
CS193P - Lecture 2
iPhone Application Development

Objective-C
Foundation Framework

1Thursday, January 7, 2010

Announcements

2Thursday, January 7, 2010

Announcements
• Enrollment process is almost done

2Thursday, January 7, 2010

Announcements
• Enrollment process is almost done

2Thursday, January 7, 2010

Announcements
• Enrollment process is almost done

• Shooting for end of day Friday

2Thursday, January 7, 2010

Announcements
• Enrollment process is almost done

• Shooting for end of day Friday

• Please drop the class in Axess if you are not enrolled.

2Thursday, January 7, 2010

Office Hours

• David Jacobs
■ Mondays 4-6pm: Gates 360

• Paul Salzman
■ Some time. Best to try all possible times until you hit it
■ Some place, probably in Gates. Just come by and yell real loud

3Thursday, January 7, 2010

iPhone SDK

4Thursday, January 7, 2010

iPhone SDK

4Thursday, January 7, 2010

iPhone SDK

• Enrolled students will be invited to developer program
■ Login to Program Portal
■ Request a Certificate
■ Download and install the SDK

4Thursday, January 7, 2010

iPhone SDK

• Enrolled students will be invited to developer program
■ Login to Program Portal
■ Request a Certificate
■ Download and install the SDK

4Thursday, January 7, 2010

iPhone SDK

• Enrolled students will be invited to developer program
■ Login to Program Portal
■ Request a Certificate
■ Download and install the SDK

• Will need your Device UDIDs - details to come

4Thursday, January 7, 2010

iPhone SDK

• Enrolled students will be invited to developer program
■ Login to Program Portal
■ Request a Certificate
■ Download and install the SDK

• Will need your Device UDIDs - details to come

4Thursday, January 7, 2010

iPhone SDK

• Enrolled students will be invited to developer program
■ Login to Program Portal
■ Request a Certificate
■ Download and install the SDK

• Will need your Device UDIDs - details to come

• Auditors will need to sign up for Developer Program
independently
■ Free for Simulator development
■ $99 for on-device development

4Thursday, January 7, 2010

Getting Help
• The assignment walks you

through it
• Key spots to look

■ API & Conceptual Docs in Xcode
■ Class header files
■ Docs, sample code, tech notes

on Apple Developer Connection
(ADC) site
■ http://developer.apple.com
■ Dev site uses Google search

5Thursday, January 7, 2010

Today’s Topics
• Questions from Tuesday or Assignments?
• Object Oriented Programming Overview
• Objective-C Language
• Common Foundation Classes

6Thursday, January 7, 2010

Object Basics

7Thursday, January 7, 2010

OOP Vocabulary
• Class: defines the grouping of data and code,

 the “type” of an object

• Instance: a specific allocation of a class
• Method: a “function” that an object knows how to perform

• Instance Variable (or “ivar”): a specific piece of data
 belonging to an object

8Thursday, January 7, 2010

OOP Vocabulary
• Encapsulation

■ keep implementation private and separate from interface

• Polymorphism
■ different objects, same interface

• Inheritance
■ hierarchical organization, share code, customize or extend

behaviors

9Thursday, January 7, 2010

Inheritance

• Hierarchical relation between classes
• Subclass “inherit” behavior and data from superclass
• Subclasses can use, augment or replace superclass methods

Superclass

Subclass

NSObject

UIControl

UIButton UITextField

10Thursday, January 7, 2010

Inheritance

Memory
management

• Hierarchical relation between classes
• Subclass “inherit” behavior and data from superclass
• Subclasses can use, augment or replace superclass methods

Superclass

Subclass

NSObject

UIControl

UIButton UITextField

10Thursday, January 7, 2010

Inheritance

Memory
management

Generic
behaviors

• Hierarchical relation between classes
• Subclass “inherit” behavior and data from superclass
• Subclasses can use, augment or replace superclass methods

Superclass

Subclass

NSObject

UIControl

UIButton UITextField

10Thursday, January 7, 2010

Inheritance

Memory
management

Generic
behaviors

Specific
behaviors

• Hierarchical relation between classes
• Subclass “inherit” behavior and data from superclass
• Subclasses can use, augment or replace superclass methods

Superclass

Subclass

NSObject

UIControl

UIButton UITextField

10Thursday, January 7, 2010

More OOP Info?
• Drop by office hours to talk about basics of OOP
• Tons of books and articles on OOP
• Most Java or C++ book have OOP introductions
• Objective-C 2.0 Programming Language

■ http://developer.apple.com/documentation/Cocoa/Conceptual/
ObjectiveC

11Thursday, January 7, 2010

Objective-C

12Thursday, January 7, 2010

Objective-C
• Strict superset of C

■ Mix C with ObjC
■ Or even C++ with ObjC (usually referred to as ObjC++)

