
CS193P - Lecture 9
iPhone Application Development

Data in Your iPhone App
Chris Marcellino

1Tuesday, February 2, 2010

Today’s Topics
• Data in Your iPhone App

■ Saving & loading local data
■ Accessing remote data over the Internet

2Tuesday, February 2, 2010

Today’s Topics
• Property Lists, NSUserDefaults and Settings
• iPhone’s File System
• Archiving Objects
• The Joy of SQLite
• JSON
• Apple Push Notification Service

3Tuesday, February 2, 2010

Property Lists

4Tuesday, February 2, 2010

Property Lists
• Convenient way to store a small amount of data

■ Arrays, dictionaries, strings, numbers, dates, raw data
■ Human-readable XML or binary format

• NSUserDefaults class uses property lists under the hood

5Tuesday, February 2, 2010

When Not to Use Property Lists
• More than a few hundred KB of data

■ Loading a property list is all-or-nothing

• Complex object graphs
• Custom object types
• Multiple writers (e.g. not ACID)

6Tuesday, February 2, 2010

Reading & Writing Property Lists
• NSArray and NSDictionary convenience methods
• Operate recursively
// Writing
- (BOOL)writeToFile:(NSString *)aPath atomically:(BOOL)flag;
- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)flag;

// Reading
- (id)initWithContentsOfFile:(NSString *)aPath;
- (id)initWithContentsOfURL:(NSURL *)aURL;

7Tuesday, February 2, 2010

Writing an Array to Disk

8Tuesday, February 2, 2010

Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,

8Tuesday, February 2, 2010

Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,
 [NSNumber numberWithBool:YES],

8Tuesday, February 2, 2010

Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,
 [NSNumber numberWithBool:YES],
 [NSDate dateWithTimeIntervalSinceNow:60],

8Tuesday, February 2, 2010

Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,
 [NSNumber numberWithBool:YES],
 [NSDate dateWithTimeIntervalSinceNow:60],
 nil];

8Tuesday, February 2, 2010

Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,
 [NSNumber numberWithBool:YES],
 [NSDate dateWithTimeIntervalSinceNow:60],
 nil];
[array writeToFile:@“MyArray.plist” atomically:YES];

8Tuesday, February 2, 2010

Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,
 [NSNumber numberWithBool:YES],
 [NSDate dateWithTimeIntervalSinceNow:60],
 nil];
[array writeToFile:@“MyArray.plist” atomically:YES];

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
	 <string>Foo</string>
	 <true/>
	 <date>2010-02-02T09:26:18Z</date>

</array>
</plist>

8Tuesday, February 2, 2010

Writing a Dictionary to Disk

9Tuesday, February 2, 2010

Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:

9Tuesday, February 2, 2010

Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
 @“Bob”, @“Name”,

9Tuesday, February 2, 2010

Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
 @“Bob”, @“Name”,
 [NSNumber numberWithInt:9], @“Lecture”,

9Tuesday, February 2, 2010

Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
 @“Bob”, @“Name”,
 [NSNumber numberWithInt:9], @“Lecture”,
 nil];

9Tuesday, February 2, 2010

Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
 @“Bob”, @“Name”,
 [NSNumber numberWithInt:9], @“Lecture”,
 nil];
[dict writeToFile:@“MyDict.plist” atomically:YES];

9Tuesday, February 2, 2010

Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
 @“Bob”, @“Name”,
 [NSNumber numberWithInt:9], @“Lecture”,
 nil];
[dict writeToFile:@“MyDict.plist” atomically:YES];

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
	 <key>Name</key>
	 <string>Bob</string>
	 <key>Lecture</key>
	 <integer>10</integer>

</dict>
</plist>

9Tuesday, February 2, 2010

NSPropertyListSerialization
• Allows finer-grained control

■ File format
■ More descriptive errors
■ Mutability

10Tuesday, February 2, 2010

NSPropertyListSerialization
• Allows finer-grained control

■ File format
■ More descriptive errors
■ Mutability

// Property list to NSData
+ (NSData *)dataFromPropertyList:(id)plist
 format:(NSPropertyListFormat)format
 errorDescription:(NSString **)errorString;

// NSData to property list
+ (id)propertyListFromData:(NSData *)data
 mutabilityOption:(NSPropertyListMutabilityOptions)opt
 format:(NSPropertyListFormat *)format
 errorDescription:(NSString **)errorString;

