
CS193P - Lecture 9
iPhone Application Development

Data in Your iPhone App
Chris Marcellino
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Today’s Topics
• Data in Your iPhone App

■ Saving & loading local data
■ Accessing remote data over the Internet
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Today’s Topics
• Property Lists, NSUserDefaults and Settings
• iPhone’s File System
• Archiving Objects
• The Joy of SQLite
• JSON
• Apple Push Notification Service
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Property Lists
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Property Lists
• Convenient way to store a small amount of data

■ Arrays, dictionaries, strings, numbers, dates, raw data
■ Human-readable XML or binary format

• NSUserDefaults class uses property lists under the hood
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When Not to Use Property Lists
• More than a few hundred KB of data

■ Loading a property list is all-or-nothing

• Complex object graphs
• Custom object types
• Multiple writers (e.g. not ACID)
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Reading & Writing Property Lists
• NSArray and NSDictionary convenience methods
• Operate recursively
// Writing
- (BOOL)writeToFile:(NSString *)aPath atomically:(BOOL)flag;
- (BOOL)writeToURL:(NSURL *)aURL atomically:(BOOL)flag;

// Reading
- (id)initWithContentsOfFile:(NSString *)aPath;
- (id)initWithContentsOfURL:(NSURL *)aURL;
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Writing an Array to Disk
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Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,
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Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,
                  [NSNumber numberWithBool:YES],
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Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,
                  [NSNumber numberWithBool:YES],
                  [NSDate dateWithTimeIntervalSinceNow:60],
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Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,
                  [NSNumber numberWithBool:YES],
                  [NSDate dateWithTimeIntervalSinceNow:60],
                  nil];
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Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,
                  [NSNumber numberWithBool:YES],
                  [NSDate dateWithTimeIntervalSinceNow:60],
                  nil];
[array writeToFile:@“MyArray.plist” atomically:YES];
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Writing an Array to Disk
NSArray *array = [NSArray arrayWithObjects:@“Foo”,
                  [NSNumber numberWithBool:YES],
                  [NSDate dateWithTimeIntervalSinceNow:60],
                  nil];
[array writeToFile:@“MyArray.plist” atomically:YES];

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
	 <string>Foo</string>
	 <true/>
	 <date>2010-02-02T09:26:18Z</date>

</array>
</plist>
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Writing a Dictionary to Disk
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Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
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Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
                      @“Bob”, @“Name”,
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Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
                      @“Bob”, @“Name”,
                      [NSNumber numberWithInt:9], @“Lecture”,
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Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
                      @“Bob”, @“Name”,
                      [NSNumber numberWithInt:9], @“Lecture”,
                      nil];
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Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
                      @“Bob”, @“Name”,
                      [NSNumber numberWithInt:9], @“Lecture”,
                      nil];
[dict writeToFile:@“MyDict.plist” atomically:YES];
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Writing a Dictionary to Disk
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
                      @“Bob”, @“Name”,
                      [NSNumber numberWithInt:9], @“Lecture”,
                      nil];
[dict writeToFile:@“MyDict.plist” atomically:YES];

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
	 <key>Name</key>
	 <string>Bob</string>
	 <key>Lecture</key>
	 <integer>10</integer>

</dict>
</plist>
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NSPropertyListSerialization
• Allows finer-grained control

■ File format
■ More descriptive errors
■ Mutability
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NSPropertyListSerialization
• Allows finer-grained control

■ File format
■ More descriptive errors
■ Mutability

// Property list to NSData
+ (NSData *)dataFromPropertyList:(id)plist
                          format:(NSPropertyListFormat)format
                errorDescription:(NSString **)errorString;

// NSData to property list
+ (id)propertyListFromData:(NSData *)data
          mutabilityOption:(NSPropertyListMutabilityOptions)opt
                    format:(NSPropertyListFormat *)format
          errorDescription:(NSString **)errorString;
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More on Property Lists
• “Property List Programming Guide for Cocoa”

http://developer.apple.com/documentation/Cocoa/
Conceptual/PropertyLists/
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iPhone’s File System
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Keeping Applications Separate

Image (cc) by davidsilver on Flickr
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Why Keep Applications Separate?
• Security
• Privacy
• Cleanup after deleting an app
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Home Directory Layout
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Home Directory Layout
• Each app has its own set of directories
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Home Directory Layout
• Each app has its own set of directories
• <Application Home>
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Home Directory Layout
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• <Application Home>