• A very simple language, but some new syntax
• Single inheritance, classes inherit from one and only one

superclass
• Protocols define behavior that cross classes
• Dynamic runtime
• Loosely typed, if you’d like

13Thursday, January 7, 2010

Syntax Additions
• Small number of additions
• Some new types

■ Anonymous object
■ Class
■ Selectors

• Syntax for defining classes
• Syntax for message expressions

14Thursday, January 7, 2010

Dynamic Runtime
• Object creation

■ All objects allocated out of the heap
■ No stack based objects

• Message dispatch
• Introspection

15Thursday, January 7, 2010

OOP with ObjC

16Thursday, January 7, 2010

Classes and Instances
• In Objective-C, classes and instances are both objects
• Class is the blueprint to create instances

17Thursday, January 7, 2010

Classes and Instances
• In Objective-C, classes and instances are both objects
• Class is the blueprint to create instances

Class

Data

method

method

m
et
ho

dm
ethod

method

method

m
et
ho

dm
ethod

Data

method

method

m
et
ho

dm
ethod

Data

method

method

m
et
ho

dm
ethod

Data

method

method

m
et
ho

dm
ethod

Data

method

method

m
et
ho

dm
ethod

Data

17Thursday, January 7, 2010

Classes and Objects
• Classes declare state and behavior
• State (data) is maintained using instance variables
• Behavior is implemented using methods
• Instance variables typically hidden

■ Accessible only using getter/setter methods

18Thursday, January 7, 2010

OOP From ObjC Perspective
• Everybody has their own spin on OOP

■ Apple is no different

• For the spin on OOP from an ObjC perspective:
■ Read the “Object-Oriented Programming with Objective-C”

document
■ http://developer.apple.com/iphone/library/documentation/

Cocoa/Conceptual/OOP_ObjC

19Thursday, January 7, 2010

Messaging syntax

20Thursday, January 7, 2010

Class and Instance Methods
• Instances respond to instance methods

- (id)init;
- (float)height;
- (void)walk;

• Classes respond to class methods
+ (id)alloc;
+ (id)person;
+ (Person *)sharedPerson;

21Thursday, January 7, 2010

Message syntax

22Thursday, January 7, 2010

Message syntax

[receiver message]

22Thursday, January 7, 2010

Message syntax

[receiver message]

[receiver message:argument]

22Thursday, January 7, 2010

Message syntax

[receiver message]

[receiver message:argument]

[receiver message:arg1 andArg:arg2]

22Thursday, January 7, 2010

Message examples
Person *voter; //assume this exists

[voter castBallot];

int theAge = [voter age];

[voter setAge:21];

if ([voter canLegallyVote]) {
// do something voter-y

}

[voter registerForState:@"CA" party:@"Independant"];

NSString *name = [[voter spouse] name];

23Thursday, January 7, 2010

Person *voter; //assume this exists

[voter castBallot];

int theAge = [voter age];

[voter setAge:21];

if ([voter canLegallyVote]) {
// do something voter-y

}

[voter registerForState:@"CA" party:@"Independant"];

NSString *name = [[voter spouse] name];

- (void)castBallot;

- (int)age;

- (void)setAge:(int)age;

- (BOOL)canLegallyVote;

- (void)registerForState:(NSString*)state
 party:(NSString*)party;

- (Person*)spouse;
- (NSString*)name;

Method definition examples

24Thursday, January 7, 2010

• Message expression

 [receiver method: argument]

• Message

 [receiver method: argument]

• Selector

 [receiver method: argument]

• Method

 The code selected by a message

Terminology

25Thursday, January 7, 2010

Dot Syntax
• Objective-C 2.0 introduced dot syntax
• Convenient shorthand for invoking accessor methods
	 	 float height = [person height];
	 	 float height = person.height;

	 	 [person setHeight:newHeight];
	 	 person.height = newHeight;

• Follows the dots...
	 	 [[person child] setHeight:newHeight];
	 	 // exactly the same as
	 	 person.child.height = newHeight;

26Thursday, January 7, 2010

Objective-C Types

27Thursday, January 7, 2010

Dynamic and static typing
• Dynamically-typed object

! id anObject
■ Just id
■ Not id * (unless you really, really mean it...)

• Statically-typed object

! Person *anObject

• Objective-C provides compile-time, not runtime, type checking
• Objective-C always uses dynamic binding

28Thursday, January 7, 2010

The null object pointer
• Test for nil explicitly

! if (person == nil) return;
• Or implicitly

! if (!person) return;
• Can use in assignments and as arguments if expected

! person = nil;

! [button setTarget: nil];
• Sending a message to nil?

