
CS168, Spring 2024

Mini-Project #8

Due by 11am on Thursday, May 30th.

Instructions

• You can work in groups of up to four students. If you work in a group, please submit one assignment
via Gradescope (with all group members’ names).

• Detailed submission instructions can be found on the course website (https://web.stanford.edu/
class/cs168) under “Coursework - Assignments” section.

• Use 12pt or higher font for your writeup.

• Make sure the plots you submit are easy to read at a normal zoom level.

• If you’ve written code to solve a certain part of a problem, or if the part explicitly asks you to implement
an algorithm, you must also include the code in your pdf submission. You do not need to mark the
pages having the code when you mark pages containing answers to questions on Gradescope.

• Code marked as Deliverable should be pasted into the relevant section. Keep variable names consistent
with those used in the problem statement, and with general conventions. No need to include import
statements and other scaffolding, if it is clear from context. Use the verbatim or minted environments
to paste code in LATEX.

def example():

print "Your code should be formatted like this."

• Reminder: No late assignments will be accepted, but we will drop your lowest assignment grade.

1. Fourier Transforms. Recall that the discrete Fourier transform of a length N vector/signal f is a
length N complex-valued vector/signal F whose mth coordinate is defined to be

F[m] =

N−1∑
j=0

f [j]e−2πimj/N , m = 0, 1, . . . , N − 1

We denote the Fourier transform of a vector f by Ff , and use F−1 to denote the inverse transformation.
Hence for F as defined above, we have F = Ff and f = F−1F.

(14 points) For each vector/signal depicted in the left column, 1) draw a line connecting it with the plot
on the right of the magnitude of its (discrete) Fourier transform, and 2) write one sentence justifying
your answer in a high-level intuitive way (e.g. “The Fourier transform of random noise is usual BLAH,
and the plot at left looks like random noise and the plot at right looks like BLAH.”). So that you need
to look at the shapes of the plots, the scale on the y-axis of the plots in the right column have been
removed.
Deliverables: For each of the 7 plots on the left: an index of the corresponding plot on the right,
and one sentence explanation.

1

https://web.stanford.edu/class/cs168
https://web.stanford.edu/class/cs168

0 10 20 30
0

0.5
1

0 10 20 30

0 10 20 30
0

0.5
1

0 10 20 30

0 10 20 30
0

0.5
1

0 10 20 30

0 10 20 30
−1
0
1

0 10 20 300 10 20 30
0
2
4

0 10 20 30

0 10 20 30
0

0.5
1

0 10 20 30

0 10 20 300 10 20 30
0

0.5
1

0 10 20 30

0 10 20 30
0

0.5
1

0 10 20 30

0 10 20 30
0

0.5
1

0 10 20 30

0 10 20 30
0

0.5
1

0 10 20 30

0 10 20 30
−1
0
1

0 10 20 300 10 20 30
0
2
4

0 10 20 30

0 10 20 30
0

0.5
1

0 10 20 30

0 10 20 300 10 20 30
0

0.5
1

0 10 20 30

2

2. Convolution.

Given an N -tuple f and an M -tuple g, define their convolution f ∗ g to be the (M +N − 1): 1

(f ∗ g)[k] =
N−1∑
j=0

f [j]g[k − j].

(This definition is equivalent to the definition in class in terms of polynomial multiplication.)

(a) (4 points) Given a six-sided die, let p be a 6-tuple where p[i] denotes the probability that i + 1
appears. Let q = p ∗ p ∗ · · · ∗ p︸ ︷︷ ︸

100 times

. What event occurs with probability q[150]? [Assume zero-index

vectors.] Hint: first start by considering what each entry of q′ = p ∗ p corresponds to.

(b) (4 points) Given an N -tuple f , define f+ to be the 2N−1-tuple obtained by padding f with zeros:

f+[i] =

{
f [i] if 0 ≤ i ≤ N − 1

0 if N ≤ i ≤ 2N − 2

In this part, you will leverage the definitions of convolution and the Fourier transform to verify
that convolution is multiplication under the Fourier transform: for any two N -tuples f and g,
show that

,F(f ∗ g) = Ff+ · Fg+,

where · denotes element-wise multiplication. Here, prove this by directly applying the definitions
of the Fourier transform and convolution (stated at the beginning of this problem), and simplifying
the expression. [You should not just quote the lecture notes—you must write out the calculation
explicitly.] What is the analogous statement if the two vectors in question had different lengths?

(c) (5 points) Using the Fast Fourier Transform (and its inverse transform), write a methodmultiply(x, y)
that takes in two arrays of digits, each representing an integer 0 through 9 (lower indices rep-
resent lower digits), and return an array that represents the product of the two integers. For
example, the output of [0, 1, 2, 3] and [4, 5, 6] should be [0, 4, 3, 9, 9, 0, 2], representing the fact that
3, 210× 654 = 2, 099, 340. Using your code, what is the product of the following two numbers:

x = 12345678901234567890, and y = 987654321098765432109876543210?

[For this part, please embed your actual code in the solution, instead of including it in the
appendix. Do not directly use convolution functions in your code.]

(d) (3 points) Compare the asymptotic run-time of this multiplication algorithm to that of the naive
grade-school integer multiplication algorithm. Feel free to refer to the runtime of the Fast Fourier
Transform.

(e) (3 points) For your implementation for part (c), roughly how many digits long can the inputs be
for your method to return accurate results? Justify your response via experiments and a discussion
of the Fourier transform and the known limitations of your program environment (i.e. number of
significant bits stored, etc.).