■ MyApp.app
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Home Directory Layout
• Each app has its own set of directories
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■ MainWindow.nib
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Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

15Tuesday, February 2, 2010



Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents
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Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents
■ Library
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Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents
■ Library

■ Caches
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Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents
■ Library

■ Caches
■ Preferences
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Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents
■ Library

■ Caches
■ Preferences

• Applications only read and write within their home directory
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Home Directory Layout
• Each app has its own set of directories
• <Application Home>

■ MyApp.app
■ MyApp
■ MainWindow.nib
■ SomeImage.png

■ Documents
■ Library

■ Caches
■ Preferences

• Applications only read and write within their home directory
• Backed up by iTunes during sync (mostly)
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File Paths in Your Application
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File Paths in Your Application
// Basic directories
NSString *homePath = NSHomeDirectory();
NSString *tmpPath = NSTemporaryDirectory();
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File Paths in Your Application
// Basic directories
NSString *homePath = NSHomeDirectory();
NSString *tmpPath = NSTemporaryDirectory();

// Documents directory
NSArray *paths = NSSearchPathForDirectoriesInDomains

        (NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documentsPath = [paths objectAtIndex:0];
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File Paths in Your Application
// Basic directories
NSString *homePath = NSHomeDirectory();
NSString *tmpPath = NSTemporaryDirectory();

// Documents directory
NSArray *paths = NSSearchPathForDirectoriesInDomains

        (NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documentsPath = [paths objectAtIndex:0];

// <Application Home>/Documents/foo.plist
NSString *fooPath =
[documentsPath stringByAppendingPathComponent:@“foo.plist”];
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Including Writable Files with Your App
• Many applications want to include some starter data
• But application bundles are code signed

■ You can’t modify the contents of your app bundle

• To include a writable data file with your app...
■ Build it as part of your app bundle
■ On first launch, copy it to your Documents directory
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Archiving Objects
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Archiving Objects
• Next logical step from property lists

■ Include arbitrary classes
■ Complex object graphs

• Used by Interface Builder for NIBs
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Making Objects Archivable
• Conform to the <NSCoding> protocol
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Making Objects Archivable
• Conform to the <NSCoding> protocol

// Encode an object for an archive
- (void)encodeWithCoder:(NSCoder *)coder
{

[super encodeWithCoder:coder];
[coder encodeObject:name forKey:@“Name”];
[coder encodeInteger:numberOfSides forKey:@“Sides”];

}

// Decode an object from an archive
- (id)initWithCoder:(NSCoder *)coder
{

self = [super initWithCoder:coder];
name = [[coder decodeObjectForKey:@“Name”] retain];
numberOfSides = [coder decodeIntegerForKey:@“Side”];

}
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Archiving & Unarchiving Object Graphs
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Archiving & Unarchiving Object Graphs
• Creating an archive

NSArray *polygons = ...;
NSString *path = ...;
BOOL result = [NSKeyedArchiver archiveRootObject:polygons
                                          toFile:path];
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Archiving & Unarchiving Object Graphs
• Creating an archive

• Decoding an archive

NSArray *polygons = ...;
NSString *path = ...;
BOOL result = [NSKeyedArchiver archiveRootObject:polygons
                                          toFile:path];

NSArray *polygons = nil;
NSString *path = ...;
polygons = [NSKeyedUnarchiver unarchiveObjectWithFile:path];
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More on Archiving Objects
• “Archives and Serializations Programming Guide for Cocoa”

http://developer.apple.com/documentation/Cocoa/
Conceptual/Archiving/
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The Joy of SQLite
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SQLite
• Complete SQL database in an ordinary file
• Simple, compact, fast, reliable
• No server
• Free/Open Source Software
• Great for embedded devices

■ Included on the iPhone platform
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When Not to Use SQLite
• Multi-gigabyte databases
• High concurrency (multiple writers)
• Client-server applications
• “Appropriate Uses for SQLite”

http://www.sqlite.org/whentouse.html
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SQLite C API Basics
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SQLite C API Basics
• Open the database

int sqlite3_open(const char *filename, sqlite3 **db);

26Tuesday, February 2, 2010



SQLite C API Basics
• Open the database

• Execute a SQL statement

int sqlite3_open(const char *filename, sqlite3 **db);

int sqlite3_exec(sqlite3 *db, const char *sql,
                 int (*callback)(void*,int,char**,char**),
                 void *context, char **error);
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SQLite C API Basics
• Open the database

