
Paparazzi - Part 1

 Due Date
This assignment is due by 11:59 PM, February 3.

 Assignment
Over the next four weeks, we’ll be building an iPhone application for viewing online photos, also
known as “paparazzi”, for a list of friends. Just so you know what you’re getting yourself into, the
evolution of the application will be as follows:

Part 1: Build a basic application, displaying static data, using view controllers. Allow the user to
navigate to see additional detail.

Part 2: Use table views and Core Data to display large dynamic data sets.

Part 3: Fetch photos from the Internet, populating the Core Data database with real data. Plot
geo-tagged photos’ locations on a map using MapKit.

Part 4: Improve the performance and responsiveness of your application with caching and
threading. Add support for pinching to zoom in and out on photos. Anything else you can think
of! This is your opportunity to try out unfamiliar API, polish your interface and experiment a bit.

Now that you have some idea where we’re headed, here’s what we’re expecting for Part 1:

• Create an application that utilizes UINavigationController and UITabBarController. The
navigation and tab bar controllers may be instantiated in your MainWindow XIB or
programmatically in your application delegate.

• Create a view controller that will manage a list of people (a good name might be
PersonListViewController). Use Interface Builder to lay out a view and make connections
between the view controller and user interface elements. The list should display a photo, a text
label with the photographer’s name and a “View” button next to each person (show at least
two).

• Create another view controller that will manage a list of photos (a good name might be
PhotoListViewController). The PhotoListViewController should expose a property for setting an
array of photos it will display. The list should display each photo, a text label with the photo’s
name, a text label with the photographer’s name, and a “View” button next to each photo.
Again, use Interface Builder to lay out the view and make connections.

• Create one more view controller that will display a specific photo (a good name might be
PhotoDetailViewController). The PhotoDetailViewController should expose a property for
setting the photo. Once more, use Interface Builder to lay out the view and make connections.

• When your application launches it should create a tab bar controller and two navigation
controllers, and then add the navigation controllers to the tab bar controller. The first
navigation controller will be used for a list of contacts, and the second for a list of recently
viewed images. It should then create an instance of the PersonListViewController and push it
onto the first navigation controller’s stack, and create an instance of the
PhotoListViewController and push it on the second navigation controller’s stack. An
appropriate title should display in both navigation bars.

• When the user presses one of the “View” buttons in the list, create a PhotoListViewController or
PhotoDetailViewController instance as appropriate, set its display properties to reflect the data
that’s being displayed, and push it onto the navigation stack. Again, an appropriate title should
display in the navigation bar.

CS193P Paparazzi 1
Winter 2010 Cannistraro/Shaffer

Page 1 of 10

 Testing
In most assignments testing of the resulting application is the primary objective. In this case,
testing/grading will be done both on the behavior of the application, and also on the code.

We will be looking at the following:
1. Your project should build without errors or warnings and run without crashing.
2. Each view controller should be the File’s Owner of its own Interface Builder document. Do

not put your entire application into a single Interface Builder document! It’s bad for
performance as well as application maintainability.

3. Your program should behave as described above, presenting a tab bar with two navigation
hierarchies. The first navigation hierarchy should be a list of people that leads to a list of
photos and ends with a photo detail view. The second should be a list of photos that leads
to a photo detail view.

 Walkthrough

Creating your project in Xcode

To begin with, create a new project using the “Window-Based Application” template in
Xcode. There is a “Navigation-Based Application” template which may look tempting, but it has a
lot of code already written (particularly for incorporating a UITableView) which we don’t want for
this assignment.

Using this template will create a project that has an application delegate class and a
MainWindow.xib Interface Builder document.

CS193P Paparazzi 1
Winter 2010 Cannistraro/Shaffer

Page 2 of 10

Creating your tab bar and navigation controllers

You can create a UITabBarController and two UINavigationControllers in your MainWindow NIB
or in code using the -init method. Either way, your application delegate should probably have
instance variables referencing them (don’t forget to release them in the appropriate place!).

With the tab bar controller created, you’ll need to add its view to the window. Remember,
UITabBarController is a UIViewController subclass, so it has a view property that you can access.

