
CS193p
Spring 2010

Wednesday, May 26, 2010

Announcements
Please e-mail if you want to take the option to
present your final project next Wednesday.
(You will still have until the following Tuesday to turn in your code.)

No class on Monday.

Always interested in feedback for future
versions of the class. Share by e-mail or your
submission README.

If you are interested in TA position for Fall
Quarter, please let me know.

Wednesday, May 26, 2010

Today’s Topics: Audio
Music Library (iPod) Connectivity

Playing/Recording Audio

Wednesday, May 26, 2010

MediaPlayer
Access tracks in iPod music library
Can play them, but can’t copy the data out

View Controller to pick tracks

Can also find tracks using a query API
Like NSPredicate, but customized for music.

Wednesday, May 26, 2010

MediaPlayer
MPMediaPickerController
Present it modally.

Initialize with the desired media types
MPMediaPickerController *picker = [[MPMediaPickerController alloc]
 initWithMediaTypes:(MPMediaType)mediaTypes];

MPMediaTypeMusic
MPMediaTypePodcast
MPMediaTypeAudioBook
MPMediaTypeAnyAudio

Set whether more than one track can be chosen
picker.allowsPickingMultipleItems = (BOOL);

And a title for the picker (looks better if nil)
picker.prompt = (NSString *);

Wednesday, May 26, 2010

MediaPlayer
Set delegate and then put it on screen
[self presentModalViewController:picker animated:YES];

Initialize with the desired media types
- (void)mediaPicker:(MPMediaPickerController *)picker
 didPickMediaItems:(MPMediaItemCollection *)chosenItems;

MPMediaItemCollection
@property (NSArray *)items; // of MPMediaItem
@property (NSUInteger)count;
@property (MPMediaType)mediaTypes;
@property MPMediaItem *representativeItem; // album, artist, genius, etc.

MPMediaItem
- (id)valueForProperty:(NSString *)propertyName;

+ (BOOL)canFilterByProperty:(NSString *)propertyName;
(whether property can be used to build MPMediaPropertyPredicate)

Wednesday, May 26, 2010

MediaPlayer
MPMediaItem properties
Filterable:
MPMediaItemPropertyPersistentID; // NSNumber (64-bit long)
MPMediaItemPropertyMediaType; // NSNumber
MPMediaItemPropertyTitle;
MPMediaItemPropertyAlbumTitle;
MPMediaItemPropertyArtist;
MPMediaItemPropertyAlbumArtist;
MPMediaItemPropertyGenre;
MPMediaItemPropertyComposer;
MPMediaItemPropertyIsCompilation; // NSNumber (boolean)

Non-filterable:
MPMediaItemPropertyPlaybackDuration; // NSNumber (seconds)
MPMediaItemPropertyAlbumTrackNumber; // NSNumber
MPMediaItemPropertyAlbumTrackCount; // NSNumber
MPMediaItemPropertyDiscNumber; // NSNumber
MPMediaItemPropertyDiscCount; // NSNumber
MPMediaItemPropertyArtwork; // MPMediaItemArtwork
MPMediaItemPropertyLyrics;

Wednesday, May 26, 2010

MediaPlayer
Searching the Media Library
Create an MPMediaQuery
There are some pre-canned ones (class methods on MPMediaQuery)
+ (MPMediaQuery)albumsQuery;
+ (MPMediaQuery)artistsQuery;

Or you can build your own using MPMediaPropertyPredicate class ...
MPMediaPropertyPredicate *beatlesAlbums =
 [MPMediaPropertyPredicate predicateWithValue:@”Beatles”
 forProperty:MPMediaItemPropertyArtist
 comparisonType:NSMediaPredicateComparisonContains];

MPMediaQuery *query = [[MPMediaQuery alloc] init];
query.filterPredicates = [NSSet setWithObject:beatlesAlbums];
query.groupingType = MPMediaGroupingAlbum;

This query will get an array of “groups of songs” by the Beatles.
In this case, the songs will be grouped by the album they were on.
If we grouped by artist, it’d be an array with one “group of songs” in it.

Wednesday, May 26, 2010

MediaPlayer
Then just ask the the MPMediaQuery for matches
- (NSArray *)collections; // of MPMediaItemCollection

Look at representativeItem to tell which is which
NSArray *albums = [query collections];
for (MPMediaItemCollection *album in albums) {
 NSString *albumTitle =
 [albums.representativeItem valueForProperty:MPMediaItemPropertyAlbum];
 NSLog(@”album = %@”, albumTitle);
}

Wednesday, May 26, 2010

MediaPlayer
Playing the chosen or queried music
Get your application’s MPMusicPlayerController
MPMusicPlayerController *mpc =
 [MPMusicPlayerController applicationMusicPlayer];

Tell it which collection of items to play
[mpc setQueueWithItemCollection:(MPMediaItemCollection *)collection];

... or ...
[mpc setQueueWithQuery:(MPMediaQuery *)aQuery];

Then tell it to play (or rewind or pause)
[mpc play];
[mpc pause];
[mpc beginSeekingBackward];
[mpc endSeeking];
[mpc skipToNextItem];

Wednesday, May 26, 2010

MediaPlayer
Finding out what’s playing
MPMediaItem *nowPlaying = mpc.nowPlayingItem;

Finding out where in the track we are
NSTimeInterval position = mpc.currentPlaybackTime;

This is read/write, so hook up to a slider and scrub with it!