• Execute a SQL statement

int sqlite3_open(const char *filename, sqlite3 **db);

int sqlite3_exec(sqlite3 *db, const char *sql,
                 int (*callback)(void*,int,char**,char**),
                 void *context, char **error);

// Your callback
int callback(void *context, int count,
             char **values, char **columns);

26Tuesday, February 2, 2010



SQLite C API Basics
• Open the database

• Execute a SQL statement

• Close the database

int sqlite3_open(const char *filename, sqlite3 **db);

int sqlite3_exec(sqlite3 *db, const char *sql,
                 int (*callback)(void*,int,char**,char**),
                 void *context, char **error);

int sqlite3_close(sqlite3 *db);

// Your callback
int callback(void *context, int count,
             char **values, char **columns);
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Demo:
Simple SQLite
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More on SQLite
• “SQLite in 5 Minutes Or Less”

http://www.sqlite.org/quickstart.html
• “Intro to the SQLite C Interface”

http://www.sqlite.org/cintro.html
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Core Data
• Object-graph management and persistence framework

■ Makes it easy to save & load model objects
■ Properties
■ Relationships

■ Higher-level abstraction than SQLite or property lists

• Available on the Mac OS X desktop
• Now available on iPhone OS 3.0
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Two classes you should know about... 
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Two classes you should know about... 
• NSPredicate
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Two classes you should know about... 
• NSPredicate

■ “Used to define logical conditions used to constrain a search 
either for a fetch or for in-memory filtering.”
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Two classes you should know about... 
• NSPredicate
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either for a fetch or for in-memory filtering.”

■ -[NSPredicate predicateWithFormat:]
■ Simple comparisons:

■ grade == “7”
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Two classes you should know about... 
• NSPredicate
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Two classes you should know about... 
• NSPredicate

■ “Used to define logical conditions used to constrain a search 
either for a fetch or for in-memory filtering.”

■ -[NSPredicate predicateWithFormat:]
■ Simple comparisons:

■ grade == “7”
■ user.firstName like "Tom"
■ “first contains [c]”chris”
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Two classes you should know about... 
• NSPredicate

■ “Used to define logical conditions used to constrain a search 
either for a fetch or for in-memory filtering.”

■ -[NSPredicate predicateWithFormat:]
■ Simple comparisons:

■ grade == “7”
■ user.firstName like "Tom"
■ “first contains [c]”chris”

■ Many, many options: 
http://developer.apple.com/mac/library/documentation/cocoa/
Conceptual/Predicates/Articles/pSyntax.html
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Two classes you should know about... 
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Two classes you should know about... 
• NSEntityDescription
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Two classes you should know about... 
• NSEntityDescription

■ Used for inserting a new object into a Core Data Managed 
Object context
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Two classes you should know about... 
• NSEntityDescription

■ Used for inserting a new object into a Core Data Managed 
Object context

■ - [NSEntityDescription 
insertNewObjectForEntityForName:inManagedObjectContext:]
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Two classes you should know about... 
• NSEntityDescription

■ Used for inserting a new object into a Core Data Managed 
Object context

■ - [NSEntityDescription 
insertNewObjectForEntityForName:inManagedObjectContext:]

■ See the documentation!
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Two classes you should know about... 
• NSEntityDescription

■ Used for inserting a new object into a Core Data Managed 
Object context

■ - [NSEntityDescription 
insertNewObjectForEntityForName:inManagedObjectContext:]

■ See the documentation!
■ http://developer.apple.com/mac/library/documentation/cocoa/

reference/CoreDataFramework/Classes/
NSEntityDescription_Class/NSEntityDescription.html
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Web Services
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Your Application & The Cloud
• Store & access remote data
• May be under your control or someone else’s
• Many Web 2.0 apps/sites provide developer API
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“I made a location-based       
user-generated video blogging 
mashup... for pets!”
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Integrating with Web Services
• Non-goal of this class: teach you all about web services

■ Plenty of tutorials accessible, search on Google

• Many are exposed via RESTful interfaces with XML or JSON
■ REpresentational State Transfer

■ Stateless interactions
■ Well defined client/server roles & interfaces
■ e.g. HTTP

• High level overview of parsing these types of data
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XML
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Options for Parsing XML
• libxml2

■ Tree-based: easy to parse, entire tree in memory
■ Event-driven: less memory, more complex to manage state
■ Text reader: fast, easy to write, efficient

• NSXMLParser
■ Event-driven API: simpler but less powerful than libxml2
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More on Parsing XML
• Brent Simmons, “libxml2 + xmlTextReader on Macs”

http://inessential.com/?comments=1&postid=3489
■ Includes example of parsing Twitter XML!