! person = nil;

! [person castBallot];

29Thursday, January 7, 2010

BOOL typedef
• When ObjC was developed, C had no boolean type (C99

introduced one)
• ObjC uses a typedef to define BOOL as a type

BOOL flag = NO;
• Macros included for initialization and comparison: YES and NO

if (flag == YES)

if (flag)

if (!flag)

if (flag != YES)

flag = YES;

flag = 1;

30Thursday, January 7, 2010

Selectors identify methods by name
• A selector has type SEL

! SEL action = [button action];

! [button setAction:@selector(start:)];

• Conceptually similar to function pointer

• Selectors include the name and all colons, for example:

! -(void)setName:(NSString *)name age:(int)age;

 would have a selector:

! SEL sel = @selector(setName:age:);

31Thursday, January 7, 2010

Working with selectors
• You can determine if an object responds to a given selector
! id obj;

! SEL sel = @selector(start:);

! if ([obj respondsToSelector:sel]) {
! [obj performSelector:sel withObject:self]

! }

• This sort of introspection and dynamic messaging underlies
many Cocoa design patterns
! -(void)setTarget:(id)target;

! -(void)setAction:(SEL)action;

32Thursday, January 7, 2010

Working with Classes

33Thursday, January 7, 2010

Class Introspection
• You can ask an object about its class
! Class myClass = [myObject class];

! NSLog(@"My class is %@", [myObject className]);

• Testing for general class membership (subclasses included):
! if ([myObject isKindOfClass:[UIControl class]]) {

! // something

! }

• Testing for specific class membership (subclasses excluded):
! if ([myObject isMemberOfClass:[NSString class]]) {

! // something string specific

! }

34Thursday, January 7, 2010

Working with Objects

35Thursday, January 7, 2010

Identity versus Equality
• Identity—testing equality of the pointer values

if (object1 == object2) {

NSLog(@"Same exact object instance");

}

• Equality—testing object attributes
if ([object1 isEqual: object2]) {

NSLog(@"Logically equivalent, but may
 be different object instances");

}

36Thursday, January 7, 2010

-description
• NSObject implements -description

- (NSString *)description;

• Objects represented in format strings using %@
• When an object appears in a format string, it is asked for its

description
[NSString stringWithFormat: @”The answer is: %@”, myObject];

• You can log an object’s description with:
NSLog([anObject description]);

• Your custom subclasses can override description to return
more specific information

37Thursday, January 7, 2010

Foundation Classes

38Thursday, January 7, 2010

Foundation Framework
• Value and collection classes
• User defaults
• Archiving
• Notifications
• Undo manager
• Tasks, timers, threads
• File system, pipes, I/O, bundles

39Thursday, January 7, 2010

NSObject
• Root class
• Implements many basics

■ Memory management
■ Introspection
■ Object equality

40Thursday, January 7, 2010

NSString
• General-purpose Unicode string support

■ Unicode is a coding system which represents all of the world’s
languages

• Consistently used throughout Cocoa Touch instead of “char *”
• Without doubt the most commonly used class
• Easy to support any language in the world with Cocoa

41Thursday, January 7, 2010

String Constants
• In C constant strings are
! ! ! “simple”

• In ObjC, constant strings are
! @“just as simple”

• Constant strings are NSString instances
! NSString *aString = @”Hello World!”;

42Thursday, January 7, 2010

Format Strings
• Similar to printf, but with %@ added for objects
	 NSString *aString = @”Johnny”;
	 NSString *log = [NSString stringWithFormat: @”It’s ‘%@’”, aString];

log would be set to It’s ‘Johnny’

• Also used for logging
	 NSLog(@”I am a %@, I have %d items”, [array className], [array count]);

would log something like:
 I am a NSArray, I have 5 items

43Thursday, January 7, 2010

NSString
• Often ask an existing string for a new string with modifications

- (NSString *)stringByAppendingString:(NSString *)string;

- (NSString *)stringByAppendingFormat:(NSString *)string;

- (NSString *)stringByDeletingPathComponent;

• Example:
NSString *myString = @”Hello”;

NSString *fullString;

fullString = [myString stringByAppendingString:@” world!”];

fullString would be set to Hello world!

44Thursday, January 7, 2010

NSString
• Common NSString methods

- (BOOL)isEqualToString:(NSString *)string;

- (BOOL)hasPrefix:(NSString *)string;

- (int)intValue;

- (double)doubleValue;

• Example:
NSString *myString = @”Hello”;

NSString *otherString = @”449”;

if ([myString hasPrefix:@”He”]) {

// will make it here

}

if ([otherString intValue] > 500) {

// won’t make it here

}

45Thursday, January 7, 2010

NSMutableString
• NSMutableString subclasses NSString
• Allows a string to be modified
• Common NSMutableString methods

+ (id)string;

- (void)appendString:(NSString *)string;

- (void)appendFormat:(NSString *)format, ...;

NSMutableString *newString = [NSMutableString string];

[newString appendString:@”Hi”];

[newString appendFormat:@”, my favorite number is: %d”,

[self favoriteNumber]];

46Thursday, January 7, 2010

Collections
• Array - ordered collection of objects
• Dictionary - collection of key-value pairs
• Set - unordered collection of unique objects
• Common enumeration mechanism
• Immutable and mutable versions

■ Immutable collections can be shared without side effect
■ Prevents unexpected changes
■ Mutable objects typically carry a performance overhead

47Thursday, January 7, 2010

NSArray
• Common NSArray methods
! + arrayWithObjects:(id)firstObj, ...; // nil terminated!!!

