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Overview From Here: 197
Final Advising: Thurs 6/1— Wed 6/7

Final Project Report: Wed 6/7 EOD

Extra Credit (Peer review): Wed 6/7 EOD

Due Tues 6/13, 3:30pm:

Final paper, final talk, project due.

Final Team Dynamics form due.

Final exam slot: (3:30-6:30pm): we will meet in 60-109 for presentations!
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Overview From Here: 197C
Due Wed 6/7 EOD: Revisions of Milestone Proposal

No action needed if you don’t have any changes.

Update proposal, send to mentor for sign-off.

Extra Credit (Peer review): Wed 6/7 EOD

Due Tues 6/13, 3:30pm:

Final paper, final talk, milestone due.

Final exam slot: (3:30-6:30pm): we will meet in 60-109 for presentations!
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Final presentations are 
in 60-109
T4 Drinks will be provided! 
(Courtesy of Michael Bernstein)



Look how far we’ve come!
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NUM. LABELED ( n) 200 175 150 125 100 75 50 25 10 5
% RELATIONSHIPS 99.09 99.00 98.87 98.74 98.52 98.15 97.57 96.09 92.26 87.28

Figure 2. Visual relationships have a long tail (left) of infrequent relationships. Current models [49,54] only focus on the top 50 relationships
(middle) in the Visual Genome dataset, which all have thousands of labeled instances. This ignores more than 98% of the relationships with
few labeled instances (right, top/table).

features can characterize some visual relationships very well,
they might fail to capture complex relationships with high
variance. To quantify the efficacy of our image-agnostic
features, we define “subtypes” that measure spatial and cate-
gorical complexity (Section 3).

Based on our analysis, we propose a semi-supervised ap-
proach that leverages image-agnostic features to label miss-
ing relationships using as few as 10 labeled instances of each
relationship. We learn simple heuristics over these features
and assign probabilistic labels to the unlabeled images using
a generative model [39, 46]. We evaluate our method’s label-
ing efficacy using the completely-labeled VRD dataset [31]
and find that it achieves an F1 score of 57.66, which is 11.84
points higher than other standard semi-supervised methods
like label propagation [57]. To demonstrate the utility of
our generated labels, we train a state-of-the-art scene graph
model [54] (see Figure 6) and modify its loss function to
support probabilistic labels. Our approach achieves 47.53
recall@1001 for predicate classification on Visual Genome,
improving over the same model trained using only labeled
instances by 40.97 points. For scene graph detection, our ap-
proach achieves within 8.65 recall@100 of the same model
trained on the original Visual Genome dataset with 108⇥
more labeled data. We end by comparing our approach to
transfer learning, the de-facto choice for learning from lim-
ited labels. We find that our approach improves by 5.16
recall@100 for predicate classification, especially for re-
lationships with high complexity, as it generalizes well to
unlabeled subtypes.

Our contributions are three-fold. (1) We introduce the
first method to complete visual knowledge bases by finding
missing visual relationships (Section 5.1). (2) We show the
utility of our generated labels in training existing scene graph
prediction models (Section 5.2). (3) We introduce a metric to
characterize the complexity of visual relationships and show
it is a strong indicator (R2 = 0.778) for our semi-supervised
method’s improvements over transfer learning (Section 5.3).

1Recall@K is a standard measure for scene graph prediction [31].

2. Related work
Textual knowledge bases were originally hand-curated by
experts to structure facts [4,5,44] (e.g. <Tokyo - capital
of - Japan>). To scale dataset curation efforts, recent
approaches mine knowledge from the web [9] or hire non-
expert annotators to manually curate knowledge [5, 47]. In
semi-supervised solutions, a small amount of labeled text is
used to extract and exploit patterns in unlabeled sentences [2,
21, 33–35, 37]. Unfortunately, such approaches cannot be
directly applied to visual relationships; textual relations can
often be captured by external knowledge or patterns, while
visual relationships are often local to an image.
Visual relationships have been studied as spatial priors [14,
16], co-occurrences [51], language statistics [28, 31, 53], and
within entity contexts [29]. Scene graph prediction mod-
els have dealt with the difficulty of learning from incom-
plete knowledge, as recent methods utilize statistical mo-
tifs [54] or object-relationship dependencies [30, 49, 50, 55].
All these methods limit their inference to the top 50 most
frequently occurring predicate categories and ignore those
without enough labeled examples (Figure 2).

