
CS193P - Lecture 6
iPhone Application Development

Designing iPhone Applications
Model-View-Controller (Why and How?)
View Controllers
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Announcements
• Questions about Views?
• Friday’s optional section...

■ Extended Office Hours
■ Gates 360, 3:30 - 5pm
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Today’s Topics
• Designing iPhone Applications
• Model-View-Controller (Why and How?)
• View Controllers
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Designing iPhone Applications
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Two Flavors of Mail
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Organizing Content
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Organizing Content
• Focus on your user’s data
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Organizing Content
• Focus on your user’s data
• One thing at a time
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Organizing Content
• Focus on your user’s data
• One thing at a time
• Screenfuls of content
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Patterns for Organizing Content
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Patterns for Organizing Content

Navigation Bar
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Patterns for Organizing Content

Navigation Bar Tab Bar
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Navigation Bar
• Hierarchy of content
• Drill down into greater detail
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Navigation Bar
• Hierarchy of content
• Drill down into greater detail
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Tab Bar
• Self-contained modes
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Tab Bar
• Self-contained modes
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A Screenful of Content
• Slice of your application
• Views, data, logic
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Model View

Parts of a Screenful
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Model View

Parts of a Screenful

Controller
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Parts of a Screenful

Model View

Controller
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Model-View-Controller
(Why and How?)
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Why Model-View-Controller?
• Ever used the word “spaghetti” to describe code?
• Clear responsibilities make things easier to maintain

• Avoid having one monster class that does everything
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Why Model-View-Controller?
• Ever used the word “spaghetti” to describe code?
• Clear responsibilities make things easier to maintain

• Avoid having one monster class that does everything
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Why Model-View-Controller?
• Separating responsibilites also leads to reusability
• By minimizing dependencies, you can take a model or view 

class you’ve already written and use it elsewhere

• Think of ways to write less code
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Communication and MVC
• How should objects communicate?
• Which objects know about one another?
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Communication and MVC
• How should objects communicate?
• Which objects know about one another?

• Model

• Example: Polygon class
• Not aware of views or controllers

• Typically the most reusable
• Communicate generically using...

■ Key-value observing 
■ Notifications

Model

17Friday, January 22, 2010



Communication and MVC
• How should objects communicate?
• Which objects know about one another?

• View

• Example: PolygonView class
• Not aware of controllers, may be

aware of relevant model objects

• Also tends to be reusable
• Communicate with controller using...

■ Target-action
■ Delegation

View
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Communication and MVC
• How should objects communicate?
• Which objects know about one another?

• Controller

• Knows about model and view objects
• The brains of the operation
• Manages relationships and data flow
• Typically app-specific,

so rarely reusable
Controller
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Communication and MVC

Model View

Controller
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Communication and MVC

Model View

Controller
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Communication and MVC

Model View

Controller

target-action,
delegation

KVO,
notifications
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View Controllers
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Problem: Managing a Screenful
• Controller manages views, data and application logic
• Apps are made up of many of these
• Would be nice to have a well-defined starting point

■ A la UIView for views
■ Common language for talking about controllers
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Problem: Building Typical Apps
• Some application flows are very common

■ Navigation-based
■ Tab bar-based
■ Combine the two

• Don’t reinvent the wheel
• Plug individual screens together to build an app
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UIViewController
• Basic building block
• Manages a screenful of content
• Subclass to add your application logic

LogicDataViewsView Controller
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UIViewController
• Basic building block
• Manages a screenful of content
• Subclass to add your application logic
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UIViewController
• Basic building block
• Manages a screenful of content
• Subclass to add your application logic
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“Your” and “Our” View Controllers
• Create your own UIViewController subclass for each screenful
• Plug them together using existing composite view controllers
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“Your” and “Our” View Controllers
• Create your own UIViewController subclass for each screenful
• Plug them together using existing composite view controllers

View Controller

View Controller

View Controller

Navigation
Controller
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“Your” and “Our” View Controllers
• Create your own UIViewController subclass for each screenful
• Plug them together using existing composite view controllers

View Controller

View Controller

View Controller

Tab Bar
Controller
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Your View Controller Subclass
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Your View Controller Subclass
#import <UIKit/UIKit.h>

@interface MyViewController : UIViewController {
// A view controller will usually
// manage views and data
NSMutableArray *myData;
UILabel *myLabel;

}
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Your View Controller Subclass
#import <UIKit/UIKit.h>

@interface MyViewController : UIViewController {
// A view controller will usually
// manage views and data
NSMutableArray *myData;
UILabel *myLabel;

}

// Expose some of its contents to clients
@property (readonly) NSArray *myData;
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Your View Controller Subclass
#import <UIKit/UIKit.h>

@interface MyViewController : UIViewController {
// A view controller will usually
// manage views and data
NSMutableArray *myData;
UILabel *myLabel;

}

// Expose some of its contents to clients
@property (readonly) NSArray *myData;

// And respond to actions
- (void)doSomeAction:(id)sender;
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The “View” in “View Controller”
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The “View” in “View Controller”
• UIViewController superclass has a view property

■ @property (retain) UIView *view;
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The “View” in “View Controller”
• UIViewController superclass has a view property

■ @property (retain) UIView *view;

• Loads lazily
■ On demand when requested
■ Can be purged on demand as well (low memory)
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The “View” in “View Controller”
• UIViewController superclass has a view property