• Big Nerd Ranch, “Parsing XML in Cocoa”
http://weblog.bignerdranch.com/?p=48
■ Covers the basics of NSXMLReader
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JSON
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JavaScript Object Notation
• More lightweight than XML
• Looks a lot like a property list

■ Arrays, dictionaries, strings, numbers

• Open source json-framework wrapper for Objective-C
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What does a JSON object look like?
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What does a JSON object look like?

{
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What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
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What does a JSON object look like?

{
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“students” : 60,
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What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,
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What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,
“midterm-exam” : null,
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What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,
“midterm-exam” : null,
“assignments” : [ “WhatATool”,
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What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,
“midterm-exam” : null,
“assignments” : [ “WhatATool”,

                “HelloPoly”,
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What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,
“midterm-exam” : null,
“assignments” : [ “WhatATool”,

                “HelloPoly”,
                “Presence” ]
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What does a JSON object look like?

{
“instructor” : “Josh Shaffer”,
“students” : 60,
“itunes-u” : true,
“midterm-exam” : null,
“assignments” : [ “WhatATool”,

                “HelloPoly”,
                “Presence” ]

}
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Using json-framework
• Reading a JSON string into Foundation objects
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Using json-framework
• Reading a JSON string into Foundation objects

#import <JSON/JSON.h>
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Using json-framework
• Reading a JSON string into Foundation objects

#import <JSON/JSON.h>

// Get a JSON string from the cloud
NSString *jsonString = ...;
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Using json-framework
• Reading a JSON string into Foundation objects

#import <JSON/JSON.h>

// Get a JSON string from the cloud
NSString *jsonString = ...;

// Parsing will result in Foundation objects
// Top level may be an NSDictionary or an NSArray
id object = [jsonString JSONValue];

42Tuesday, February 2, 2010



Using json-framework
• Writing a JSON string from Foundation objects
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Using json-framework
• Writing a JSON string from Foundation objects

// Create some data in your app
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Using json-framework
• Writing a JSON string from Foundation objects

// Create some data in your app
NSDictionary *dictionary = ...;

// Convert into a JSON string before sending to the cloud
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Using json-framework
• Writing a JSON string from Foundation objects

// Create some data in your app
NSDictionary *dictionary = ...;

// Convert into a JSON string before sending to the cloud
jsonString = [dictionary JSONRepresentation];
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Demo:
Flickr API with JSON
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More on JSON
• “JSON Parser/Generator for Objective-C”

http://code.google.com/p/json-framework/
• “Introducing JSON”

http://www.json.org/
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Apple Push Notification Service
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Overview
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• Show badges, alerts and play sounds without app running

Overview
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• Show badges, alerts and play sounds without app running

• Minimal server infrastructure needed

Overview
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• Show badges, alerts and play sounds without app running

• Minimal server infrastructure needed

• Preserves battery life: 1 versus n TCP/IP connections

Overview

Server
Apple 
Push  

Service
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Using the Service

Server
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What you need
Using the Service

Server
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What you need
Using the Service

Server
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What you need
Using the Service

edu.stanford.cs193.app

Server
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What you need
Using the Service

edu.stanford.cs193.app

Server
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Server

Using the Service
What you do

Apple 
Push 

Service
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1. Register with the service
Using the Service

Chris’s iPhone
Apple 
Push 

Service
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Server

Using the Service

Chris’s iPhone
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Server

2. Send token to your server
Using the Service

Chris’s iPhone
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Server

3. Send notifications
Using the Service

Chris’s iPhone

Apple 
Push  

Service
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Server

3. Send notifications
Using the Service

Chris’s iPhone

Apple 
Push  

ServiceJSON
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4. Receive notifications
Using the Service

Apple 
Push 

Service
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4. Receive notifications
Using the Service

Apple 
Push 

Service
JSON
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1. Register with the service
Using the Service