The de-facto solution for limited label problems is trans-
fer learning [15, 52], which requires that the source domain
used for pre-training follows a similar distribution as the
target domain. In our setting, the source domain is a dataset
of frequently-labeled relationships with thousands of exam-
ples [30, 49, 50, 55], and the target domain is a set of limited
label relationships. Despite similar objects in source and
target domains, we find that transfer learning has difficulty
generalizing to new relationships. Our method does not rely
on availability of a larger, labeled set of relationships; in-
stead, we use a small labeled set to annotate the unlabeled
set of images.

To address the issue of gathering enough training la-
bels for machine learning models, data programming has
emerged as a popular paradigm. This approach learns to
model imperfect labeling sources in order to assign train-
ing labels to unlabeled data. Imperfect labeling sources
can come from crowdsourcing [10], user-defined heuris-
tics [8, 43], multi-instance learning [22, 40], and distant su-

Writing a paper Giving a talk



Today’s goals
How to pick projects?
How to stay up-to-date?
And….how to deal with rejection :(
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Picking Projects



Where do research ideas come from?



A common mindset: riffing
Ye Olde Riffing Recipe, from The Bernstein Cookbook for People 
Who Don’t Cook Well But Can At Least Do Research:

Read a bunch of papers
Pick a paper you really like
Ask yourself: how could I extend this to another domain, or make 
progress on one of its challenging assumptions, or otherwise extend it?
This is a process for generating a one-paper bit flip
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Riffing is often a good 
starting point for a first 
independent project

It places focus on execution, and gives you most of the inputs, 
outputs, and constraints—the assumptions—up front
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What are the risks here?
It’s not clear that all bit flips 
are worthwhile.
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“Salami Science”: possibility of 
incremental work when we don’t 
view the field’s assumptions broadlyMy misappropriated quote: "Your scientists were 

so preoccupied with whether or not they could 
that they didn't stop to think if they should.”



What we mean when we 
say “incremental”
Research and science are not neutral: they embed values
Incrementally is a push back against minor adjustments to models 
that don’t build substantial theory
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What we mean when we 
say science isn’t neutral
Science and Technology Studies (STS) establishes that what counts as a 
contribution, or as major vs. incremental, or even what counts as 
Computer Science, is socially constructed by elites in the field.
Not so long ago, HCI and Ethics were not seen as legitimate CS
Also not so long ago, CS itself was not seen as a legitimate field



Problem
Previous grad student:

810 triangles

17

My professor:
Bit flip

Undergrad me:
2197 triangles

Liu et al. 2015 “Large, “7-Around” Hyperbolic Disks"



General Tips
1. Stay up-to-date with literature

Problems: what does the field care about?
Solutions: what ideas will change how the field thinks?
In other words, what are the “frontiers” of your field?
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Staying Up-To-Date
Attend top conferences
Twitter
Google Scholars / arXiv: subscribe to important researchers and labs
Build skills and habits

Read papers efficiently — you got practice in this class!
Make it a daily routine to read X number of papers per day  
(esp. for fast-paced fields like AI)

Read outside your field
19



General Tips
1. Stay up-to-date with literature

Problems: what does the field care about?
Solutions: what ideas will change how the field thinks?
In other words, what are the “frontiers” of your field?
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2. Make a habit of generating ideas often (every day)
Keep a journal of ideas!



“If you want to have a 
good idea, you must 
have many ideas.”

– Nobel Prize winning chemist Linus Pauling



“If you want to have a 
good idea, you must 
have many ideas.”

