
Assignment 2A - WhatATool (Part II)

 Due Date
This assignment is due by 11:59 PM, January 20.

 Assignment
Now that we have some Objective-C experience under our belt, we’ll dive into the world of
custom classes and more advanced Objective-C language topics. You will define and use a new
custom class, and learn about Objective-C categories.

We will use the same WhatATool project from last week as our starting point. A few more
sections will be added to the existing structure.

The basic layout of your program should look something like this:

#import <Foundation/Foundation.h>

// sample function for one section, use a similar function per section
void PrintPathInfo() {
	 // Code from path info section here
}

int main (int argc, const char * argv[]) {
 NSAutoreleasepool * pool = [[NSAutoreleasePool alloc] init];

	 PrintPathInfo(); // Section 1
	 PrintProcessInfo(); // Section 2
	 PrintBookmarkInfo(); // Section 3
	 PrintIntrospectionInfo(); // Section 4
	 PrintPolygonInfo(); // Section 6 (No function for section 5)

 [pool release];
 return 0;
}

Testing
In most assignments testing of the resulting application is the primary objective. In this case,
testing/grading will be done both on the output of the tool, but also on the code of each
section.

We will be looking at the following:
1. Your project should build without errors or warnings.
2. Your project should run without crashing.
3. Each section of the assignment describes a number of log messages that should be printed.

These should print.
4. Each section of the assignment describes certain classes and methodology to be used to

generate those log messages – the code generating those messages should follow the
described methodology, and not be simply hard-coded log messages.

To help make the output of your program more readable, it would be helpful to put some kind
of header or separator between each of the sections.

CS193P Assignment 2A
Winter 2010 Cannistraro/Shaffer

Page 1 of 4

Assignment Walkthrough

Section 5: Creating a new class
Create a PolygonShape class. To create the files for the new class in Xcode:

1. Choose File > New File…
2. In the Cocoa section under Mac OS X, select the ‘Objective-C class’ template
3. Name the file PolygonShape.m – Be certain the checkbox to create a header file is also

checked

Note that your new class inherits from NSObject by default, which happens to be what we want.

Now that we’ve got a class, we need to give it some attributes. Objective-C 2.0 introduced a
new mechanism for specifying and accessing attributes of an object. Classes can define
“properties” which can be accessed by users of the class. While properties usually allow
developers to avoid having to write boilerplate code for setting and getting attributes in their
classes, they also allow classes to express how an attribute can be used or what memory
management policies should be applied to a particular attribute. For example, a property can
be defined to be read-only or that an when an object property is set how the ownership of that
object should be handled.

In this section you will add some properties to your PolygonShape class.

1. Add the following properties to your PolygonShape class

• numberOfSides – an int value
• minimumNumberOfSides – an int value
• maximumNumberOfSides – an int value
• angleInDegrees – a float value, readonly
• angleInRadians – a float value, readonly
• name – an NSString object, readonly

2. The numberOfSides, minimumNumberOfSides and maximumNumberOfSides properties
should all be backed by instance variables of the appropriate type. These properties should
all be synthesized. When a property is “synthesized” the compiler will generate accessor
methods for the properties according to the attributes you specify in the @property
declaration. For example, if you specified a property as “readonly” then the compiler will

CS193P Assignment 2A
Winter 2010 Cannistraro/Shaffer

Page 2 of 4

only generate a getter method but not a setter method.

3. Implement setter methods for each of the number of sides properties and enforce the
following constraints:

• numberOfSides – between the minimum and maximum number of sides
• minimumNumberOfSides – greater than 2
• maximumNumberOfSides – less than or equal to 12

Attempts to set one of these properties outside of the constraints should fail and log an
error message. For example, if you have a polygon that is configured with a
maximumNumberOfSides set to 5 and you attempt to set the numberOfSides property to 9
you should log a message saying something like:

 Invalid number of sides: 9 is greater than the maximum of 5 allowed

4. Implement a custom initializer method that takes the number of sides for the polygon:

 - (id)initWithNumberOfSides:(int)sides minimumNumberOfSides:(int)min
maximumNumberOfSides:(int)max;

Your initializer should set the minimum and maximum number of sides first (to establish the
constraints) and then set the number of sides to the value passed in.

5. Implement a custom init method (overriding the version implemented in NSObject) which
calls your custom initializer with default values. For example, your generic -[PolygonShape
init] method might create a 5 sided polygon with min of 3 sides and max of 10.

6. The angleInDegrees and angleInRadians properties should not be stored in an instance
variable since they are all properties derived by the numberOfSides. These properties do
not need to be synthesized and you should implement methods for each of them which
return the appropriate values. We’re being boring and using regular polygons so the angles
are all the same.

7. Similarly, the name property should also not be synthesized (nor stored in an instance
variable) and you should implement a method for it. The name of the polygon should be a
descriptive name for the number of sides. For example, if a polygon has 3 sides it is a
“Triangle”. A 4-sided polygon is a “Square”.

8. Give your PolygonShape class a -description method. Example output from this method:

 Hello I am a 4-sided polygon (aka a Square) with angles of 90 degrees
(1.570796 radians).

9. In order to verify your memory management techniques, implement a dealloc method and
include an NSLog statement indicating that dealloc is being called.

Section Hints:
• You can find a list of names for polygons on the web. Wikipedia has a good one.

• The formula for computing the internal angle of a regular polygon in degrees is (180 *
(numberOfSides - 2) / numberOfSides).

• Remember your trigonometry: 360° is equal to 2π.

CS193P Assignment 2A
Winter 2010 Cannistraro/Shaffer

Page 3 of 4

• You can use the preprocessor value M_PI for π.

Section 6: Using the PolygonShape class
Write a C function (e.g. PrintPolygonInfo) called by main() that uses your newly created
PolygonShape class.

You will have to add an import statement to the WhatATool.m file:
#import "PolygonShape.h"

IMPORTANT: In this section, you are expected to use +alloc and –init methods to create the
polygons and the array that they are put into. You must practice correct memory
management techniques of releasing the polygon objects when you are done with them.

1. Create a mutable array (using alloc/init).

2. Create 3 (or more) PolygonShape instances with the following values:

Min number of sides Max number of sides Number of sides

3 7 4

5 9 6

9 12 12

When allocating your polygons, use a mixture of vanilla alloc/init then set the properties
along with using your custom initializer method that takes all of the properties in the
initializer method.

3. As you create each polygon, add them to the array of polygons and emit a log with the
polygon’s description. There should be at least 3 descriptions logged.

4. Test the constraints on your polygons. Iterate over the array of polygons and attempt to set
their numberOfSides properties to 10. This should generate two logs indicating that the
number of sides doesn’t fall within the constraints (for the first two polygons in the table
above).

5. Verify that your polygon objects are being deallocated correctly. If you have followed the
rules correctly with regard to memory management you should see 3 logs from the
dealloc method of your polygons. If you do not see these logs, review your alloc/init and
release calls to make sure they are correctly balanced for your polygon objects as well as
the array you are putting them into. Remember, alloc/init and release work like malloc
and free in C.

CS193P Assignment 2A
Winter 2010 Cannistraro/Shaffer

Page 4 of 4