10Tuesday, February 2, 2010

More on Property Lists
• “Property List Programming Guide for Cocoa”

http://developer.apple.com/documentation/Cocoa/
Conceptual/PropertyLists/

11Tuesday, February 2, 2010

iPhone’s File System

12Tuesday, February 2, 2010

Keeping Applications Separate

Image (cc) by davidsilver on Flickr

13Tuesday, February 2, 2010

Why Keep Applications Separate?
• Security
• Privacy
• Cleanup after deleting an app

14Tuesday, February 2, 2010

Home Directory Layout

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories
• <Application Home>

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents
■ Library

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents
■ Library

■ Caches

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents
■ Library

■ Caches
■ Preferences

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents
■ Library

■ Caches
■ Preferences

• Applications only read and write within their home directory

15Tuesday, February 2, 2010

Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents
■ Library

■ Caches
■ Preferences

• Applications only read and write within their home directory
• Backed up by iTunes during sync (mostly)

15Tuesday, February 2, 2010

File Paths in Your Application

16Tuesday, February 2, 2010

File Paths in Your Application
// Basic directories
NSString *homePath = NSHomeDirectory();
NSString *tmpPath = NSTemporaryDirectory();

16Tuesday, February 2, 2010

File Paths in Your Application
// Basic directories
NSString *homePath = NSHomeDirectory();
NSString *tmpPath = NSTemporaryDirectory();

// Documents directory
NSArray *paths = NSSearchPathForDirectoriesInDomains

 (NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documentsPath = [paths objectAtIndex:0];

16Tuesday, February 2, 2010

File Paths in Your Application
// Basic directories
NSString *homePath = NSHomeDirectory();
NSString *tmpPath = NSTemporaryDirectory();

// Documents directory
NSArray *paths = NSSearchPathForDirectoriesInDomains

 (NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documentsPath = [paths objectAtIndex:0];

// <Application Home>/Documents/foo.plist
NSString *fooPath =
[documentsPath stringByAppendingPathComponent:@“foo.plist”];

16Tuesday, February 2, 2010

Including Writable Files with Your App
• Many applications want to include some starter data
• But application bundles are code signed

■ You can’t modify the contents of your app bundle

• To include a writable data file with your app...
■ Build it as part of your app bundle
■ On first launch, copy it to your Documents directory

17Tuesday, February 2, 2010

Archiving Objects

18Tuesday, February 2, 2010

Archiving Objects
• Next logical step from property lists

■ Include arbitrary classes
■ Complex object graphs

• Used by Interface Builder for NIBs

19Tuesday, February 2, 2010

Making Objects Archivable
• Conform to the <NSCoding> protocol

20Tuesday, February 2, 2010

Making Objects Archivable
• Conform to the <NSCoding> protocol

// Encode an object for an archive
- (void)encodeWithCoder:(NSCoder *)coder
{

[super encodeWithCoder:coder];
[coder encodeObject:name forKey:@“Name”];
[coder encodeInteger:numberOfSides forKey:@“Sides”];

}

// Decode an object from an archive
- (id)initWithCoder:(NSCoder *)coder
{

self = [super initWithCoder:coder];
name = [[coder decodeObjectForKey:@“Name”] retain];
numberOfSides = [coder decodeIntegerForKey:@“Side”];

}

20Tuesday, February 2, 2010

Archiving & Unarchiving Object Graphs

21Tuesday, February 2, 2010

Archiving & Unarchiving Object Graphs
• Creating an archive

NSArray *polygons = ...;
NSString *path = ...;
BOOL result = [NSKeyedArchiver archiveRootObject:polygons
 toFile:path];

21Tuesday, February 2, 2010

Archiving & Unarchiving Object Graphs
• Creating an archive

• Decoding an archive

NSArray *polygons = ...;
NSString *path = ...;
BOOL result = [NSKeyedArchiver archiveRootObject:polygons
 toFile:path];

NSArray *polygons = nil;
NSString *path = ...;
polygons = [NSKeyedUnarchiver unarchiveObjectWithFile:path];

21Tuesday, February 2, 2010

More on Archiving Objects
• “Archives and Serializations Programming Guide for Cocoa”

http://developer.apple.com/documentation/Cocoa/
Conceptual/Archiving/

22Tuesday, February 2, 2010

The Joy of SQLite

23Tuesday, February 2, 2010

SQLite
• Complete SQL database in an ordinary file
• Simple, compact, fast, reliable
• No server
• Free/Open Source Software
• Great for embedded devices