Try building & running your application now & see what happens.

CS193P Paparazzi 1
Winter 2010 Cannistraro/Shaffer

Page 3 of 10

Creating your first view controller subclass

First, we need to create the header and implementation files for our new UIViewController
subclass. Select “New File…” and use the UIViewController subclass file template. Check the
“With XIB for user interface” checkbox to get an XIB created for you. If you don’t check it now
you can always create one later from the User Interface tab on the left.

Using this template will create a UIViewController subclass with quite a few methods already
filled in. You can peruse this if you’re curious, but then delete all of the implemented methods
from the .m file. We don’t need any of that right now.

CS193P Paparazzi 1
Winter 2010 Cannistraro/Shaffer

Page 4 of 10

Lay out your static list of people using labels, buttons and image views. In addition, if you didn’t
create the XIB with the “With XIB for user interface” checkbox, we need our view controller to
manage the XIB. There are two steps to make this
happen.

First, we need to set the view controller as the
custom class for the File’s Owner proxy object. Select
the File’s Owner object in your xib, then navigate to the
Identity Inspector in the Tools menu. Type in the name
of your view controller subclass in the text field.

Now that the XIB knows that the File’s Owner is an
instance of your view controller subclass, we can make
the connection from the “view” outlet to the view.
You already know how to do this.

CS193P Paparazzi 1
Winter 2010 Cannistraro/Shaffer

Page 5 of 10

Next, we want to create a PersonListViewController instance and display it in our navigation
stack. This code should go in your application delegate in the same place you create your
navigation controller. Using the -initWithNibName:bundle: method, pass the name of your
Interface Builder document as the first argument (you can leave out the file extension), and
[NSBundle mainBundle] as the second argument.

Finally, we need to push the view controller onto the navigation controller’s stack so that it’s
displayed. Now, you should be able to build & run from Xcode and see your list. At this point, it
should look something like this:

CS193P Paparazzi 1
Winter 2010 Cannistraro/Shaffer

Page 6 of 10

The rest of the assignment, in brief...

Create a second view controller subclass & NIB using the same steps as above. When a button
in your list of contacts is touched, push an instance of this second view controller. You’ll
want to expose some properties so that it knows what to display. Make sure not to leak
memory! The view should look something like this:

Remember that UIView has a hidden property you can use to prevent it from drawing. You can
use this to hide some views if you have less images to display than views to display them.

In order to display a helpful title in the navigation bar when each view controller is being
shown, you’ll want to set the title property for each view controller. See the lecture slides for a
hint on where to do this.

CS193P Paparazzi 1
Winter 2010 Cannistraro/Shaffer

Page 7 of 10

Create a final view controller subclass & NIB using the same steps as above. When a button in
your list of photos is touched, push an instance of this final view controller. You’ll want to
expose some properties so that it knows what to display. Make sure not to leak memory! The
view should look something like this:

CS193P Paparazzi 1
Winter 2010 Cannistraro/Shaffer

Page 8 of 10

Finally, we need to set up the Recents tab. We’ve already created all the view controller
subclasses we need to implement this entire view. We can just instantiate and push a photo
list view controller onto the second navigation controller’s stack and set its list of photos to
all of the available photos. This would probably be done as part of the initial application setup,
back where we created the first view controller for the other navigation controller. At this point,
it should look something like this:

CS193P Paparazzi 1
Winter 2010 Cannistraro/Shaffer

Page 9 of 10

Extra Credit
Here are some suggestions for enhancing this first iteration of Paparazzi.

• Add custom buttons on the left or right side of the navigation bar for the person list view
controller. When pressed the button should provide some interesting feedback, like popping
up an alert or animating your UI momentarily.

• Our Paparazzi screenshots are pretty dull. Spice yours up with some better colors and artwork.
• Think of a reason for a fourth view controller subclass, and push it onto the navigation stack in

response to some user action. Make it load some data when it’s about to appear & save the
data when it’s about to disappear.

CS193P Paparazzi 1
Winter 2010 Cannistraro/Shaffer

Page 10 of 10

