
Assignment I Walkthrough
Objective

Reproduce the demonstration (building a calculator) given in class.

Materials

By this point, you should have been sent an invitation to your sunet e-mail to join the
iPhone University Developer Program. You must accept this invitation and download the
iPhone SDK.

It is critical that you get the SDK downloaded and functioning as early as possible in the
week so that if you have problems you will have a chance to talk to the TA’s and get help.
If you wait until the weekend (or later!) and you cannot get the SDK downloaded and
installed, it is unlikely you’ll finish this assignment on time.

Brief

If you were in class on Wednesday and saw this walkthrough, you may feel like you can
get by with a much briefer version included at the end of this document. You can always
refer back to the detailed one if you get lost. The devil is often in the details, but
sometimes you have to learn from the devil in order to be good.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 1 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

Detailed Walkthrough

Part I: Create a new Project in Xcode.

1. Launch /Developer/Applications/Xcode .

2. From the Splash screen that appears, choose “Create a new Xcode project” or simply
choose the “New Project ...” menu item from the File menu. The following window
will appear:

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 2 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

3. Click on and then .

4. In the file chooser that is presented, do the following:

a. navigate to a place where you want to keep all of your application projects for the
quarter (a good place is ~/Developer/CS193p where ~ means “your home
directory”)

b. type the name “Calculator” (for the rest of the walk-through to make sense to you, I
highly recommend calling this project “Calculator”)

c. click

5. You have successfully created your first iPhone project! The following window will
appear:

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 3 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

6. You can even run your application at this point by clicking . Nothing
will appear but a blank screen in the iPhone Simulator. If this works, you have likely
successfully installed the SDK. If it does not, it might be time to check with a TA!

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 4 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

7. Go back to Xcode now. Notice in the upper left hand corner, there is a tree view. This
is where all the files in your application are managed. Click on the little folders to
expand them as shown.

Note that in the Classes section there are .h and .m files for two different classes:
CalculatorAppDelegate and CalculatorViewController. Don’t worry about
CalculatorAppDelegate for this assignment. The second one,
CalculatorViewController, is our controller. We just need our Model. Let’s create a
new class called CalculatorBrain for that.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 5 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

Part II: Create a class to be our Model

8. Here’s how we create a new Objective-C class to be our Model. Choose New File ...
from the File menu. The following dialog will appear:

9. Choose “Objective-C class” and click Next. Leave “Subclass of ” on NSObject. Pretty
much all objects in iPhone development subclass either from NSObject directly or from
some object that inherits from NSObject.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 6 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

10. Xcode will ask you for the name of this object. Type in CalculatorBrain.m and
leave the “Also create CalculatorBrain.h” box checked because we want both a header
file and an implementation file for our CalculatorBrain.

If Xcode dropped your CalculatorBrain.h and CalculatorBrain.m into somewhere
in the Groups & Files area other than Classes, just drag them into the Classes area. You
can move files around in the Groups & Files folders area freely at any time. Those little
folders are just for your own organizational purposes, they have no semantic meaning to
Xcode.

So now our Model is created (though obviously not implemented). Let’s take a timeout
from our Model and go back to our Controller.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 7 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

Part III: Define the connections of our MVC’s Controller

Now that both our Model and Controller classes exist, it’s time to start defining and
eventually implementing them. We’ll start with defining our Controller.

11. In Xcode’s Groups & Files area, find and click on CalculatorViewController.h.
This is the header file of your calculator’s Controller (we’ll get to the implementation
side of our Controller, CalculatorViewController.m, later).

You should see something like the following (for the purposes of this document, the
windows have been resized to be as small as possible and still show the content):

Notice that Xcode has already put the #import we need and made our
CalculatorViewController be a subclass of UIViewController. That’s all good.

But our CalculatorViewController’s header file still needs the following: our outlets
(instance variables that are going to point to things in our View), our actions (methods in
our Controller that are going to be sent to us from our View), and an instance variable for
our Model.

(In the interest of file size and space, we’re going to focus now on the main part of the
code itself and not show the entire window or the #import statements or comments at
the top of each file, etc.)