■ Included on the iPhone platform

24Tuesday, February 2, 2010

When Not to Use SQLite
• Multi-gigabyte databases
• High concurrency (multiple writers)
• Client-server applications
• “Appropriate Uses for SQLite”

http://www.sqlite.org/whentouse.html

25Tuesday, February 2, 2010

SQLite C API Basics

26Tuesday, February 2, 2010

SQLite C API Basics
• Open the database

int sqlite3_open(const char *filename, sqlite3 **db);

26Tuesday, February 2, 2010

SQLite C API Basics
• Open the database

• Execute a SQL statement

int sqlite3_open(const char *filename, sqlite3 **db);

int sqlite3_exec(sqlite3 *db, const char *sql,
 int (*callback)(void*,int,char**,char**),
 void *context, char **error);

26Tuesday, February 2, 2010

SQLite C API Basics
• Open the database

• Execute a SQL statement

int sqlite3_open(const char *filename, sqlite3 **db);

int sqlite3_exec(sqlite3 *db, const char *sql,
 int (*callback)(void*,int,char**,char**),
 void *context, char **error);

// Your callback
int callback(void *context, int count,
 char **values, char **columns);

26Tuesday, February 2, 2010

SQLite C API Basics
• Open the database

• Execute a SQL statement

• Close the database

int sqlite3_open(const char *filename, sqlite3 **db);

int sqlite3_exec(sqlite3 *db, const char *sql,
 int (*callback)(void*,int,char**,char**),
 void *context, char **error);

int sqlite3_close(sqlite3 *db);

// Your callback
int callback(void *context, int count,
 char **values, char **columns);

26Tuesday, February 2, 2010

Demo:
Simple SQLite

27Tuesday, February 2, 2010

More on SQLite
• “SQLite in 5 Minutes Or Less”

http://www.sqlite.org/quickstart.html
• “Intro to the SQLite C Interface”

http://www.sqlite.org/cintro.html

28Tuesday, February 2, 2010

Core Data
• Object-graph management and persistence framework

■ Makes it easy to save & load model objects
■ Properties
■ Relationships

■ Higher-level abstraction than SQLite or property lists

• Available on the Mac OS X desktop
• Now available on iPhone OS 3.0

29Tuesday, February 2, 2010

Two classes you should know about...

30Tuesday, February 2, 2010

Two classes you should know about...
• NSPredicate

30Tuesday, February 2, 2010

Two classes you should know about...
• NSPredicate

■ “Used to define logical conditions used to constrain a search
either for a fetch or for in-memory filtering.”

30Tuesday, February 2, 2010

Two classes you should know about...
• NSPredicate

■ “Used to define logical conditions used to constrain a search
either for a fetch or for in-memory filtering.”

■ -[NSPredicate predicateWithFormat:]

30Tuesday, February 2, 2010

Two classes you should know about...
• NSPredicate

■ “Used to define logical conditions used to constrain a search
either for a fetch or for in-memory filtering.”

■ -[NSPredicate predicateWithFormat:]
■ Simple comparisons:

30Tuesday, February 2, 2010

Two classes you should know about...
• NSPredicate

■ “Used to define logical conditions used to constrain a search
either for a fetch or for in-memory filtering.”

■ -[NSPredicate predicateWithFormat:]
■ Simple comparisons:

■ grade == “7”

30Tuesday, February 2, 2010

Two classes you should know about...
• NSPredicate

■ “Used to define logical conditions used to constrain a search
either for a fetch or for in-memory filtering.”

■ -[NSPredicate predicateWithFormat:]
■ Simple comparisons:

■ grade == “7”
■ user.firstName like "Tom"

30Tuesday, February 2, 2010

Two classes you should know about...
• NSPredicate

■ “Used to define logical conditions used to constrain a search
either for a fetch or for in-memory filtering.”

■ -[NSPredicate predicateWithFormat:]
■ Simple comparisons:

■ grade == “7”
■ user.firstName like "Tom"
■ “first contains [c]”chris”

30Tuesday, February 2, 2010

Two classes you should know about...
• NSPredicate

■ “Used to define logical conditions used to constrain a search
either for a fetch or for in-memory filtering.”

