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Lecture 3

1 Smoothed Particle Hydrodynamics (SPH)

1.1 Representation and Simulation

In the previous lecture, we showed how to define density throughout space by smearing out masses
at discrete points in space.

ρ(x) =
∑

i

miW (x − xi)

We did not describe how one might choose those masses mi or the locations xi where they live.
If we instead have some initial conditions, we would like to choose a suitable set of mi and xi so
that the density profile approximates the initial conditions. Given a certain number k of particles,
we can choose k values mi and k values (in 1D) xi giving us 2k variables. We can write down
2k equations by making 2k measurements of ρ, and solve for a suitable set of initial masses and
locations, though run into issues with overdetermined/underdetermined systems.

This gives us some connection between the (piecewise) continuous representation and a discrete
representation. The idea of numerical simulation is to evolve the discrete version forward in time.
The continuous one is what we see in the real world, and it evolves forward in time based on some
physical laws. If at some later time we could compare the continuous one to the discrete one,
we would like to have the two match in some way. There will be errors between the two, which
arise from two sources: errors in the initial discretization and errors that accumulate during the
course of the simulation. In this way, we may use numerical simulation to predict the outcome of
a continuous system.

1.2 Other Attributes

We are not, however, limited to attaching density to our chunks. We can attach any attribute Ai

to the chunks and use W (x) to distribute it. This is typically done using

A(x) =
∑

i

mi

ρi

AiW (x − xi)

where ρi = ρ(xi). Note that we get back our definition of ρ(x) if we let Ai = ρi. The extra
scaling factor is a volume weighting that cancels out the weighting in W (x). If we integrate the
contribution of one chunk throughout space,

∫

∞

−∞

A(x) dx =

∫

∞

−∞

mi

ρi

AiW (x − xi) dx =
mi

ρi

Ai

which is just the volume weighted attribute as one would expect.
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Because we have a smooth definition of A(x) everywhere, we may compute its derivatives. For
example, ∇A can be computed as

∇A =
∑

i

mi

ρi

Ai∇W (x − xi).

We have now described how to represent mass, other scalar quantities, and derivatives of these
scalar quantities in space just based on the idea of having quantities attached to attributes and
moving these attributes around. We automatically conserve mass with this method, so the next
step is to consider momentum.

2 Conservation of Momentum (Forces)

At this point we would like to actually simulate something. We have not yet introduced any means
by which this motion can be computed, and this is where forces are introduced.

Newton’s second law provides the necessary relationship between forces and motion and may be
written as F = ma = p′, where p is the momentum of a particle. One may also view this relationship
as an extension to conservation of momentum. Note that Newton’s first law is conservation of
momentum

∑

i pi = constant, which a consequence of
∑

i Fi = 0, a system experiencing no external
forces. Newton’s third law (equal and opposite reactions) requires that forces between particles
occur in equal and opposite pairs, so in the absence of external forces, net force is still zero and the
momentum of the system is conserved. Newton’s third law provides a convenient means for enforcing
conservation of momentum in the Lagrangian framework (we will use this when formulating springs
later).

Particles may now be evolved through space as long as the forces acting on them can be
computed. One of the simplest and most important forces is gravity. For our purposes, gravity
may assumed to be constant throughout space. Then, we compute the force on a particle due
to gravity as F = mg, so that a particle experiencing no other forces simply falls with constant
acceleration a = g. A somewhat more interesting force is a simple drag force F = −kv, where k is
constant and v is the particle’s velocity. A particle with higher velocity feels more drag, and the
resulting force opposes its motion. A particle experiencing only this force slows down but never
reaches rest or changes its direction.

3 Linearized System

Force is in general a function of both the positions and velocities of the particles in a system. That
is, F = F (x, v). In the interests of writing down a linear system to analyze stability, it is convenient
to approximate this force as F (x, v) ≈ F (x0, v0)+Fx(x, v)(x−x0)+Fv(x, v)(v−v0) and also ignore
the inhomogeneous term F (x0, v0), since Duhamel’s principle states that the inhomogeneous term
does not affect stability. Note that this approximation omits gravity, since it is inhomogeneous.
We can typically make these simplifications when looking at stability. Forces of the form Fx(x, v)x
are rather like spring forces, and forces of the form Fv(x, v)v behave like damping forces. Using
Fx = max and Fv = mav, the motion of the particle is described by the first order linear system

(

x

v

)

′

=

(

0 1
ax av

)(

x

v

)

.
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The eigenvalues of this system are

λ =
av ±

√

a2
v + 4ax
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and have units of Hertz (s−1). Solutions look eλt, so well-posedness requires the real part of the
eigenvalues be nonpositive, Re(λ) ≤ 0. This places some restrictions on the way we can model
forces of nature to prevent the system from blowing up.

It is necessary for ax ≤ 0. If a particle experiences no force at the origin but experiences a
stronger force as it moves away, that force should be a restoring force rather than one that push it
away harder as it moves farther away and causes exponential growth.

Similarly, it is necessary for av ≤ 0. A force that did not satisfy this would tend to apply forces
in the direction of motion that get stronger as the particle moves faster and result in exponential
growth.

When −av < 2
√−ax, we call the system under-damped. The eigenvalues contain imaginary

components, and the solution exhibits period behavior. If av < 0, the system has exponential
damping. If av = 0, the system is undamped. Note that in the undamped case, the eigenvalues are
pure imaginary. In the under-damped case |λ| =

√−ax does not depend on the amount of damping
applied.

When −av > 2
√−ax, we call the system over-damped. The eigenvalues are real and distinct,

and the solution exhibits exponential decay only.
When −av = 2

√−ax, we call the system critically damped. The eigenvalues are equal, and the
solution exhibits exponential decay with at most one overshoot. A critically damped system decays
faster than it would have with any other amount of damping. If it is under-damped, it overshoots
repeatedly and decays slowly. If it is over-damped, the excessive damping causes it to move towards
equilibrium slowly. Severe damping effectively freezes the system so it can hardly move.
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