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 8 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

12. Let’s add the outlet which enables our CalculatorViewController to talk to the
UILabel in the View of our MVC design which represents the calculator’s display.
We’ll call that outlet display.

@interface CalculatorViewController : UIViewController
{
 IBOutlet UILabel *display;
}

@end

13. Now let’s add an instance variable that points from our Controller to our
CalculatorBrain (the Model of our MVC design). We need to add a #import at
the top of the file as well so that CalculatorViewController.h knows where to
find the declaration of CalculatorBrain (add it right after the already existing
#import <UIKit/UIKit.h).

#import "CalculatorBrain.h"

@interface CalculatorViewController : UIViewController
{
" IBOutlet UILabel *display;
" CalculatorBrain *brain;
}

@end

14. And finally (for now), let’s add the two actions that our MVC design’s View are going
to send to us when buttons are pressed on the calculator.

@interface CalculatorViewController : UIViewController
{
" IBOutlet UILabel *display;
" CalculatorBrain *brain;
}

- (IBAction)digitPressed:(UIButton *)sender;
- (IBAction)operationPressed:(UIButton *)sender;

@end

We may need more instance variables for our CalculatorViewController as we get
into its implementation, but, for now, we’ve covered the connections of our MVC design
for our Controller.

This would be a good time to Build & Run your application again. It’ll still be blank, but
you can make sure you haven’t made any mistakes entering the code above.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 9 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

Part IV: Wire up our MVC’s View in Interface Builder.

It’s time to create the View part of our MVC design. We do not need to write any code
whatsoever to do this, we use a tool called Interface Builder. When we created our project
and told Xcode that we wanted a View-based project, it automatically created a template
Controller (which we just worked on above) and also a template View (which is blank
currently). The template View is in a file called CalculatorViewController.xib. We
call this (for historical reasons) a “nib” file. Some people call it a “zib” file.

15. Open up CalculatorViewController.xib by double-clicking on it in the Groups
& Files area of Xcode:

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 10 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

Interface Builder has three main windows plus the windows that contain any objects or
groups of objects you’re working on. It is strongly recommended that you choose “Hide
Others” from Interface Builder’s main menu so that all other applications are hidden. It
makes it a lot easier to see what’s going on in Interface Builder.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 11 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

The “main window” in Interface Builder shows all of the objects in your .xib file:

Where’s our Controller!? Well, since this is CalculatorViewController.xib, our
CalculatorViewController is the “File’s Owner”. So when we want to wire things up
to our CalculatorViewController’s outlets and actions (instance variables and
methods), this is where we’ll drag to or from.

Note the “View Mode” choices in the upper left corner of this window. You can choose
to view the objects in your Interface Builder file in a list mode or big icons or even in a
hierarchical mode like the Finder. It’s up to you.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 12 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

The next window in Interface Builder is the Library window. It is called that because it
contains a library of objects that you can select to help build your View from. If you
explore it, you’ll see that there are a LOT of objects you can use! We’ll get into most of
them as the quarter progresses, but today we’re only going to use two: UIButton and
UILabel.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 13 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

The last window is the Inspector. The contents of this window change depending on
which object you have selected (it “inspects” that object). Since we start out with nothing
selected, it just says “Empty Selection.” But if we click around on the objects in our main
window (like File’s Owner), we’ll start seeing some properties and such that we can set on
an object.

16. For example, if you click on File’s Owner in the main window, and then click on the
right most tab in the Inspector, you should see something like this:

You can see that our File’s Owner’s class is CalculatorViewController as expected.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 14 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

The only other window in Interface Builder is blank. That’s all that there is so far of the
View part of our MVC design. Our next step then, is to put some stuff in there. Here’s
what we want our user-interface to look like when we’re done (it ain’t pretty, but it’s simple
and, at this point, simplicity is more important):

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 15 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

17. Let’s start with the “7” key on our calculator. Locate a “Round Rect Button” (a
UIButton) in the Library window in Interface Builder (there’s an arrow pointing to it
this document), then simply drag it out into our currently blank View

18. Now resize the UIButton to be 64 pixels wide (grab one of the little handles on the
side of it), and then pick it up and move it toward the left edge. When you get close
to the left edge, a vertical blue dotted line will appear letting you know that this is a
pretty good left margin for the button in this view. Interface Builder will help you a
lot like this with suggestions about lining things up, etc. You can place the button
vertically at any position for now.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 16 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

19. Okay, now for the most important part. Let’s wire this button up to our
CalculatorViewController (the “File’s Owner” in the main window). Just hold
down the control key and drag a line from the button to the File’s Owner. There is a
bold word in the previous sentence, don’t miss it! If you don’t hold down control
while trying to drag this line, it’s just going to pick the button up and start dragging it
instead.