■ -[NSPredicate predicateWithFormat:]
■ Simple comparisons:

■ grade == “7”
■ user.firstName like "Tom"
■ “first contains [c]”chris”

■ Many, many options:
http://developer.apple.com/mac/library/documentation/cocoa/
Conceptual/Predicates/Articles/pSyntax.html

30Tuesday, February 2, 2010

Two classes you should know about...

31Tuesday, February 2, 2010

Two classes you should know about...
• NSEntityDescription

31Tuesday, February 2, 2010

Two classes you should know about...
• NSEntityDescription

■ Used for inserting a new object into a Core Data Managed
Object context

31Tuesday, February 2, 2010

Two classes you should know about...
• NSEntityDescription

■ Used for inserting a new object into a Core Data Managed
Object context

■ - [NSEntityDescription
insertNewObjectForEntityForName:inManagedObjectContext:]

31Tuesday, February 2, 2010

Two classes you should know about...
• NSEntityDescription

■ Used for inserting a new object into a Core Data Managed
Object context

■ - [NSEntityDescription
insertNewObjectForEntityForName:inManagedObjectContext:]

■ See the documentation!

31Tuesday, February 2, 2010

Two classes you should know about...
• NSEntityDescription

■ Used for inserting a new object into a Core Data Managed
Object context

■ - [NSEntityDescription
insertNewObjectForEntityForName:inManagedObjectContext:]

■ See the documentation!
■ http://developer.apple.com/mac/library/documentation/cocoa/

reference/CoreDataFramework/Classes/
NSEntityDescription_Class/NSEntityDescription.html

31Tuesday, February 2, 2010

Web Services

32Tuesday, February 2, 2010

Your Application & The Cloud
• Store & access remote data
• May be under your control or someone else’s
• Many Web 2.0 apps/sites provide developer API

33Tuesday, February 2, 2010

“I made a location-based
user-generated video blogging
mashup... for pets!”

34Tuesday, February 2, 2010

Integrating with Web Services
• Non-goal of this class: teach you all about web services

■ Plenty of tutorials accessible, search on Google

• Many are exposed via RESTful interfaces with XML or JSON
■ REpresentational State Transfer

■ Stateless interactions
■ Well defined client/server roles & interfaces
■ e.g. HTTP

• High level overview of parsing these types of data

35Tuesday, February 2, 2010

XML

36Tuesday, February 2, 2010

Options for Parsing XML
• libxml2

■ Tree-based: easy to parse, entire tree in memory
■ Event-driven: less memory, more complex to manage state
■ Text reader: fast, easy to write, efficient

• NSXMLParser
■ Event-driven API: simpler but less powerful than libxml2

37Tuesday, February 2, 2010

More on Parsing XML
• Brent Simmons, “libxml2 + xmlTextReader on Macs”

http://inessential.com/?comments=1&postid=3489
■ Includes example of parsing Twitter XML!

• Big Nerd Ranch, “Parsing XML in Cocoa”
http://weblog.bignerdranch.com/?p=48
■ Covers the basics of NSXMLReader

38Tuesday, February 2, 2010

JSON

39Tuesday, February 2, 2010

JavaScript Object Notation
• More lightweight than XML
• Looks a lot like a property list

■ Arrays, dictionaries, strings, numbers

• Open source json-framework wrapper for Objective-C

40Tuesday, February 2, 2010

What does a JSON object look like?

41Tuesday, February 2, 2010

What does a JSON object look like?

{

41Tuesday, February 2, 2010

What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,

41Tuesday, February 2, 2010

What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,

41Tuesday, February 2, 2010

What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,

41Tuesday, February 2, 2010

What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,
“midterm-exam” : null,

41Tuesday, February 2, 2010

What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,
“midterm-exam” : null,
“assignments” : [“WhatATool”,

41Tuesday, February 2, 2010

What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,
“midterm-exam” : null,
“assignments” : [“WhatATool”,

 “HelloPoly”,

41Tuesday, February 2, 2010

What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,
“midterm-exam” : null,
“assignments” : [“WhatATool”,

 “HelloPoly”,
 “Presence”]

41Tuesday, February 2, 2010

What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,
“midterm-exam” : null,
“assignments” : [“WhatATool”,

 “HelloPoly”,
 “Presence”]

}

41Tuesday, February 2, 2010

Using json-framework
• Reading a JSON string into Foundation objects

42Tuesday, February 2, 2010

Using json-framework
• Reading a JSON string into Foundation objects

#import <JSON/JSON.h>

42Tuesday, February 2, 2010

Using json-framework
• Reading a JSON string into Foundation objects

#import <JSON/JSON.h>

// Get a JSON string from the cloud
NSString *jsonString = ...;