Deliverables: answer for (a); calculation, and analogous conclusion for unequal vectors for (b); code
and answers for (c); discussion for (d) and (e).

1We define g[k − j] = 0 when k − j < 0, or when k − j ≥ length(g).

3

3. The Sound of Fourier Transform. In this part, we explore how Fourier transform can help us
understand human sounds. In 2018, the Laurel/Yanny audio clip ignited the internet. Some people
hear the clip play as “Laurel” and some hear it as “Yanny”. Several news outlets posted explanations
of the different perceptions, and made tools that let you perceive both interpretations. In this problem,
you’ll load the Laurel/Yanny audio clip, and process it in several ways that accentuate the “Laurel”
or “Yanny” perceptions.

It is easy to load an audio file, such as the LaurelYanny.wav file we provide, into a Matab or Python
numpy array. In both cases, you also need to keep track of the “sample rate” of the file, which
corresponds to the number of datapoints per second. In Matlab, you can do this by:

[data , sampleRate] = audioread (‘ l au r e l yanny . wav ’)

If you’re working with Python, you can load a .wav file as a numpy array in the following way:

import s c ipy . i o . wav f i l e as wav f i l e
import numpy as np

with open(” l au re l yanny . wav” , ” rb”) as f :
sampleRate , data = wav f i l e . read (f)

You can also listen to the sound represented by an array. The Matlab command soundsc(data, sampleRate)

will play the waveform, sampled at a rate of sampleRate over your computer speakers. If you’re using
Python, you’ll need to save the signal array as a .wav file and then listen to the file:

data = (data ∗ 1 .0/np .max(np . abs (data))∗32767) . astype (np . in t16)
with open(” output . wav” , ”wb”) as f :

wav f i l e . wr i t e (f , sampleRate , data)

Exercises:

(a) (0 points) Download and play the laurel/yanny recording. What do you hear? Most people hear
“Laurel” or “Yanny”/“Yarry” or both.

(b) (1 point) Load the signal into an array using the instructions above and plot the waveform/signal
that this 43,008 point array represents. (You will have a plot where the x-axis of the plot is time,
and the y-axis is the physical position/displacement of the speaker cone.)

(c) (3 point) Take the discrete Fourier transform of the signal, and plot the real number corresponding
to the magnitude/amplitude of each coefficient of the Fourier transform. Describe what you see
in words. Why should you expect this?

(d) (4 points) Plot the “spectrogram” of the signal, which illustrates how the amount of high/low
frequencies change over the course of the audio clip. Specifically, chop the signal up into 500-
sample long blocks, and compute the Fourier transform for each chunk. Plot a heatmap (in
Python, plt.imshow() with cmap=’hot’; in Matlab, imagesc()) where the x axis corresponds to
the index of the chunk, and the y values corresponds to frequencies, and the value at location x, y
corresponds to the magnitude of the yth Fourier coefficient for the xth chunk. Since frequencies
beyond the 80th Fourier coefficient are too high for humans to hear, the y-axis should just go
from 1 to 80. Turn in this spectogram—you should see some curious structure. (If the contrast is
too low to see clearly, take the logarithm of each entry before plotting it....)

(e) (3 points) You will now change the signal to sound more like “Laurel” or, more like “Yanny”. To
start, take the original audio, and try 1) zeroing out all “high” frequencies—frequencies above
a certain threshold t, and 2) zeroing out all frequencies below t. [Literally set all high Fourier
coefficients to 0, then take the inverse transform. You will likely need to keep only the real-valued
part of the signal in order for it to play on your speakers.] Is there a threshold t such that
the “low” frequency version sounds like “Laurel” and the “high” frequency version sounds like
“Yanny/Yarry” to you? If so, state what this frequency is.

4

(f) (3 points) Try changing the playback speed (by multiplying the “sampleRate” by values in the
range 0.25 to 2. What effects do you observe?

(g) (1 point bonus) Can you find other ways of bringing out the Laurel or Yanny in the original audio?
You can experiment with modifying the Fourier transform in more complicated ways, including
fancier scalings, as well as things like translating the Fourier transform (i.e. appending zeros to
the beginning, or removing the first set of values), etc. Discuss any especially effective approaches
that you discovered.

(h) (5 point bonus) Can you create a new, distinct Laurel/Yanny style illusion? One natural research
question is the extent to which this Laurel/Yanny phenomenon is an isolated instance. Can you
create a different audio signal where one portion of the population perceives one word, and another
portion of the population perceives a different word? What fraction of words can be turned into
this sort of phenomenon? To show that this question is not impossible, in “WorldsYikes.zip”,
we have several audio signals that we constructed which can be perceived as either the word
worlds or the word yikes depending on the playback speed and/or damping of the high frequencies
(try playing “worldsYikes1.wav”, “worldsYikes2.wav”,. . . ,“worldsYikes10.wav” until you perceive
both “worlds” and “yikes”). For any example you find, include at least 3 or 4 versions of the audio
clip so that we can hear both/all perceptions. Upload these files to YouTube and include the links
in your solution. (Two former CS168 students and I had a fun paper that came out of their work
on this bonus question: https://theory.stanford.edu/~valiant/polyperceivable/index.

html)

Deliverables: Plots for (b) and (c); description of plot and explanation for (c); image of spectrogram
for (d); discussion for (e) and (f) , discussion, possibly including plots for (g); code, description of how
to generate the illusions, and Youtube link for (h).

5

https://theory.stanford.edu/~valiant/polyperceivable/index.html
https://theory.stanford.edu/~valiant/polyperceivable/index.html

