
Stanford CS193p
Developing Applications for iPhone 4, iPod Touch, & iPad

Fall 2010

Stanford
CS193p

Fall 2010

Today
More Core Data
What does the code for the custom NSManagedObject subclasses generated by Xcode look like?
Querying for (fetching) objects via NSFetchRequest.

Core Data and Table Views
NSFetchedResultsController (hooking up your Core Data objects to a UITableView)
CoreDataTableViewController (plugs NSFetchedResultsController into a UITableViewController)

Demo
Core Data
Using an NSFetchedResultsController to drive a UITableView

Stanford
CS193p

Fall 2010

Core Data
What does the generated code look like in a header file?
Easy, it’s just @property entries for each attribute.
(Relationships will have some extra code (inside #ifdef 0) which you can delete.)

@interface Photo : NSManagedObject {
}
@property (nonatomic, retain) NSString * thumbnailURL;
@property (nonatomic, retain) NSData * thumbnailData;
@property (nonatomic, retain) NSManagedObject * whoTook;
@end

@interface Photographer : NSManagedObject {
}
@property (nonatomic, retain) NSSet * photos;
@end

Stanford
CS193p

Fall 2010

Core Data
How about on the implementation side?

Stanford
CS193p

Fall 2010

New Objective-C keyword you have not seen before ... @dynamic.
@implementation Photo

@dynamic thumbnailURL;
@dynamic thumbnailData;
@dynamic whoTook;

@end
(Ditto about deleting the #ifdef 0 code for now, it’s not necessary for most situations.)
@dynamic means “my class will figure out how to respond to this at runtime.”
Uses a runtime mechanism for an object to intercept messages it normally wouldn’t respond to.
In this case, NSManagedObject turns these into calls to valueForKey:/setValueForKey:.

The bottom line is that you can use property dot notation to access your database Entity, e.g.,
Photo *photo = [NSEntityDescription insertNewObjectForEntityForName:@“Photo” inManage...];
NSString *myThumbnail = photo.thumbnailURL;
photo.thumbnailData = [FlickrFetcher imageDataForPhotoWithURLString:myThumbnail];
photo.whoTook = ...; // a Photographer object we created or got by querying

Core Data
So far you can ...
Create objects in the database with insertNewObjectForEntityForName:inManagedObjectContext:
Get/set properties with valueForKey:/setValueForKey: or @propertys in a custom subclass.

One very important thing left to know how to do: QUERY
Basically you need to be able to retrieve objects from the database, not just create new ones
You do this by executing an NSFetchRequest in your NSManagedObjectContext

Four important things involved in creating an NSFetchRequest

Stanford
CS193p

Fall 2010

1. NSEntityDescription of which Entity to fetch (required)
2. NSPredicate specifying which of those Entities to fetch (optional, default is all of them)
3. NSSortDescriptors to specify the order of objects in the returned array (optional, random)
4. How many objects to fetch at a time and/or maximum to fetch (optional, all)

Core Data
Creating an NSFetchRequest
We’ll consider each of these lines of code one by one ...
NSFetchRequest *request = [[NSFetchRequest alloc] init];
request.entity = [NSEntityDescription entityForName:@“Photo” inManagedObjectContext:ctxt];
request.fetchBatchSize = 20;
request.fetchLimit = 100;
request.sortDescriptors = [NSArray arrayWithObject:sortDescriptor];
request.predicate = ...;

Getting a description of the kind of Entity we want to fetch
request.entity = [NSEntityDescription entityForName:@“Photo” inManagedObjectContext:ctxt];
We are just asking the class NSEntityDescription to create an instance to describe the Entity.