42Tuesday, February 2, 2010

Using json-framework
• Reading a JSON string into Foundation objects

#import <JSON/JSON.h>

// Get a JSON string from the cloud
NSString *jsonString = ...;

// Parsing will result in Foundation objects
// Top level may be an NSDictionary or an NSArray
id object = [jsonString JSONValue];

42Tuesday, February 2, 2010

Using json-framework
• Writing a JSON string from Foundation objects

43Tuesday, February 2, 2010

Using json-framework
• Writing a JSON string from Foundation objects

// Create some data in your app

43Tuesday, February 2, 2010

Using json-framework
• Writing a JSON string from Foundation objects

// Create some data in your app
NSDictionary *dictionary = ...;

// Convert into a JSON string before sending to the cloud

43Tuesday, February 2, 2010

Using json-framework
• Writing a JSON string from Foundation objects

// Create some data in your app
NSDictionary *dictionary = ...;

// Convert into a JSON string before sending to the cloud
jsonString = [dictionary JSONRepresentation];

43Tuesday, February 2, 2010

Demo:
Flickr API with JSON

44Tuesday, February 2, 2010

More on JSON
• “JSON Parser/Generator for Objective-C”

http://code.google.com/p/json-framework/
• “Introducing JSON”

http://www.json.org/

45Tuesday, February 2, 2010

Apple Push Notification Service

46Tuesday, February 2, 2010

Overview

47Tuesday, February 2, 2010

• Show badges, alerts and play sounds without app running

Overview

47Tuesday, February 2, 2010

• Show badges, alerts and play sounds without app running

• Minimal server infrastructure needed

Overview

47Tuesday, February 2, 2010

• Show badges, alerts and play sounds without app running

• Minimal server infrastructure needed

• Preserves battery life: 1 versus n TCP/IP connections

Overview

Server
Apple
Push

Service

47Tuesday, February 2, 2010

Using the Service

Server

48Tuesday, February 2, 2010

What you need
Using the Service

Server

48Tuesday, February 2, 2010

What you need
Using the Service

Server

48Tuesday, February 2, 2010

What you need
Using the Service

edu.stanford.cs193.app

Server

48Tuesday, February 2, 2010

What you need
Using the Service

edu.stanford.cs193.app

Server

48Tuesday, February 2, 2010

Server

Using the Service
What you do

Apple
Push

Service

49Tuesday, February 2, 2010

1. Register with the service
Using the Service

Chris’s iPhone
Apple
Push

Service

50Tuesday, February 2, 2010

Server

Using the Service

Chris’s iPhone

51Tuesday, February 2, 2010

Server

2. Send token to your server
Using the Service

Chris’s iPhone

51Tuesday, February 2, 2010

Server

3. Send notifications
Using the Service

Chris’s iPhone

Apple
Push

Service

52Tuesday, February 2, 2010

Server

3. Send notifications
Using the Service

Chris’s iPhone

Apple
Push

ServiceJSON

52Tuesday, February 2, 2010

4. Receive notifications
Using the Service

Apple
Push

Service

53Tuesday, February 2, 2010

4. Receive notifications
Using the Service

Apple
Push

Service
JSON

53Tuesday, February 2, 2010

1. Register with the service
Using the Service

Apple
Push

Service
Chris’s iPhone

54Tuesday, February 2, 2010

1. Register with the service
Using the Service

Apple
Push

Service
Chris’s iPhone

54Tuesday, February 2, 2010

Application launch

• UIKit API in UIApplication.h to register
■ Pass the types you want to receive

Registering with the Service

 -(void)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)options
{

 // Register this app on this device
 UIRemoteNotificationType myTypes = UIRemoteNotificationTypeSounds |
 UIRemoteNotificationTypeBadges;
 [application registerForRemoteNotificationTypes:myTypes];

}

55Tuesday, February 2, 2010

Delegate callbacks
Registering with the Service

56Tuesday, February 2, 2010

Delegate callbacks
Registering with the Service

 - (void)application:(UIApplication *)application
 didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)token
{
 // Phone home with device token
}

56Tuesday, February 2, 2010

Delegate callbacks
Registering with the Service

 - (void)application:(UIApplication *)application
 didFailToRegisterForRemoteNotificationsWithError:(NSError *)error
{
 // Oh noes! Check your Provisioning Profile on device and in Xcode
}