■ @property (retain) UIView *view;

• Loads lazily
■ On demand when requested
■ Can be purged on demand as well (low memory)

• Sizing and positioning the view?
■ Depends on where it’s being used
■ Don’t make assumptions, be flexible
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When to call -loadView?
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When to call -loadView?
• Don’t do it!
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When to call -loadView?
• Don’t do it!
• Cocoa tends to embrace a lazy philosophy

■ Call -release instead of -dealloc
■ Call -setNeedsDisplay instead of -drawRect:
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When to call -loadView?
• Don’t do it!
• Cocoa tends to embrace a lazy philosophy

■ Call -release instead of -dealloc
■ Call -setNeedsDisplay instead of -drawRect:

• Allows work to be deferred or coalesced
■ Performance!
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Creating Your View in Code
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Creating Your View in Code
• Override -loadView

■ Never call this directly

// Subclass of UIViewController
- (void)loadView
{

}
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Creating Your View in Code
• Override -loadView

■ Never call this directly

• Create your views

// Subclass of UIViewController
- (void)loadView
{

}

MyView *myView = [[MyView alloc] initWithFrame:frame];

[myView release];
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Creating Your View in Code
• Override -loadView

■ Never call this directly

• Create your views
• Set the view property

// Subclass of UIViewController
- (void)loadView
{

}

MyView *myView = [[MyView alloc] initWithFrame:frame];

[myView release];
self.view = myView; // The view controller now owns the view
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Creating Your View in Code
• Override -loadView

■ Never call this directly

• Create your views
• Set the view property
• Create view controller with -init

// Subclass of UIViewController
- (void)loadView
{

}

MyView *myView = [[MyView alloc] initWithFrame:frame];

[myView release];
self.view = myView; // The view controller now owns the view
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Creating Your View with Interface Builder
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Creating Your View with Interface Builder
• Lay out a view in Interface Builder
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Creating Your View with Interface Builder
• Lay out a view in Interface Builder
• File’s owner is view controller class
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Creating Your View with Interface Builder
• Lay out a view in Interface Builder
• File’s owner is view controller class
• Hook up view outlet

30Friday, January 22, 2010



Creating Your View with Interface Builder
• Lay out a view in Interface Builder
• File’s owner is view controller class
• Hook up view outlet
• Create view controller

with -initWithNibName:bundle:
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Demo:
View Controllers with IB
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View Controller Lifecycle

32Friday, January 22, 2010



View Controller Lifecycle
- (id)initWithNibName:(NSString *)nibName 
bundle:(NSBundle *)bundle
{

if (self == [super init...]) {
// Perform initial setup, nothing view-related
myData = [[NSMutableArray alloc] init];
self.title = @“Foo”;

}
return self;

}
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View Controller Lifecycle

33Friday, January 22, 2010



View Controller Lifecycle
- (void)viewDidLoad
{

// Your view has been loaded
// Customize it here if needed
view.someWeirdProperty = YES;

}
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View Controller Lifecycle
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View Controller Lifecycle
- (void)viewWillAppear:(BOOL)animated
{

[super viewWillAppear:animated];

// Your view is about to show on the screen
[self beginLoadingDataFromTheWeb];
[self startShowingLoadingProgress];

}
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View Controller Lifecycle
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View Controller Lifecycle
- (void)viewWillDisappear:(BOOL)animated
{

[super viewWillDisappear:animated];

// Your view is about to leave the screen
[self rememberScrollPosition];
[self saveDataToDisk];

}
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Loading & Saving Data
• Lots of options out there, depends on what you need

■ NSUserDefaults
■ Property lists
■ CoreData
■ SQLite
■ Web services

• Covering in greater depth in Lecture 9 on 4/29
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Demo:
Loading & Saving Data
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More View Controller Hooks
• Automatically rotating your user interface
• Low memory warnings
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Supporting Interface Rotation

39Friday, January 22, 2010



Supporting Interface Rotation
- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation
{

// This view controller only supports portrait
return (interfaceOrientation ==
	      UIInterfaceOrientationPortrait);

}
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Supporting Interface Rotation
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Supporting Interface Rotation
- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation
{

// This view controller supports all orientations
// except for upside-down.
return (interfaceOrientation !=
	      UIInterfaceOrientationPortraitUpsideDown);

}

40Friday, January 22, 2010



Demo:
Rotating Your Interface
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Autoresizing Your Views
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Autoresizing Your Views
view.autoresizingMask = UIViewAutoresizingFlexibleWidth | 
                        UIViewAutoresizingFlexibleHeight;
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Autoresizing Your Views
view.autoresizingMask = UIViewAutoresizingFlexibleWidth | 
                        UIViewAutoresizingFlexibleHeight;
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Autoresizing Your Views
view.autoresizingMask = UIViewAutoresizingFlexibleWidth | 
                        UIViewAutoresizingFlexibleHeight;

view.autoresizingMask = UIViewAutoresizingFlexibleWidth | 
                        UIViewAutoresizingFlexibleTopMargin;
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Autoresizing Your Views
view.autoresizingMask = UIViewAutoresizingFlexibleWidth | 
                        UIViewAutoresizingFlexibleHeight;

view.autoresizingMask = UIViewAutoresizingFlexibleWidth | 
                        UIViewAutoresizingFlexibleTopMargin;
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Questions?
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