
Paparazzi - Part 2

 Due Date
This assignment is due by 11:59 PM, February 10.

 Assignment
Last week, you created the first version of Paparazzi, an iPhone application for viewing online
photos. This week, we’ll improve the application in two major ways. First, we’ll make the switch
from hardcoded views to table views, so that our application can display large, dynamic data
sets. Second, we’re going to move from using property lists to CoreData for local storage so we’ll
have a foundation for storing and searching large amounts of data.

Here are the requirements for Part 2:
1. Read the contents of FakeData.plist at an appropriate place in your application’s life

cycle and store it into a CoreData database. If you haven’t already you’ll need to add the
file to your Xcode project so that it’s built into the application bundle. CoreData’s SQLite
backing is persistent, so the code shouldn’t duplicate data on subsequent launches. Handle
common error conditions gracefully.

2. Define Person and Photo model objects. A Person should include a name, and a set of
photos. Each Photo should link to a Person, and should include a name and a path. So, for
each item in the property list above, you’ll need to instantiate a Photo object and associate
it with a corresponding Person object. The walkthrough covers this in more depth.

3. Update the PersonListViewController and PhotoListViewController classes to manage a
plain style UITableView. You may want to make them into subclasses of
UITableViewController. Display the list of Person objects in the table view, including an
image and a name. Use a corresponding NSFetchedResultsController to manage objects
fetched from the CoreData store.

4. When a person is selected in the list, set up and push a PhotoListViewController
5. When a photo is selected in the list, set up and push a PhotoDetailViewController
6. The PhotoDetailViewController class needs to be updated as well. It should have a photo

property which a client can set. It will manage a UIScrollView where it displays a photo
and allows the user to zoom in and out.

There is an archive accompanying this assignment titled Paparazzi2Files.zip which includes the
FakeData.plist file that your application will read. Additionally, it includes a class called
FlickrFetcher which facilitates reading from the CoreData store.

 Testing
In most assignments testing of the resulting application is the primary objective. In this case,
testing/grading will be done both on the behavior of the application, and also on the code.

We will be looking at the following:
1. Your project should build without errors or warnings and run without crashing.
2. Each view controller should be the File’s Owner of its own Interface Builder document. Do

not put your entire application into a single Interface Builder document!
3. You should be using retain, release and autorelease correctly at this point. Don’t leak

memory or over-release.
4. Since the project is getting more complex, readability is important. Add comments as

appropriate, use descriptive variable and method names, and decompose your code.
5. Your program should behave as described above, reading in a photos from the property list,

building a CoreData database, listing users and photos in a table view, and displaying and
manipulating a photo when selected.

CS193P Paparazzi 2
Winter 2010 Cannistraro/Shaffer

Page 1 of 6

 Walkthrough

Reading the FakeData.plist file
You may first want to inspect the contents of the property list in a text editor. Once you’re
familiar with the structure, you’ll want to use the NSBundle class to get the path for the property
list. Many of the Foundation classes have constructors that let you specify a path- in this case,
you’ll probably want to use +[NSArray arrayWithContentsOfFile:].

The Photo model object
It’s pretty clear at this point that we need a model object to package together all the bits of
data relating to a photo. At the bare minimum, it should keep track of an image (or image
URL), the name of the photo, and a link to a person.

The Person model object
Each Photo must be associated with a Person. Your Person object should at least have a user
name, and may have taken multiple photos. Keep this in mind as you build your CoreData
model graph.

Populating your database
The accompanying Paparazzi2Files.zip archive includes a class called FlickrFetcher. Here is
the class definition:

@interface TwitterHelper : NSObject {
 NSManagedObjectModel *managedObjectModel;
 NSManagedObjectContext *managedObjectContext;
 NSPersistentStoreCoordinator *persistentStoreCoordinator;
}

// Returns the 'singleton' instance of this class
+ (id)sharedInstance;

// Checks to see if any database exists on disk
- (BOOL)databaseExists;

// Returns the NSManagedObjectContext for inserting and fetching
objects into the store
- (NSManagedObjectContext *)managedObjectContext;

// Returns an array of objects already in the database for the
given Entity Name and Predicate
- (NSArray *)fetchManagedObjectsForEntity:(NSString*)entityName
withPredicate:(NSPredicate*)predicate;

// Returns an NSFetchedResultsController for a given Entity Name
and Predicate
- (NSFetchedResultsController *)
fetchedResultsControllerForEntity:(NSString*)entityName
withPredicate:(NSPredicate*)predicate;

CS193P Paparazzi 2
Winter 2010 Cannistraro/Shaffer

Page 2 of 6

When only one instance of a class is used across an application’s execution, it is referred to as a
“Singleton”. The singleton for the FlickrFetcher class can be accessed using the +[FlickrFetcher
sharedInstance] method. Once you have the singleton, you can call any of the accompaniying
instance methods.