2· 𝜎 = 95% of samples
3· 𝜎 = 99.7% of samples



Quantity > Quality Mindset
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Famous photography class story — Prof. Jerry Uelsmann

Quantity Quality



Some Strategies  
and Stories



Rage-based research
When a pattern or underlying assumption in the field starts to dig 
at you until you decide to prove that it’s wrong.
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Flash Organizations: Crowdsourcing Complex Work
By Structuring Crowds As Organizations

Melissa A. Valentine, Daniela Retelny,
Alexandra To, Negar Rahmati, Tulsee Doshi, Michael S. Bernstein

Stanford University
flashorgs@cs.stanford.edu

ABSTRACT
This paper introduces flash organizations: crowds structured
like organizations to achieve complex and open-ended goals.
Microtask workflows, the dominant crowdsourcing structures
today, only enable goals that are so simple and modular that
their path can be entirely pre-defined. We present a system that
organizes crowd workers into computationally-represented
structures inspired by those used in organizations — roles,
teams, and hierarchies — which support emergent and adap-
tive coordination toward open-ended goals. Our system intro-
duces two technical contributions: 1) encoding the crowd’s
division of labor into de-individualized roles, much as movie
crews or disaster response teams use roles to support coor-
dination between on-demand workers who have not worked
together before; and 2) reconfiguring these structures through
a model inspired by version control, enabling continuous adap-
tation of the work and the division of labor. We report a
deployment in which flash organizations successfully carried
out open-ended and complex goals previously out of reach
for crowdsourcing, including product design, software devel-
opment, and game production. This research demonstrates
digitally networked organizations that flexibly assemble and
reassemble themselves from a globally distributed online work-
force to accomplish complex work.

ACM Classification Keywords
H.5.3. Information Interfaces and Presentation (e.g. HCI):
Group and Organization Interfaces

Author Keywords
Crowdsourcing; expert crowd work; flash organizations

INTRODUCTION
Crowdsourcing mobilizes a massive online workforce into
collectives of unprecedented scale. The dominant approach
for crowdsourcing is the microtask workflow, which enables
contributions at scale by modularizing and pre-specifying all
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2017, May 06 - 11, 2017, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4655-9/17/05...$15.00
DOI: http://dx.doi.org/10.1145/3025453.3025811
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Figure 1: Flash organizations are crowds computationally structured
like organizations. They enable auomated hiring of expert crowd work-
ers into role structures, and continuous reconfiguration of those struc-
tures to direct the crowd’s activities toward complex goals.

actions [7, 55]. By drawing together experts [71] or ama-
teurs [6], microtask workflows have produced remarkable
success in robotic control [48], data clustering [12], galaxy la-
beling [54], and other goals that can be similarly pre-specified.
However, goals that are open-ended and complex, for example
invention, production, and engineering [42], remain largely
out of reach. Open-ended and complex goals are not eas-
ily adapted to microtask workflows because it is difficult to
articulate, modularize, and pre-specify all possible actions
needed to achieve them [72, 81]. If crowdsourcing remains
confined to only the goals so predictable that they can be en-
tirely pre-defined using workflows, crowdsourcing’s long-term
applicability, scope and value will be severely limited.

In this paper, we explore an alternative crowdsourcing ap-
proach that can achieve far more open-ended and complex
goals: crowds structured like organizations. We take inspi-
ration from modern organizations because they regularly or-
chestrate large groups in pursuit of complex and open-ended
goals, whether short-term like disaster response or long-term
like spaceflight [8, 9, 64]. Organizations achieve this com-
plexity through a set of formal structures — roles, teams, and
hierarchies — that encode responsibilities, interdependencies
and information flow without necessarily pre-specifying all
actions [15, 84].



When new tools reopen old 
problems
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ABSTRACT
Social computing prototypes probe the social behaviors that may
arise in an envisioned system design. This prototyping practice
is currently limited to recruiting small groups of people. Unfortu-
nately, many challenges do not arise until a system is populated
at a larger scale. Can a designer understand how a social system
might behave when populated, and make adjustments to the de-
sign before the system falls prey to such challenges? We intro-
duce social simulacra, a prototyping technique that generates a
breadth of realistic social interactions that may emerge when a so-
cial computing system is populated. Social simulacra take as input
the designer’s description of a community’s design—goal, rules, and
member personas—and produce as output an instance of that design
with simulated behavior, including posts, replies, and anti-social
behaviors. We demonstrate that social simulacra shift the behaviors
that they generate appropriately in response to design changes, and
that they enable exploration of “what if?” scenarios where commu-
nity members or moderators intervene. To power social simulacra,
we contribute techniques for prompting a large language model
to generate thousands of distinct community members and their
social interactions with each other; these techniques are enabled by
the observation that large language models’ training data already
includes a wide variety of positive and negative behavior on social
media platforms. In evaluations, we show that participants are of-
ten unable to distinguish social simulacra from actual community
behavior and that social computing designers successfully re�ne
their social computing designs when using social simulacra.