20. When you get close to the File’s Owner, a blue box should appear around it. When
you let go of the mouse button, the little window below and to the left should appear
next to File’s Owner. Pick digitPressed: and voila! Every time that button is
touched by the user, it will send digitPressed: to your
CalculatorViewController.

21. Now that you’ve made that connection,
copy and paste that button 9 more
times to make a total of 10 digit
buttons. All of them will have this
connection because copying and pasting
an object in Interface Builder maintains
connections. Lay out the 10 buttons
approximately as shown.

22. Double-click on each button to set it’s
title. Just use a single digit on each
button. If you’re having difficulty
getting it to let you type the text on the
button, try deselecting the button and
double-clicking again (basically, just
keep clicking on it until it lets you type
in the number as the button’s title). You
can also enter button’s titles (and change
other properties), by selecting a button
and clicking on the left-most tab in the
inspector.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 17 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

Now we’re going to do the operation buttons.

23. Drag out a new button from the Library window. Do not copy and paste a
digit button (because we don’t want the digitPressed: action for these buttons).
Resize the button to 64 pixels wide.

24. Hold down control and drag a line from this new button to File’s Owner. Again, the
little black window will appear. This time select operationPressed:.

25. Now you can copy and paste this 5 times (for / + - = and sqrt) and lay them out
nicely. Double-click on each to set the title. The titles must match the strings
you use for your operations in CalculatorBrain. This is probably not the best
design choice, but, again, it’s simple. Your UI should now look like this:

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 18 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

Almost there! We just need a display for our
calculator.

26. Drag out a label (UILabel) from the Library
window and position and size it along the top
of your UI. Double-click on it to change the
text in there from “Label” to “0”.

27. This time we’re going to use the Inspector to
change some things about the display. So
make sure the UILabel is selected and then
click on the left-most tab of the Inspector
window. It should look the image on the
right.

28. Let’s start by making the font a little bigger by
clicking where it says “Helvetica, 17.0”. This
will bring up a font choosing panel you can
use to change the font. 24 point (at least)
would be a good size.

29. Next, let’s change the alignment. A
calculator’s display does not show the
numbers coming from the left, it shows them
right-aligned. So click on the little button that
shows right alignment.

You can play with other properties of the
UILabel (or a UIButton) if you want. Note that
this window has a top section (Label) and a
bottom section (View). Since UILabel inherits (in
the object-oriented sense) from UILabel, its
inspector also inherits the ability to set any
properties UILabel has. Pretty neat!

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 19 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

30. Okay, last thing in Interface Builder. Our CalculatorViewController needs to be
able to send messages to the display to update it, so we need to hook it up to our
instance variable (aka outlet) in our CalculatorViewController. Doing this is
similar to setting up the messages sent by the buttons, but we control drag in the
opposite direction this time. So hold down control and drag from File’s Owner to the
UILabel. When you release the mouse, the following little window should appear.
Choose display (our CalculatorViewController also inherited an outlet called
“view” from UIViewController, but that’s going to be set automatically for us and
we don’t need to worry about that in this assignment).

31. Save the file in Interface Builder and then you can quit and go back to Xcode. This
would be another good time to Build and Run your program. At least now it won’t be
blank. Your application now has buttons, but it will crash if you touch them because
there is no implementation (yet) for your Controller. We’ve still got some work to do
before they will work. We have to implement our Model and our Controller.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 20 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

Part V: Implement our Model

So far we have created a project, defined the API of our Controller (though we haven’t
implemented it yet), and wired up our View to our Controller in Interface Builder. The
next step is to fill in the implementation of our model, CalculatorBrain.