Setting fetch sizes/limits
If you created a fetch that would match 1000 objects, the request above faults 20 at a time.
And it would stop fetching after it had fetched 100 of the 1000. Stanford

CS193p
Fall 2010

Core Data
NSSortDescriptor

Stanford
CS193p

Fall 2010

When we execute our fetch request, it’s going to return an NSArray of NSManagedObjects.
NSArrays are “ordered,” so we usually want to specify the order when we fetch.
We do that by giving the fetch request a list of “sort descriptors” that describe what to sort by.
NSSortDescriptor *sortDescriptor =
 [[NSSortDescriptor alloc] initWithKey:@“thumbnailURL”
 ascending:YES
 selector:@selector(localizedCaseInsensitiveCompare:)];
There’s another version with no selector: argument (default is the method compare:).
The selector: argument is just a method (conceptually) sent to each key to compare it to others.
Some of these “methods” might be smart (i.e. they can happen on the database side).

There are also class methods that return an autoreleased descriptor (we use those most often).

We give a list of these to the NSFetchRequest because sometimes we want to sort first by one
 key (e.g. last name), then, within that sort, sort by another (e.g. first name).

Core Data
NSPredicate
This is the guts of how we specify exactly which objects we want from the database.

What can this predicate format look like?

Stanford
CS193p

Fall 2010

Creating one looks a lot like creating an NSString, but the contents have semantic meaning.
NSString *serverName = @“flickr-5”;
NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@“thumbnailURL contains %@”, serverName];

Very powerful. Examples of predicateWithFormat: arguments ...
@“uniqueId == %@”, [flickrInfo objectForKey:@“id”]
@“%@ in tags”, (NSManagedObject *) // tags is a to-many relationship
@“viewed > %@”, (NSDate *) // viewed is a Date attribute in the data mapping
@“name contains[c] %@”, (NSString *) // matches the string in name attribute case insensitively
Many more options. Look at the class documentation for NSPredicate.

Core Data
NSCompoundPredicate
We can also combine predicates with ands and ors.
NSArray *array = [NSArray arrayWithObjects:predicate1, predicate2, nil];
NSPredicate *predicate = [NSCompoundPredicate andPredicateWithSubpredicates:array];

The predicate is “predicate1 AND predicate2”. Or also available, of course.

Stanford
CS193p

Fall 2010

Core Data

Stanford
CS193p

Fall 2010

// Let’s say Photographer is a custom NSManagedObject subclass
// And that we’ve implemented photographerWithName:inManagedContext: to get one from the db
NSManagedObject *photographer = [Photographer photographerWithName:@“George” inManage...];
// (we said NSManagedObject *photographer but we could have said Photographer *photographer)

// Now let’s create a fetch request to find all photos this photographer has taken
NSFetchRequest *request = [[NSFetchRequest alloc] init];
request.entity = [NSEntityDescription entityForName:@“Photo” inManagedObjectContext:ctxt];
request.fetchBatchSize = 20;
request.sortDescriptors =
 [NSArray arrayWithObject:[NSSortDescriptor sortDescriptorWithKey:@ “title” ascen...]];
request.predicate =
 [NSPredicate predicateWithFormat:@“whoTook = %@”, photographer];

Putting it all together

Core Data
So how do we actually get this fetch request to happen?

Examples

Stanford
CS193p

Fall 2010

We use the method executeFetchRequest:error: in NSManagedObjectContext
NSFetchRequest *request = ...;
NSError **error = nil;
NSArray *results = [mangedObjectContext executeFetchRequest:request error:&error];

Returns nil if there is an error (check the NSError for details).
Returns an empty array (not nil) if there are no matches in the database.
Returns an array of NSManagedObjects (or subclasses thereof) if there were any matches.
You can pass NULL for error: if you don’t care why it fails.

Assuming the results above ...
NSManagedObject *photo = [results objectAtIndex:0];
for (Photo *photo in results) { ... }
Photo *photo = [results lastObject]; // convenient if fetch should return 0 or 1 object only
If you assign the objects from results to a Photo *, be sure you’re fetching in the Photo Entity!

Core Data
Deleting objects
Simple (sort of). [managedObjectContext deleteObject:(NSManagedObject *)anObject];
There are considerations when objects have relationships to each other.
E.g., what if I delete the last Photo that a Photographer has taken? Delete the Photographer too?
There are settings to control this (check out “Creating and Deleting Managed Objects” in the doc).
For your homework, you do not have to delete any objects if you don’t want to.