Apple 
Push 

Service
Chris’s iPhone
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1. Register with the service
Using the Service

Apple 
Push 

Service
Chris’s iPhone
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Application launch

• UIKit API in UIApplication.h to register
■ Pass the types you want to receive

Registering with the Service

 -(void)application:(UIApplication *)application
          didFinishLaunchingWithOptions:(NSDictionary *)options
{

   // Register this app on this device
   UIRemoteNotificationType myTypes = UIRemoteNotificationTypeSounds |
                                      UIRemoteNotificationTypeBadges;
   [application registerForRemoteNotificationTypes:myTypes];

}
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Delegate callbacks
Registering with the Service
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Delegate callbacks
Registering with the Service

 - (void)application:(UIApplication *)application
    didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)token
{
    // Phone home with device token
}
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Delegate callbacks
Registering with the Service

 - (void)application:(UIApplication *)application
    didFailToRegisterForRemoteNotificationsWithError:(NSError *)error
{
    // Oh noes! Check your Provisioning Profile on device and in Xcode
}

 - (void)application:(UIApplication *)application
    didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)token
{
    // Phone home with device token
}
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Registering with the Service

96385da767191121a851963983fdac9bbdf74dcf6219ae14ed8d08228
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The device token
Registering with the Service

96385da767191121a851963983fdac9bbdf74dcf6219ae14ed8d08228
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The device token

• Uniquely identifies device 

Registering with the Service

96385da767191121a851963983fdac9bbdf74dcf6219ae14ed8d08228
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The device token

• Uniquely identifies device 
■ Distinct from -[UIDevice deviceIdentifier]

Registering with the Service

96385da767191121a851963983fdac9bbdf74dcf6219ae14ed8d08228
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The device token

• Uniquely identifies device 
■ Distinct from -[UIDevice deviceIdentifier]

• Just call registration API again if token is needed

Registering with the Service

96385da767191121a851963983fdac9bbdf74dcf6219ae14ed8d08228
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• UIApplicationDelegate

Registering for Notifications
Optional callbacks and methods

- (void)application:(UIApplication *)application
     didReceiveRemoteNotification:(NSDictionary *)userInfo
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• UIApplication

• UIApplicationDelegate

Registering for Notifications
Optional callbacks and methods

- (UIRemoteNotificationType)enabledRemoteNotificationTypes

- (void)application:(UIApplication *)application
     didReceiveRemoteNotification:(NSDictionary *)userInfo
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Chris’s iPhone

Using the Service

Server
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Chris’s iPhone

2. Send token to your server
Using the Service

Server
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Server

3. Send notifications
Using the Service

Chris’s iPhone

Apple 
Push 

Service
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Server

3. Send notifications
Using the Service

Chris’s iPhone

edu.s.cs193

Apple 
Push 

Service
JSON
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Sending Notifications

{
    "aps" : {
        "alert" : "Jen: Sushi at 10?", 
        "badge" : 1,
        "sound" : "Jingle.aiff" 
    },
    "acme1" : "conversation9964"
}
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Sending Notifications
Message payload

{
    "aps" : {
        "alert" : "Jen: Sushi at 10?", 
        "badge" : 1,
        "sound" : "Jingle.aiff" 
    },
    "acme1" : "conversation9964"
}
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Sending Notifications
Message payload

• Strict RFC 4627 JSON

{
    "aps" : {
        "alert" : "Jen: Sushi at 10?", 
        "badge" : 1,
        "sound" : "Jingle.aiff" 
    },
    "acme1" : "conversation9964"
}
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Sending Notifications
Message payload

• Strict RFC 4627 JSON

• 256 byte maximum

{
    "aps" : {
        "alert" : "Jen: Sushi at 10?", 
        "badge" : 1,
        "sound" : "Jingle.aiff" 
    },
    "acme1" : "conversation9964"
}

61Tuesday, February 2, 2010



Message payload

• aps dictionary reserved for the sound, badge or alert keys
■ All keys optional

• Rest of payload is for your app

Sending Notifications

{
    "aps" : {
        "alert" : "Jen: Sushi at 10?", 
        "badge" : 1,
        "sound" : "Jingle.aiff" 
    },
    "acme1" : "conversation9964"
}
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Message payload