32. Find and click on CalculatorBrain.h in the Groups & Files section.

You can see that some of the code for our CalculatorBrain.h is already there, like the
fact that we inherit from NSObject and a #import for NSObject (via the Foundation
framework’s header file). But there are no instance variables or methods. We need to add
those.

Our brain works like this: you set an operand in it, then you perform an operation on that
operand (and the result becomes the brain’s new operand so that the next operation you
perform will operate on that). Things get a bit more complicated if the operation
requires 2 operands (like addition or multiplication do, but square root does not). For
now, let’s add to CalculatorBrain.h a couple of things we know we’re going to need.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 21 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

33. Our brain needs an operand. It’s going to be a floating point brain, so let’s make that
instance variable be a double.

@interface CalculatorBrain : NSObject
{
" double operand;
}

@end

34. Now let’s add a method that lets us set that operand.

@interface CalculatorBrain : NSObject
{
" double operand;
}

- (void)setOperand:(double)aDouble;

@end

35. And finally let’s add a method that lets us perform an operation.

@interface CalculatorBrain : NSObject
{
" double operand;
}

- (void)setOperand:(double)aDouble;
- (double)performOperation:(NSString *)operation;

@end

Good enough for now. Let’s proceed to our implementation.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 22 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

36. Copy the two method declarations in CalculatorBrain.h, then switch over to
CalculatorBrain.m and paste them in between the @implementation and the
@end.

//
// CalculatorBrain.m
// Calculator
//
// Created by Mr. Programmer on 12/31/10.
// Copyright Mr. Programmer 2010. All rights reserved.
//

#import "CalculatorBrain.h"

@implementation CalculatorBrain

- (void)setOperand:(double)aDouble;
- (double)performOperation:(NSString *)operation;

@end

The //’s at the beginning are comments. You can put a // in your code at any point, but
the compiler will ignore the rest of the line after that.

Note that Xcode already put the #import of our class’s header file in there for us.

Let’s remove those pesky semicolons on the end of the method descriptions and replace
them with open and close curly braces. In C, curly braces are what delineates a block of
code.

@implementation CalculatorBrain

- (void)setOperand:(double)aDouble
{
}

- (double)performOperation:(NSString *)operation
{
}

@end

37. Don’t forget to remove the semicolons!! This is a common error and will cause
compiler warnings.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 23 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

38. The implementation of setOperand: is easy. We just set our instance variable to the
aDouble that was passed in. Later in the quarter we’ll see that this sort of method
(one which just sets an instance variable) is so common that the compiler can actually
generate it for you.

- (void)setOperand:(double)aDouble
{
" operand = aDouble;
}

39. The implementation of performOperation: is also pretty simple for single operand
operations like sqrt.

- (double)performOperation:(NSString *)operation
{
" if ([operation isEqual:@"sqrt"])
" {
" " operand = sqrt(operand);
" }
" return operand;
}

The first line is important. It’s the first time we’ve sent a message to an object using
Objective-C code! That’s what square brackets mean in Objective-C. The first thing
after the open square bracket ([) is the object to send the message to. In this case, it’s the
NSString object that was passed in to us to describe the operation to perform. The next
part is the name of the message. In this case, isEqual:. Then comes the argument for
isEqual:. If the method had multiple arguments, the arguments would be interspersed
with the components of the name (more on that later).

Notice that we return the current state of the operand when we perform an operation
so that the caller can update its records on the matter.

Now let’s think about operations with 2 operands. This is a bit more difficult. Imagine in
your mind a user interacting with the calculator. He or she presses a digit, then an
operation, then another digit, then when he or she presses another operation (or equals),
that’s when he or she expects the result to appear. Hmm. Not only that, but if he or she
does 12 + 4 sqrt = he or she expects that to be 14, not 4. So single operand operations
have to be performed immediately, but 2-operand operations have to be delayed until the
next 2-operand operation is requested. Whew!

To do this, we’re going to need a couple more instance variables to hold the operation
that is waiting for it’s second operand and the operand that is waiting along with it.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 24 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

40. Go back to CalculatorBrain.h and add the two instance variables we need to
support 2-operand operations: one variable for the operation that is waiting to be
performed until it gets its second operand and one for the operand that is waiting
along with it. We’ll call them waitingOperation and waitingOperand.