There is so much more (that we don’t have time to talk about)!
Optimistic locking (deleteConflictsForObject:)
Rolling back unsaved changes
Undo/Redo
Staleness (how long after a fetch until a refetch of an object is required?)
Observing changes (like NSFetchedResultsController is doing automatically for you)
Overriding value setting/getting in custom subclasses (that’s what the #ifdef 0 code is about).

Stanford
CS193p

Fall 2010

NSFetchedResultsController
Hooks an NSFetchRequest up to a UITableView
It can answer all the “questions” the UITableView’s dataSource protocol asks.

Examples
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return [[fetchedResultsController sections] count];
}

- (UITableViewCell *)tableView:(UITableView *)tv cellForRowAtIndexPath:(NSIndexPath *)ip
{
 UITableViewCell *cell = ...;
 NSManagedObject *managedObject = [fetchedResultsController objectAtIndexPath:ip];
 // load up the cell based on the properties of the managedObject
 // of course, if you had a custom subclass, you’d be using dot notation to get them
 return cell;
} Stanford

CS193p
Fall 2010

NSFetchedResultsController
It also “watches” changes in Core Data and auto-updates table
It does this via its own delegate, sending messages like:
- (void)controller:(NSFetchedResultsController *)controller
 didChangeObject:(id)anObject
 atIndexPath:(NSIndexPath *)indexPath
 forChangeType:(NSFetchedResultsChangeType)type
 newIndexPath:(NSIndexPath *)newIndexPath
{
 // here you would call appropriate UITableView methods to update rows
}

Stanford
CS193p

Fall 2010

CoreDataTableViewController
How to use all this functionality is shown in its documentation
All you need to do is copy/paste the example code shown there into your UITableViewController

But that’s a bit of a pain
So ... let us copy/paste that code for you!
We’ve done that to create CoreDataTableViewController.
Just connects an NSFetchedResultsController to a UITableViewController.
Download it along with your homework assignment.
Familiarize yourself with its API (it just calls methods you override and has properties you set).

Easy to use
Be sure to set its fetchedResultsController property in the initializer for your subclass of it.
Set the appropriate properties which say which key to use in your Entity as the title/subtitle.
Override the method that gets called when a row is selected to do your pushing or whatever.

Stanford
CS193p

Fall 2010

NSFetchRequest *request = [[NSFetchRequest alloc] init];
request.entity = [[NSEntityDescription entityForName:@“Photo” inManagedObjectContext:context];
request.sortDescriptors = [NSArray arrayWithObject:sortDescriptor];
request.predicate = [NSPredicate predicateWithFormat:@“whoTook = %@”, photographer];
request.fetchBatchSize = 20;

NSFetchedResultsController
How do you create an NSFetchedResultsController?
Just need the fetch request that is going to drive it.
Can also specify a key in your Entity which says which section each row is in.

Stanford
CS193p

Fall 2010

NSFetchedResultsController *frc = [[NSFetchedResultsController alloc]
 initWithFetchRequest:(NSFetchRequest *)request
 managedObjectContext:(NSManagedObjectContext *)context
 sectionNameKeyPath:(NSString *)keyThatSaysWhichSectionEachManagedObjectIsIn
 cacheName:@“MyPhotoCache”; // if not nil, don’t reuse frc or modify request

NSSortDescriptor *sortDescriptor = [NSSortDescriptor sortDescriptorWithKey:@“title” ascen...];

[request release];

Coming Up
Demo
Fetch a list of photos from Flickr
Display a table view full of the photographers who took those photos
Push a list of that photographer’s photos when the photographer is clicked on

Homework
Add a Favorites tab to your Places application
Use Core Data to store your Favorites information (and your Recents)
Cache the user’s favorite photos’ image data in the file system

Next Week
Blocks and Multithreading
Final Project Guidelines

Stanford
CS193p

Fall 2010