• aps dictionary reserved for the sound, badge or alert keys
■ All keys optional

• Rest of payload is for your app

Sending Notifications

{
    "aps" : {
        "alert" : "Jen: Sushi at 10?", 
        "badge" : 1,
        "sound" : "Jingle.aiff" 
    },
    "acme1" : "conversation9964"
}
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Badges
badge key, integer value

• Positive integer
■ Or omit to remove

{
    "aps" : {
        "badge" : 1
    }
}

63Tuesday, February 2, 2010



Badges
badge key, integer value

• Positive integer
■ Or omit to remove

{
    "aps" : {
        "badge" : 1
    }
}
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Sounds
sound key, string value

• Either a filename in app bundle
■ linear PCM
■ MA4
■ µLaw
■ aLaw

• Or “default” 

• Vibration is automatic

{
    "aps" : {
        "sound" : "Jingle.aiff"
    }
}
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Alerts
alert key, string or dictionary value

• Simplest form is just a string value

• Can be localized (see documentation)

• Can also customize the text on the view button
■ or omit it

{
    "aps" : {
        "alert" : "Jen: Sushi at 10?"
    }
}
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Alerts
alert key, string or dictionary value

• Simplest form is just a string value

• Can be localized (see documentation)

• Can also customize the text on the view button
■ or omit it

{
    "aps" : {
        "alert" : "Jen: Sushi at 10?"
    }
}
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Send JSON that is stripped of whitespace
Sending the Payload

{
    "aps" : {
        "alert" : "Jen: Sushi at 10?", 
        "badge" : 1,
        "sound" : "Jingle1.aiff" 
    },
    "acme1" : "conversation9964"

150 bytes
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Send JSON that is stripped of whitespace

96 bytes

{"aps":{"alert":"Jen: Sushi at 10?","badge":
1,
"sound":"Jingle.aiff"},"acme1":"conversation
9964"}

Sending the Payload
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Demo:
Pushing to the Flickr app
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NSUserDefaults recap
(time permitting)
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NSUserDefaults
• Convenient way to store settings and lightweight state

■ Arrays, dictionaries, strings, numbers, dates, raw data
■ Settings bundles can be created so that user defaults can be set 

from Settings app
■ Internally stored as property lists
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Reading & Writing User Defaults
• Key-value store
• Base methods accept and return objects for values
+ (NSUserDefaults *)standardUserDefaults;

- (id)objectForKey:(NSString *)defaultName;
- (void)setObject:(id)value forKey:(NSString *)defaultName;
- (void)removeObjectForKey:(NSString *)defaultName;

- (BOOL)synchronize;
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Reading & Writing User Defaults
• Many convenience methods that ‘box’ and ‘unbox’ the object

■ and perform type checking

- (NSString *)stringForKey:(NSString *)defaultName;
- (NSArray *)arrayForKey:(NSString *)defaultName;
- (NSDictionary *)dictionaryForKey:(NSString *)defaultName;
- (NSData *)dataForKey:(NSString *)defaultName;
- (NSArray *)stringArrayForKey:(NSString *)defaultName;
- (NSInteger)integerForKey:(NSString *)defaultName;
- (float)floatForKey:(NSString *)defaultName;
- (double)doubleForKey:(NSString *)defaultName;
- (BOOL)boolForKey:(NSString *)defaultName;

- (void)setInteger:(NSInteger)value forKey:(NSString *)
defaultName;
- (void)setFloat:(float)value forKey:(NSString *)defaultName;
- (void)setDouble:(double)value forKey:(NSString *)defaultName;
- (void)setBool:(BOOL)value forKey:(NSString *)defaultName;
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-[NSUserDefaults synchronize]
• Call [[NSUserDefaults standardUserDefaults] synchronize] to 

write changes to disk
• Also loads external changes from disk (useful on Mac OS X)
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More on NSUserDefaults
• “User Defaults Programming Topics for Cocoa”

http://developer.apple.com/mac/library/documentation/
Cocoa/Conceptual/UserDefaults/Tasks/UsingDefaults.html
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Demo:
NSUserDefaults and Settings
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Recap
• Property lists, NSUserDefaults

■ Quick & easy, but limited

• Archived objects
■ More flexible, but require writing a lot of code

• SQLite
■ Elegant solution for many types of problems

• XML and JSON
■ Low-overhead options for talking to “the cloud”
■ Apple Push Notification Service pushes JSON from your server to 

devices
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Questions?
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