@interface CalculatorBrain : NSObject
{
" double operand;
" NSString *waitingOperation;
" double waitingOperand;
}

- (void)setOperand:(double)aDouble;
- (double)performOperation:(NSString *)operation;

41. Okay, back to CalculatorBrain.m. Here’s an implementation for
performOperation: that will support 2-operand operations too.

- (double)performOperation:(NSString *)operation
{
 if ([@"sqrt" isEqual:operation])
 {
 operand = sqrt(operand);
 }
 else
 {
 [self performWaitingOperation];
 waitingOperation = operation;
 waitingOperand = operand;
 }

" return operand;
}

Basically, if the CalculatorBrain is asked to perform an operation that is not a single-
operand operation (look at the code that is invoked by the else that is on a line by itself)
then the CalculatorBrain calls the method performWaitingOperation (which we
haven’t written yet) on itself (self) to perform that waitingOperation.

If we were truly trying to make this brain robust, we might do something like ignoring
back-to-back 2-operand operations unless there is a setOperand: call made in-between.
As it is, if a caller repeatedly performs a 2-operand operation it’ll just perform that
operation on its past result over and over. Calling a 2-operand operation over and over

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 25 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

with no operand-setting in-between is a little bit undefined anyway as to what should
happen, so we can wave our hands successfully in the name of simplicity on this one!

Careful readers will note also that the argument and the destination of the isEqual:
message have been swapped from the version earlier on the page. Is this legal? Yes, quite.
@"sqrt" is just as much of an NSString as operation is, even though @"sqrt" is a
constant generated by the compiler for us and operation is not.

Finally, here’s an example of adding another single-operand operation to our brain: +/-.
It’s been added to show you the importance of putting the else‘s in the right place when
you add new single-operand operations (which you are going to be asked to do on
your homework).

- (double)performOperation:(NSString *)operation
{
 if ([@"sqrt" isEqual:operation])
 {
 operand = sqrt(operand);
 }
 else if ([@"+/-" isEqual:operation])
 {
 operand = - operand;
 }
 else
 {
 [self performWaitingOperation];
 waitingOperation = operation;
 waitingOperand = operand;
 }

" return operand;
}

We’re not quite done here. We still need to implement performWaitingOperation.
Note the message sent to self. This means to send this message to the object that is
currently sending the message! Other OO languages sometimes call it “this.”
performWaitingOperation is going to be private to our CalculatorBrain, so we are not
going to put it in CalculatorBrain.h, only in CalculatorBrain.m.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 26 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

42. Here’s the implementation of performWaitingOperation. It’s important that
you put this code in your CalculatorBrain.m file somewhere before the
implementation of performOperation:. That’s because
performWaitingOperation is a private method. It is not in the public API. It must be
declared or defined before it is used in a file. The best spot for it is probably between your
implementation of setOperand: and your implementation of performOperation:.

- (void)performWaitingOperation
{
" if ([@"+" isEqual:waitingOperation])
" {
" operand = waitingOperand + operand;
" }
" else if ([@"*" isEqual:waitingOperation])
" {
" operand = waitingOperand * operand;
" }
" else if ([@"-" isEqual:waitingOperation])
" {
" operand = waitingOperand - operand;
" }
" else if ([@"/" isEqual:waitingOperation])
" {
 if (operand) {
" " operand = waitingOperand / operand;
 }
" }
}

Pretty simple. We just use if {} else statements to match the waitingOperation up
to any known operations we can perform, then we perform the operation using the
current operand and the operand that has been waiting (waitingOperand).

Note that we fail silently on divide by zero (but at least we do not crash). We just do
nothing. This is not very friendly to the user (an error message or something would be
better), but we’re trying to keep this simple, so for now, silent failure.

Note also that, as discussed above, we do nothing at all if the waitingOperand is an
unknown operation (the operand is not modified in that case). It’s a reasonable
simplification, but an example of where you need to clearly understand your classes’
semantics (and hopefully document them well to callers).