Playing right now? Paused? Rewinding?
MPMusicPlaybackState state = mpc.playbackState;

Finding out when play state or now playing changes
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(iPodPlayStateChanged:)
 name:MPMusicPlayerControllerPlaybackStateDidChangeNotification
 object:[MPMusicPlayerController applicationMusicPlayer]];

or MPMusicPlayerControllerNowPlayingItemDidChangeNotification if you want

Wednesday, May 26, 2010

Demo
MPMediaPickerController

MPMusicPlayerController

Scrubbing

Wednesday, May 26, 2010

Other Audio
What if the sounds you want to play aren’t in
the user’s Music Library?
Sound effects
Pre-recorded music for your application

A few different choices
System Sound API
AVAudioPlayer
Audio Units
OpenAL

We’re only going to talk about the first two
Check the documentation for the others.
Probably too complicated for you to use in your final project.

Wednesday, May 26, 2010

System Sound API
Simplest sound-playing API
Short, non-repeating, immediate play, no volume control, AIFF or WAV
Register your sound with the system
SystemSoundID mySound;
NSURL *soundFile = [NSURL URLForString:
 [[NSBundle mainBundle] pathForResource:@”mySound” of Type:@”caf”]];
AudioServicesCreateSystemSoundID((CFURLRef)soundFile, &mySound);

Take the ID you get back and use it to play
AudioServicesPlaySystemSound(mySound);

Free the sound when you are done with it
Or when you get a memory warning (since you can easily recreate).
AudioServicesDisposeSystemSound(mySound);

Vibrate
AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);
or AudioServicesPlayAlertSound(mySound);

Wednesday, May 26, 2010

System Sound API
Converting from mp3 (or other) to AIFF
Only uncompressed formats are supported
Command line utility to convert from compressed formats
/usr/bin/afconvert -f aiff -d BE16 input.mp3 output.aif

Wednesday, May 26, 2010

AVAudioPlayer
Quite a bit more powerful than System Sound
Long sounds okay
Looping, seeking, playing and pausing
Metering
Play multiple sounds at once
Object-oriented API
Many more sound file formats supported

Allocate and init with the sound file’s URL
NSString *soundFilePath =

 [[NSBundle mainBundle] pathForResource:@”mySound” ofType:@”mp3”];

NSURL *soundFileURL = [NSURL URLForString:soundFilePath];

AVAudioPlayer *player = [[AVAudioPlayer alloc]

 initWithContentsOfURL:soundFileURL];

Wednesday, May 26, 2010

AVAudioPlayer
Now play, pause, scrub, control volume
if (!player.playing) {
 [player play];
} else {
 [player pause];
}

- (void)scrub:(UISlider *)sender
{
 player.currentTime = duration * sender.value; // assuming 0.0 to 1.0
}

player.volume = 0.75; // from 0.0 to 1.0

Delegate to find out errors, finished, interruption
- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *) successfully:(BOOL);
- (void)audioPlayerDecodeErrorDidOccur:(AVAudioPlayer *) error:(NSError *);
- (void)audioPlayerBeginInterruption:(AVAudioPlayer *);
- (void)audioPlayerEndInterruption:(AVAudioPlayer *);

Wednesday, May 26, 2010

AVAudioRecorder
Very similar to AVAudioPlayer
Allocate and init with the sound file’s URL
NSURL *recordingFileURL = ...; // usually in documents directory
AVAudioRecorder *recorder = [[AVAudioRecorder alloc]

 initWithURL:recordingFileURL

 settings:(NSDictionary *)settings

 error:(NSError **)errorOut];

Now record, pause, get position in recording
if (!recorder.recording) {
 [recorder record]; // or recordForDuration:(NSTimeInterval)
} else {
 [recorder pause];
}
@property (readonly) NSTimeInterval currentTime; // note: read only
recorder.meteringEnabled = YES; // expensive, so only do it if you mean it
recorder.updateMeters;
float peakPower = [recorder peakPowerForChannel:0];
float averagePower = [recorder averagePowerForChannel:0];

Wednesday, May 26, 2010

Demo
AVAudioRecorder / AVAudioPlayer

Searching iPod Library (time permitting)

Wednesday, May 26, 2010