 - (void)application:(UIApplication *)application
 didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)token
{
 // Phone home with device token
}

56Tuesday, February 2, 2010

Registering with the Service

96385da767191121a851963983fdac9bbdf74dcf6219ae14ed8d08228

57Tuesday, February 2, 2010

The device token
Registering with the Service

96385da767191121a851963983fdac9bbdf74dcf6219ae14ed8d08228

57Tuesday, February 2, 2010

The device token

• Uniquely identifies device

Registering with the Service

96385da767191121a851963983fdac9bbdf74dcf6219ae14ed8d08228

57Tuesday, February 2, 2010

The device token

• Uniquely identifies device
■ Distinct from -[UIDevice deviceIdentifier]

Registering with the Service

96385da767191121a851963983fdac9bbdf74dcf6219ae14ed8d08228

57Tuesday, February 2, 2010

The device token

• Uniquely identifies device
■ Distinct from -[UIDevice deviceIdentifier]

• Just call registration API again if token is needed

Registering with the Service

96385da767191121a851963983fdac9bbdf74dcf6219ae14ed8d08228

57Tuesday, February 2, 2010

• UIApplicationDelegate

Registering for Notifications
Optional callbacks and methods

- (void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo

58Tuesday, February 2, 2010

• UIApplication

• UIApplicationDelegate

Registering for Notifications
Optional callbacks and methods

- (UIRemoteNotificationType)enabledRemoteNotificationTypes

- (void)application:(UIApplication *)application
 didReceiveRemoteNotification:(NSDictionary *)userInfo

58Tuesday, February 2, 2010

Chris’s iPhone

Using the Service

Server

59Tuesday, February 2, 2010

Chris’s iPhone

2. Send token to your server
Using the Service

Server

59Tuesday, February 2, 2010

Server

3. Send notifications
Using the Service

Chris’s iPhone

Apple
Push

Service

60Tuesday, February 2, 2010

Server

3. Send notifications
Using the Service

Chris’s iPhone

edu.s.cs193

Apple
Push

Service
JSON

60Tuesday, February 2, 2010

Sending Notifications

{
 "aps" : {
 "alert" : "Jen: Sushi at 10?",
 "badge" : 1,
 "sound" : "Jingle.aiff"
 },
 "acme1" : "conversation9964"
}

61Tuesday, February 2, 2010

Sending Notifications
Message payload

{
 "aps" : {
 "alert" : "Jen: Sushi at 10?",
 "badge" : 1,
 "sound" : "Jingle.aiff"
 },
 "acme1" : "conversation9964"
}

61Tuesday, February 2, 2010

Sending Notifications
Message payload

• Strict RFC 4627 JSON

{
 "aps" : {
 "alert" : "Jen: Sushi at 10?",
 "badge" : 1,
 "sound" : "Jingle.aiff"
 },
 "acme1" : "conversation9964"
}

61Tuesday, February 2, 2010

Sending Notifications
Message payload

• Strict RFC 4627 JSON

• 256 byte maximum

{
 "aps" : {
 "alert" : "Jen: Sushi at 10?",
 "badge" : 1,
 "sound" : "Jingle.aiff"
 },
 "acme1" : "conversation9964"
}

61Tuesday, February 2, 2010

Message payload

• aps dictionary reserved for the sound, badge or alert keys
■ All keys optional

• Rest of payload is for your app

Sending Notifications

{
 "aps" : {
 "alert" : "Jen: Sushi at 10?",
 "badge" : 1,
 "sound" : "Jingle.aiff"
 },
 "acme1" : "conversation9964"
}

62Tuesday, February 2, 2010

Message payload

• aps dictionary reserved for the sound, badge or alert keys
■ All keys optional

• Rest of payload is for your app

Sending Notifications

{
 "aps" : {
 "alert" : "Jen: Sushi at 10?",
 "badge" : 1,
 "sound" : "Jingle.aiff"
 },
 "acme1" : "conversation9964"
}

62Tuesday, February 2, 2010

Badges
badge key, integer value

• Positive integer
■ Or omit to remove

{
 "aps" : {
 "badge" : 1
 }
}

63Tuesday, February 2, 2010

Badges
badge key, integer value

• Positive integer
■ Or omit to remove

{
 "aps" : {
 "badge" : 1
 }
}

63Tuesday, February 2, 2010

Sounds
sound key, string value

• Either a filename in app bundle
■ linear PCM
■ MA4
■ µLaw
■ aLaw

• Or “default”