Okay, that’s it for CalculatorBrain. Our Model is implemented. The only thing we
have left to do is implement our Controller.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 27 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

Part VI: Implement our Controller

Almost done. All that’s left now is the code that gets invoked when a digit is pressed
(digitPressed:) or an operation is pressed (operationPressed:). This code goes in
our CalculatorViewController. We’ve already declared these methods in the header
(.h) file, but now we have to put the implementation in the .m file.

43. Open CalculatorViewController.m and select and delete all the “helpful”
code Xcode has provided for you between the @implementation and the
@end (but leave those two lines there).

44. Now go back to CalculatorViewController.h and copy the two method
declarations and paste them into CalculatorViewController.m somewhere
between the @implementation and the @end. Remove the semicolons and
replace them with { } (empty curly braces). It should look something like this:

//
// CalculatorViewController.m
// Calculator
//
// Copyright Mr. Programmer 2010. All rights reserved.

#import "CalculatorViewController.h"

@implementation CalculatorViewController

- (IBAction)digitPressed:(UIButton *)sender
{
}

- (IBAction)operationPressed:(UIButton *)sender
{
}

@end

Let’s take a timeout here and look at a neat debugging trick we can use in our program.
There are two primary debugging techniques that are valuable when developing your
program. One is to use the debugger. It’s super-powerful, but outside the scope of this
document to describe. You’ll be using it a lot later in the class. The other is to “printf”
to the console. The development kit provides a simple function for doing that. It’s called
NSLog().

We’re going to put an NSLog() statement in our operationPressed: and then run our
calculator and look at the console (where NSLog() outputs to) just so you have an
example of how to do it. NSLog() looks almost exactly like printf (a common C
function). The 1st argument is an NSString (not a const char *, so don’t forget the @),

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 28 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

and the rest of the arguments are the values for any % fields in the first argument. A new,
non-printf % field is %@ which means the corresponding argument is an NSString. Let’s
put the following silly example in operationPressed:

- (IBAction)operationPressed:(UIButton *)sender

{
" NSLog(@"The answer to %@, the universe and everything is %d.", @"life", 42);
}

When we click on an operation button in our running application, it will print out “The
answer to life, the universe and everything is 42.” So where does this
output go? Go to the Run menu in Xcode and choose Console. It will bring up a
window. That’s where the output goes. You can even click “Build and Run” (or “Build
and Debug”) in that window to run your application from there. Try it now. Click on an
operation in your running application and hopefully you should see something like this:

Okay, back to our application. (You can delete the NSLog().)

45. Let’s do the real implementation of operationPressed: first. Note that the
argument to operationPressed: is the UIButton that is sending the message to us.
We will simply ask the sender for its titleLabel (UIButton objects happen to use a
UILabel to draw the text on themselves), then ask that UILabel that is returned what
it’s text is. The result will be an NSString with a + or * or = or sqrt depending the
title of the UIButton.

" NSString *operation = [[sender titleLabel] text];

Note the “nesting” of message sending. This is quite usual and encouraged.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 29 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

46. Next we need ask our brain to perform that operation (we’ll get to the setting of the
operand in a minute). First we need our brain!. Where is it? We have an instance
variable for it (called brain), but we never set it! So let’s create a method (somewhere
earlier in CalculatorViewController.m than we’re going to use it, since it’s
private) that creates and returns our brain. Put it right after @implementation.

- (CalculatorBrain *)brain
{
" if (!brain) brain = [[CalculatorBrain alloc] init];
" return brain;
}

Note the if (!brain) part. Basically we only want to create one brain, so we only do
the creation part if the brain does not exist. We create the brain by allocating
memory for it, then initializing it. We’ll talk much more about memory management
and the creation and destruction of objects next week. Don’t worry about it for now.

47. Now that we have a method in our CalculatorViewController.m that returns a
CalculatorBrain (our Model) for us to use, let’s use it.

" double result = [[self brain] performOperation:operation];

Again, notice the nesting of [self brain] inside the other message send to
performOperation::.

48. We have the result of our operation, we just need to put it into our display now.
That’s easy too. We just send the setText: message to our display outlet
(remember, it’s wired up to the UILabel in our View). The argument we’re going to
pass is an NSString created using stringWithFormat:. It’s just like the very
common C function printf() but for NSString objects. If you don’t know what
printf() is, Google it! Note that we are sending a message directly to the NSString
clas (i.e. not an instance of an NSString, but the class itself). That’s how we create
objects. We’ll talk a lot more about that next week.