CCS CONCEPTS
• Human-centered computing ! Collaborative and social
computing systems and tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9320-1/22/10. . . $15.00
https://doi.org/10.1145/3526113.3545616

KEYWORDS
social computing, prototyping

ACM Reference Format:
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https://doi.org/10.1145/3526113.3545616

1 INTRODUCTION
How do we anticipate the interactions that will arise when a social
computing system is populated [4, 23]? In social computing, design
decisions such as a community’s goal and rules can give rise to
dramatic shifts in community norms, newcomer enculturation, and
anti-social behavior [45]. Success requires that the designer make
informed decisions to shape these socio-technical outcomes. Yet,
despite decades of progress in research and practice, understanding
the e�ects of these design decisions remains challenging; as a result,
designers are regularly surprised by the behaviors that arise when
their spaces are fully populated.

To design pro-social spaces, designers need prototyping tech-
niques that enable them to re�ect on social behaviors that may
result from their design choices, then iterate [69]. Prototypes in
social computing typically take the form of experience prototypes
where the designer recruits a small group of people to use the
system [7, 22]. However, there remains a large gap between the
behaviors that arise in a small set of test users and the behaviors
that arise in a socio-technical system when it is fully populated:
for example, anti-social behaviors may not arise within a tight-knit
group [45]; small homogeneous groups overlook the breadth of
users or content that may arise in the system [24, 42, 74]; rules
and moderation strategies may not need to be spelled out explicitly
or enforced [41]. Barring actually launching our systems at scale,
designers currently have no way of starting to explore these ques-
tions to re�ect on the social dynamics of their designs. This need
becomes only more urgent as social computing reckons with the
harms it can engender [23] at the same time as designers fashion
new computationally-mediated social spaces in forms both famil-
iar (e.g., a new subreddit or Discord server) and novel (e.g., a new
workspace platform).



When you see a new north 
star
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Searching for Computer Vision  
North Stars

Li Fei-Fei & Ranjay Krishna

Computer vision is one of the most fundamental areas of artificial intelligence re-
search. It has contributed to the tremendous progress in the recent deep learning rev-
olution in AI. In this essay, we provide a perspective of the recent evolution of object 
recognition in computer vision, a flagship research topic that led to the breakthrough 
data set of ImageNet and its ensuing algorithm developments. We argue that much 
of this progress is rooted in the pursuit of research “north stars,” wherein researchers 
focus on critical problems of a scientific discipline that can galvanize major efforts 
and groundbreaking progress. Following the success of ImageNet and object recog-
nition, we observe a number of exciting areas of research and a growing list of north 
star problems to tackle. This essay recounts the brief history of ImageNet, its related 
work, and the follow-up progress. The goal is to inspire more north star work to ad-
vance the field, and AI at large.

A rtificial intelligence is a rapidly progressing field. To many of its everyday 
users, AI is an impressive feat of engineering derived from modern com-
puter science. There is no question that there has been incredible engi-

neering progress in AI, especially in recent years. Successful implementations of 
AI are all around us, from email spam filters and personalized retail recommen-
dations to cars that avoid collisions in an emergency by autonomously braking. 
What may be less obvious is the science behind the engineering. As researchers in 
the field, we have a deep appreciation of both the engineering and the science and 
see the two approaches as deeply intertwined and complementary. Thinking of 
AI, at least in part, as a scientific discipline can inspire new lines of thought and in-
quiry that, in time, will make engineering progress more likely. As in any science, 
it is not always obvious what problems in AI are the most important to tackle. But 
once you have formulated a fundamental problem–once you have identified the 
next “north star”–you can start pushing the frontier of your field. That has cer-
tainly been our experience, and it is why we love Einstein’s remark that “The mere 
formulation of a problem is often far more essential than its solution.” 
AI has been driven by north stars from the field’s inception in 1950, when Alan 

Turing neatly formulated the problem of how to tell if a computer deserves to 
be called intelligent. (The computer, according to the now-famous Turing Test, 



Which approach do I apply?
This is a skill you develop through mentorship — it’s highly 
contingent, and depends on the problem and solution space that 
you’re navigating.
My suggestion: try on different hats around the problems you’re 
interested in, and see what works. 
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Dealing with rejection



:(
Rejection is a fact of life in research.