• Vibration is automatic

{
 "aps" : {
 "sound" : "Jingle.aiff"
 }
}

64Tuesday, February 2, 2010

Alerts
alert key, string or dictionary value

• Simplest form is just a string value

• Can be localized (see documentation)

• Can also customize the text on the view button
■ or omit it

{
 "aps" : {
 "alert" : "Jen: Sushi at 10?"
 }
}

65Tuesday, February 2, 2010

Alerts
alert key, string or dictionary value

• Simplest form is just a string value

• Can be localized (see documentation)

• Can also customize the text on the view button
■ or omit it

{
 "aps" : {
 "alert" : "Jen: Sushi at 10?"
 }
}

65Tuesday, February 2, 2010

Send JSON that is stripped of whitespace
Sending the Payload

{
 "aps" : {
 "alert" : "Jen: Sushi at 10?",
 "badge" : 1,
 "sound" : "Jingle1.aiff"
 },
 "acme1" : "conversation9964"

150 bytes

66Tuesday, February 2, 2010

Send JSON that is stripped of whitespace

96 bytes

{"aps":{"alert":"Jen: Sushi at 10?","badge":
1,
"sound":"Jingle.aiff"},"acme1":"conversation
9964"}

Sending the Payload

66Tuesday, February 2, 2010

Demo:
Pushing to the Flickr app

67Tuesday, February 2, 2010

NSUserDefaults recap
(time permitting)

68Tuesday, February 2, 2010

NSUserDefaults
• Convenient way to store settings and lightweight state

■ Arrays, dictionaries, strings, numbers, dates, raw data
■ Settings bundles can be created so that user defaults can be set

from Settings app
■ Internally stored as property lists

69Tuesday, February 2, 2010

Reading & Writing User Defaults
• Key-value store
• Base methods accept and return objects for values
+ (NSUserDefaults *)standardUserDefaults;

- (id)objectForKey:(NSString *)defaultName;
- (void)setObject:(id)value forKey:(NSString *)defaultName;
- (void)removeObjectForKey:(NSString *)defaultName;

- (BOOL)synchronize;

70Tuesday, February 2, 2010

Reading & Writing User Defaults
• Many convenience methods that ‘box’ and ‘unbox’ the object

■ and perform type checking

- (NSString *)stringForKey:(NSString *)defaultName;
- (NSArray *)arrayForKey:(NSString *)defaultName;
- (NSDictionary *)dictionaryForKey:(NSString *)defaultName;
- (NSData *)dataForKey:(NSString *)defaultName;
- (NSArray *)stringArrayForKey:(NSString *)defaultName;
- (NSInteger)integerForKey:(NSString *)defaultName;
- (float)floatForKey:(NSString *)defaultName;
- (double)doubleForKey:(NSString *)defaultName;
- (BOOL)boolForKey:(NSString *)defaultName;

- (void)setInteger:(NSInteger)value forKey:(NSString *)
defaultName;
- (void)setFloat:(float)value forKey:(NSString *)defaultName;
- (void)setDouble:(double)value forKey:(NSString *)defaultName;
- (void)setBool:(BOOL)value forKey:(NSString *)defaultName;

71Tuesday, February 2, 2010

-[NSUserDefaults synchronize]
• Call [[NSUserDefaults standardUserDefaults] synchronize] to

write changes to disk
• Also loads external changes from disk (useful on Mac OS X)

72Tuesday, February 2, 2010

More on NSUserDefaults
• “User Defaults Programming Topics for Cocoa”

http://developer.apple.com/mac/library/documentation/
Cocoa/Conceptual/UserDefaults/Tasks/UsingDefaults.html

73Tuesday, February 2, 2010

Demo:
NSUserDefaults and Settings

74Tuesday, February 2, 2010

Recap
• Property lists, NSUserDefaults

■ Quick & easy, but limited

• Archived objects
■ More flexible, but require writing a lot of code

• SQLite
■ Elegant solution for many types of problems

• XML and JSON
■ Low-overhead options for talking to “the cloud”
■ Apple Push Notification Service pushes JSON from your server to

devices

75Tuesday, February 2, 2010

Questions?

76Tuesday, February 2, 2010