- (IBAction)operationPressed:(UIButton *)sender
{
" NSString *operation = [[sender titleLabel] text];
" double result = [[self brain] performOperation:operation];
" [display setText:[NSString stringWithFormat:@"%g", result]];
}

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 30 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

There’s one other thing that happens when an operation button is pressed which is that if
the user is in the middle of typing a number, that number gets “entered” as the operand
for the next operation. We’re going to need another instance variable to keep track
whether a user is in the middle of typing a number. We’ll call it
userIsInTheMiddleOfTypingANumber (a good long, self-documenting name).

49. Switch back to CalculatorViewController.h and add the instance variable
userIsInTheMiddleOfTypingANumber. It’s type is going to be BOOL which is
Objective-C’s version of a boolean value (the original ANSI-C had no concept of a
boolean, so this is what the inventors of Objective-C decided to call their boolean
value). It can have two values, YES or NO and can be tested implicitly.

@interface CalculatorViewController : UIViewController
{
" IBOutlet UILabel *display;
" CalculatorBrain *brain;
" BOOL userIsInTheMiddleOfTypingANumber;
}

50. Now let’s add some code to operationPressed: which simply checks to see if we
are in the middle of typing a number and, if so, updates the operand of the
CalculatorBrain to be what the user has typed (then we’ll note that we are no
longer in the middle of typing a number anymore).

- (IBAction)operationPressed:(UIButton *)sender
{
" if (userIsInTheMiddleOfTypingANumber) {
" [[self brain] setOperand:[[display text] doubleValue]];
" userIsInTheMiddleOfTypingANumber = NO;
" }
" NSString *operation = [[sender titleLabel] text];
" double result = [[self brain] performOperation:operation];
" [display setText:[NSString stringWithFormat:@"%g", result]];
}

But when does userIsInTheMiddleOfTypingANumber ever get set? Well, it gets set
when the user starts typing digits. Great transition into operationPressed:, eh? So
there are two different situations when a digit gets pressed. Either the user is in the
middle of typing a number, in which case we just want to append the digit they typed

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 31 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

onto what’s been typed before, or they are not, in which case we want to set the display to
be the digit they typed and note that they are now in the middle of typing a number.

51. Let’s add our first line of code to digitPressed:. It retrieves the digit that was
pressed from the titleLabel of the UIButton that sent the digitPressed:
message (the sender).

- (IBAction)digitPressed:(UIButton *)sender
{
" NSString *digit = [[sender titleLabel] text];
}

52. Now that we have the digit, let’s either append it to what’s already been typed (using
the NSString method stringByAppendingString:) or set it to be the new number
we’re typing and note that we have started typing.

- (IBAction)digitPressed:(UIButton *)sender
{
" NSString *digit = [[sender titleLabel] text];

" if (userIsInTheMiddleOfTypingANumber)
" {
" [display setText:[[display text] stringByAppendingString:digit]];
" }
" else
" {
" [display setText:digit];
" userIsInTheMiddleOfTypingANumber = YES;
" }
}

Whew! That’s it, we’re done. Now it’s time to build and see what syntax errors (if any)
we have.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 32 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

Part VII: Build and Run

53. Click Build and Run in Xcode. You should have a functioning calculator!

If you have made any errors entering any of the code, Xcode will point them out to you
in the Build Results window (first item in Xcode’s Build menu). Hopefully you can
interpret them and fix them. If your code compiles and runs but does not work, another
common place to look for problems is with your connections in Interface Builder.

If it’s still not working, feel free to e-mail us and we’ll try to help. We’ll also be having
some office hours (see website for details on when and where they are).

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 33 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

mailto:cs193p@cs.stanford.edu?subject=Assignment%201%20Walkthrough
mailto:cs193p@cs.stanford.edu?subject=Assignment%201%20Walkthrough
http://www.stanford.edu/class/cs193p/cgi-bin/drupal/staff
http://www.stanford.edu/class/cs193p/cgi-bin/drupal/staff

Brief

Here’s a brief outline of the walkthrough. If you saw and understood what went on in
class, this may be sufficient for you. It is hyperlinked into the detailed walkthrough for
easy reference.