I’ve gotten rejected a lot. It hurts.

30





We are pleased to inform you that 
your paper has been accepted

32

As a grad student As junior faculty As tenured faculty

From: https://researchinprogress.tumblr.com/post/33884075941/we-are-pleased-to-inform-you-that-your-paper-has

https://researchinprogress.tumblr.com/post/33884075941/we-are-pleased-to-inform-you-that-your-paper-has


We regret to inform you that your 
paper has not been accepted
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As a grad student As junior faculty As tenured faculty

From: https://researchinprogress.tumblr.com/post/33946389387/we-regret-to-inform-you-that-your-paper-has-not

https://researchinprogress.tumblr.com/post/33946389387/we-regret-to-inform-you-that-your-paper-has-not


How to handle bad reviews
First, take the time you need to emotionally process it. My process 
basically follows the Kübler-Ross model:

1. Denial and isolation
2. Anger
3. Bargaining
4. Depression
5. Acceptance

This is a very natural human reaction, and not one we directly have 
control over, so just let it happen. 34



Making the most of it
I see two common clusters of bad reviews:

1) People who don’t get the paper. These reviews don’t engage with the 
core idea, or engage with the wrong aspects of the idea, and their 
critiques come across as surface-level as a result.
2) People who get the paper. These reviews are often really incisive and 
take down core assumptions or approaches you’re taking.

Each of these clusters has something to tell us about our paper.

35



“They don’t get it”
These reviews suggest one of two things:

Your paper didn’t get in front of the right kind of reviewer, like it didn’t hit 
someone who works in the right area.

(Then: what are you signaling in your title or abstract that is attracting 
the wrong kind of reviewer?) 

Your paper got in front of the right kind of reviewer, but they didn’t 
connect with your idea

(Let’s talk about Plato’s Cave…)

36



Plato’s Cave

37

Your brilliant idea

The shadow cast by the 
paper you actually wrote

What reviewers thought 
you were saying

The shadow cast by their 
reaction in the review you read



Plato’s Cave
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Your brilliant idea

The shadow cast by the 
paper you actually wrote

What reviewers thought 
you were saying

The shadow cast by their 
reaction in the review you read

Your goal: invert the 
transformation to 

understand what really 
needs to change about 

your idea or its 
presentation.

Corollary: 
don’t take the 

feedback 
literally.



“They get it”
These reviews are the really good kind of burn. It hurts because 
they’re right.

You can shortcut the Plato’s Cave process here, and take their advice 
more at face value.

39



Possible outcomes
Non-exclusive options

Reframe the paper: reconsider your bit flip (“what is the goal?”)
Perform additional engineering or evaluation work (“how well did the 
paper achieve the goal?”)

40



Revise and resubmit
I have, multiple times, transitioned a paper from a reject to a very 
successful submission.

Did those papers get in front of more sympathetic reviewers? Maybe.
Did those papers benefit from a more refined vision, execution, and 
articulation? Absolutely.

In some cases, rejection is actually the best outcome. I’d rather have 
a paper rejected, iterate, and then make impact, than barely get a 
paper accepted and never have the impact it could have had.

41

Later published
At Eurographics



What questions  
do you have?



Your journey has just 
started!



What’s Next?
Continuing CS197 Research

CAs are happy to continue working with you! Enroll in CS195 units and 
continue your CS197 project toward a workshop, work in progress, or 
paper

Work in other labs at Stanford
We will do outreach to other labs and get PhD student mentors
We will share the positions and then you can “apply” via email
CAs will provide a private recommendation to the PhD student mentor 
you’re applying to

44



What’s Next?
CURIS research 

Apply to curis.stanford.edu (Deadline in Dec for summer in 2024)

Feel free to reach out to us if you have any questions about career, 
academia, etc!

45

http://curis.stanford.edu
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Reminder:  
Submit your attendance on Canvas!



Slide content shareable under a Creative Commons Attribution-
NonCommercial 4.0 International License.
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