (3 points) Explain why, even with conservative updates, the count-min sketch never underestimates
the count of a value.

(f) (6 points) Repeat part (c) with conservative updates.

Deliverables: Your code for parts (a) and (e); your written answers to parts (b), (¢), (d), and (f).