If you choose this brief walkthrough and it does not work, please go back to the detailed
walkthrough before sending e-mail to the class staff. Also, if you choose to use this brief
walkthrough and don’t really understand what you’re doing, the rest of the first
homework assignment might be difficult. The detailed walkthrough explains what is
behind each step. This one does not.

1. Create a new View-based project in Xcode named Calculator.

2. Build and Run it.

3. Create the class which is going to be your MVC Model by choosing New File ... from
the File menu and creating an Objective-C class (subclass of NSObject) called
CalculatorBrain. It might be a good idea to drag the .h and .m file for this class
into Classes section in the Groups & Files area if it didn’t land there already. We’ll
implement this class later.

4. Build and Run.

5. Open up CalculatorViewController.h in Xcode and add a UILabel outlet called
display for the calculator’s display and two action methods, digitPressed: and
operationPressed:. These will be used to hook your MVC Controller to your MVC
View. Also add the BOOL instance variable userIsInTheMiddleOfTypingANumber
since you’ll need it later.

6. You’ll also need an instance variable in your CalculatorViewController for your
MVC Model. Name it brain. It is of type CalculatorBrain *.

7. Build and Run. You’ll have few warnings because the compiler will have noticed that
you have declared some methods in CalculatorViewController.h that you haven’t
yet implemented in CalculatorViewController.m. As long as they are only
warnings and not errors in the code you’ve typed, your application will still run in the
simulator. The UI is still blank of course.

8. Open CalculatorViewController.xib (which contains your MVC View), drag a
UIButton out of the Library window, and hook it up via the digitPressed: message
to File’s Owner in Interface Builder’s main window (File’s Owner is your
CalculatorViewController). Then copy and paste that button 9 times, double-click
on the buttons to set their titles to be the digits, then arrange the buttons into a
calculator keypad.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 34 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

9. Drag out another UIButton from the Library window, hook it up to File’s Owner via
the operationPressed: message. Copy and paste it a few times and edit the button
titles for all of your operations.

10.Drag out a UILabel from the Library window and position it at the top of your view.
This will be your calculator’s display. Drag a connection to it from File’s Owner.

11.Save your .xib file and go back to Xcode. Build and Run. You should have a
calculator with buttons now, but the application will crash when you touch the buttons
because you haven’t implemented digitPressed: or operationPressed:.

12.Time to implement the Model. In CalculatorBrain.h, add a double instance
variable for the operand and two methods, one to set the operand called
setOperand:, and one to perform an operation called performOperation:.

13. In CalculatorBrain.m, add the implementation for setOperand: to set the
instance variable operand.

14. Also add the implementation for performOperation: and it’s sister method
performWaitingOperation. performWaitingOperation needs to appear before
performOperation: in the .m file. Make sure you understand how these work or you
will have difficulty with the rest of the homework.

15. Build and Run and fix any compile problems. Your calculator will still crash when
you click on buttons because there is no implementation for the MVC Controller
(CalculatorViewController) yet.

16. Type in the implementation of your CalculatorViewController. It has three
methods ... digitPressed:, operationPressed: and the helper method brain. If
you want, you can throw in an NSLog() to verify that your action methods are being
called. Note that brain is private, so it needs to be defined earlier in the .m file than
where it is used (in performOperation:). Again, make sure you understand how these
work or the rest of the homework might be a problem for you. See the detailed
walkthrough to get the complete story if need be.

17. Build and Run. Your calculator should work! If not, try fixing the compiler errors
(you can see them in the Build Results window which is brought up by the first menu
item in the Build menu). The most common problem at this point would be things not
being wired up in Interface Builder correctly. Try using NSLog() to help find out if
that is the case. If that looks okay, double-check all the code that you typed in. Or try
the detailed walkthrough.

CS193P IPHONE APPLICATION DEVELOPMENT	

 	

 SPRING 2010

PAGE 35 OF 35	

 	

 ASSIGNMENT 1: CALCULATOR