! - (unsigned)count;

! - (id)objectAtIndex:(unsigned)index;

! - (unsigned)indexOfObject:(id)object;

• NSNotFound returned for index if not found
NSArray *array = [NSArray arrayWithObjects:@”Red”, @”Blue”,
@”Green”, nil];

if ([array indexOfObject:@”Purple”] == NSNotFound) {

NSLog (@”No color purple”);

}

• Be careful of the nil termination!!!

48Thursday, January 7, 2010

NSMutableArray
• NSMutableArray subclasses NSArray
• So, everything in NSArray
• Common NSMutableArray Methods
+ (NSMutableArray *)array;

- (void)addObject:(id)object;

- (void)removeObject:(id)object;

- (void)removeAllObjects;

- (void)insertObject:(id)object atIndex:(unsigned)index;

NSMutableArray *array = [NSMutableArray array];

[array addObject:@”Red”];

[array addObject:@”Green”];

[array addObject:@”Blue”];

[array removeObjectAtIndex:1];

49Thursday, January 7, 2010

NSDictionary
• Common NSDictionary methods
+ dictionaryWithObjectsAndKeys: (id)firstObject, ...;

- (unsigned)count;

- (id)objectForKey:(id)key;

• nil returned if no object found for given key
NSDictionary *colors = [NSDictionary
 dictionaryWithObjectsAndKeys:@”Red”, @”Color 1”,
 @”Green”, @”Color 2”, @”Blue”, @”Color 3”, nil];

NSString *firstColor = [colors objectForKey:@”Color 1”];

if ([colors objectForKey:@”Color 8”]) {

 // won’t make it here

}

50Thursday, January 7, 2010

NSMutableDictionary
• NSMutableDictionary subclasses NSDictionary
• Common NSMutableDictionary methods

+ (NSMutableDictionary *)dictionary;

- (void)setObject:(id)object forKey:(id)key;

- (void)removeObjectForKey:(id)key;

- (void)removeAllObjects;

NSMutableDictionary *colors = [NSMutableDictionary dictionary];

[colors setObject:@”Orange” forKey:@”HighlightColor”];

51Thursday, January 7, 2010

NSSet
• Unordered collection of objects
• Common NSSet methods
! + setWithObjects:(id)firstObj, ...; // nil terminated

! - (unsigned)count;

! - (BOOL)containsObject:(id)object;

52Thursday, January 7, 2010

NSMutableSet
• NSMutableSet subclasses NSSet
• Common NSMutableSet methods
! + (NSMutableSet *)set;

! - (void)addObject:(id)object;

! - (void)removeObject:(id)object;

! - (void)removeAllObjects;

! - (void)intersectSet:(NSSet *)otherSet;

! - (void)minusSet:(NSSet *)otherSet;

53Thursday, January 7, 2010

Enumeration
• Consistent way of enumerating over objects in collections
• Use with NSArray, NSDictionary, NSSet, etc.

NSArray *array = ... ; // assume an array of People objects

// old school
Person *person;
int count = [array count];
for (i = 0; i < count; i++) {
 person = [array objectAtIndex:i];
 NSLog([person description]);
}

// new school
for (Person *person in array) {
 NSLog([person description]);
}

54Thursday, January 7, 2010

NSNumber
• In Objective-C, you typically use standard C number types
• NSNumber is used to wrap C number types as objects
• Subclass of NSValue
• No mutable equivalent!
• Common NSNumber methods

+ (NSNumber *)numberWithInt:(int)value;

+ (NSNumber *)numberWithDouble:(double)value;

- (int)intValue;

- (double)doubleValue;

55Thursday, January 7, 2010

Other Classes
• NSData / NSMutableData

■ Arbitrary sets of bytes

• NSDate / NSCalendarDate
■ Times and dates

56Thursday, January 7, 2010

Getting some objects
• Until we talk about memory management:

■ Use class factory methods
■ NSString’s +stringWithFormat:
■ NSArray’s +array
■ NSDictionary’s +dictionary

■ Or any method that returns an object except alloc/init or copy.

57Thursday, January 7, 2010

More ObjC Info?
• http://developer.apple.com/documentation/Cocoa/

Conceptual/ObjectiveC
• Concepts in Objective C are applicable to any other OOP

language

58Thursday, January 7, 2010

Questions?

59Thursday, January 7, 2010