To check if a database exists for your app, use the -[FlickrFetcher databaseExists] method. This
will be helpful in deciding whether or not you need to parse the plist and populate your
CoreData store when you launch your application. If you need to clear out a database from a
previous launch, you can tap and hold on the application icon on your iPhone/iPod touch to
delete the app – this will delete all content as well so you can run fresh. You can also select
“Reset Content and Settings...” from the “iPhone Simulator” menu to start from scratch. Be
sure to populate your database as early as you can in your app’s execution, since calling any of
our CoreData helper methods will create the database.

When populating your database, you’ll need to use a NSManagedObjectContext to insert
new Entities. You can get this using -[FlickrFetcher managedObjectContext]. If you need to,
you can use the [FlickrFetcher fetchManagedObjectsForEntity:withPredicate] method to
fetch existing objects from your CoreData store.

Filling in your Table Views

When filling in your Table Views, take a close look at the NSFetchedResultsController class.
This class uses similar conventions to UITableView, and will prove very useful in hooking your
Table Views to your database. You can use -[FlickrFetcher
fetchedResultsControllerForEntity:withPredicate:] to build an appropriate Fetched Results
Controller for your database for each of your Table Views.

Drag the header and source files for the FlickrFetcher class into your Xcode project. Do the
same with the FakeData.plist file. For now, you don’t need to know anything about what the
FlickrFetcher class doing under the hood, but please feel free to look at the class to understand
how these fetches are made on the database.

CS193P Paparazzi 2
Winter 2010 Cannistraro/Shaffer

Page 3 of 6

Managing a table view with PersonListViewController
You will probably want to use UITableViewController as the starting point for your view
controller subclass. It automatically creates a table view with itself as the delegate and
datasource, among other things. You don’t even need to use a NIB if the table view is all you’re
displaying- just instantiate your subclass using -initWithStyle:. If you do choose to use a NIB and
-initWithNibName:bundle:, be certain that your view outlet is pointing at a valid UITableView.

CS193P Paparazzi 2
Winter 2010 Cannistraro/Shaffer

Page 4 of 6

Responding to a selection
In Paparazzi 1, we pushed a PhotoListViewController onto the navigation stack in our button’s
action method. Now, we’re going to do it in response to a table selection. You remember how to
do that, right? Your PhotoListViewController class should now have a “person” property. Be sure
to set it on the instance after creation, before you push it onto the stack.

Scrolling and zooming your photos

You’re not done yet. Don’t forget to add a scroll view to your PhotoDetailViewController to allow
your user to pan and zoom around each photo. Take a look at the UIScrollView delegate
methods to get your scroll view hooked up for zooming (and remember, by default, a scroll
view only scales from 1.0 to 1.0)!

CS193P Paparazzi 2
Winter 2010 Cannistraro/Shaffer

Page 5 of 6

Extra Credit
Here are some suggestions for enhancing the second version of Paparazzi.

• Sort your list of people alphabetically
• Add support for reordering and deleting users from the table view. Use the view controller’s

standard Edit/Done button as described in Lecture 7, and implement the required datasource &
delegate methods for allowing rows to be reordered and deleted. Consider how you may need
to modify your CoreData model to support ordering.

• Customize your table view cells even further - display a timestamp for each photo, or a total
count of photos for each user (or anything else you like).

• Add a “description” view that overlays on top of your photo, that does not scroll or zoom with
the photo, but tells you the name of the user and title of the photo. Have the description
disappear and reappear when you tap the screen.

If you undertake any extra credit, please let us know in your submission notes or
otherwise. If you don’t, we might not know to look for it. And be sure that the core functionality
of your application is solid before working on any of this!

CS193P Paparazzi 2
Winter 2010 Cannistraro/Shaffer

Page 6 of 6

